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Vascular disorders frequently have differing clinical presentations among women and

men. Sex differences exist in vascular access for hemodialysis; women have reduced

rates of arteriovenous fistula (AVF) maturation as well as fistula utilization compared

with men. Inflammation is increasingly implicated in both clinical studies and animal

models as a potent mechanism driving AVF maturation, especially in vessel dilation

and wall thickening, that allows venous remodeling to the fistula environment to

support hemodialysis. Sex differences have long been recognized in arterial remodeling

and diseases, with men having increased cardiovascular events compared with

pre-menopausal women. Many of these arterial diseases are driven by inflammation

that is similar to the inflammation during AVF maturation. Improved understanding of sex

differences in inflammation during vascular remodelingmay suggest sex-specific vascular

therapies to improve AVF success.

Keywords: vascular inflammation, arteriovenous fistulae, sex differences, estrogens, androgens sex differences

in venous inflammation

INTRODUCTION

Although sex differences exist in the epidemiology and clinical presentation of vascular pathologies,
patient sex rarely plays a role in guiding medical or surgical management or specific therapeutic
treatments. Sex differences in arterial pathologies have frequently been observed in clinical
practice, with women presenting with symptoms of coronary artery disease at later ages and
with different presentations compared with men; the later age of presentation is frequently after
menopause when estrogen levels decrease (1). One explanation is that female hormones provide
an anti-inflammatory effect; both estrogen and estrogen receptors exert cardioprotective effects by
attenuating inflammatory cytokines, including interleukin-8 (IL-8) and monocyte chemoattractant
protein-1 (MCP-1) as well as recruitment of leukocytes (2).

A global rise in end-stage renal disease has resulted in increased placement of autogenous
arteriovenous fistulae (AVF), particularly in light of the “Fistula First Breakthrough Initiative”
published by the National Kidney Foundation in 2003 (3). This campaign pushed to attain a target
of 40% of autologous AVF in the United States by 2006, and then 66% by 2009 (4). Despite these
efforts to increase AVF use, up to 60% of AVF fail to mature by 5 months contributing to significant
patient burden and healthcare cost (3, 5). There are several predictors of successful AVF adaptation
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to the fistula environment and use as a successful conduit for
hemodialysis, although none are perfect (6). Vein diameter is the
most predictive factor in many studies, with larger preoperative
vein diameters correlating with higher rates of maturation
(7, 8). Other factors, such as diabetes, congestive heart failure,
concomitant peripheral arterial disease, and older age may also
play a role, as these are negatively correlated with successful AVF
creation (5, 8).

Female sex also predicts poor fistula outcomes. Women are
less likely to undergo fistula surgery, and when placed, AVF
created in women take longer to mature and have higher
rates of non-maturation compared with men (3, 9). In elderly
patients, at 6 months post-surgery, women are less likely to be
successfully dialyzed via their fistula, and at 1 year post-surgery,
fistulae are more likely to be completely abandoned in women
(10). In women, the time to fistula maturation may also be
prolonged compared with men, and women also require more
frequent salvage procedures (9, 11). Several hypotheses have
been proposed to explain the sex discrepancy in rates of AVF
maturation, including smaller mean vessel diameters, greater
vascular reactivity following vascular injury, and decreased
capacity for venous dilation in women (9). Given the worse
clinical outcomes of AVF in women and growing evidence of sex
differences in both venous and arterial inflammation, we review
the evidence for sex differences in inflammation that occurs
during venous remodeling that may contribute to discrepancies
in AVF maturation.

VENOUS REMODELING

Surgical creation of an AVF results in remodeling of the venous
outflow; successful hemodialysis depends on venous remodeling,
that is venous dilation and wall thickening, to withstand the high
flows required for efficient hemodialysis sessions and puncture
with large bore needles 3 times a week (12). Venous remodeling
has been studied frequently in the context of vein graft adaption;
inflammation regulates vein graft adaptation and sex differences
in inflammation may be a mechanism of the reduced vein graft
patency among women (13, 14). Analysis of the Project of Ex
Vivo Vein Graft Engineering via Transfection III (PREVENT
III) clinical trial showed that both sex and race predict vein
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graft patency; black women are more likely to experience loss
of vein graft patency and major amputation following bypass
surgery (15). However, although AVF maturation and vein graft
adaptation both reflect venous remodeling, these processes differ
as they take place in different environments and result in different
structures (12).

Animal models have shown that venous remodeling during
AVF maturation is characterized by increased expression of
the venous determinant Ephrin type B receptor 4 (Eph-B4)
and the arterial determinant Ephrin-B2, as well as temporal
regulation of expression of multiple components of the
extracellular matrix (ECM), allowing venous adaptation to the
fistula environment without loss of structural integrity (16, 17).
Members of the ephrin family mediate cell-cell signaling to
promote tissue development and remodeling. In embryogenic
tissue, ephrins and their Eph receptors regulate angiogenesis and
lymphangiogenesis; in adult endothelial tissues, expression of
ephrins are associated with arterial and venous remodeling (16,
18). Expression of both Eph-B4 and Ephrin-B2 show plasticity
in adults after surgical manipulation; in vein grafts placed in
an arterial environment, Eph-B4 expression is decreased, but
expression of arterial markers is not increased (19). However,
in AVF, expression of both venous markers such as Eph-B4
and arterial markers such as Ephrin-B2 are increased, resulting
in venous remodeling via an Akt1-mediated mechanism (16).
During vascular remodeling, ephrins are upregulated by tumor
necrosis factor alpha (TNF-α) and regulate nuclear factor -κB
(NF-κB), a potential pathway regulating inflammatory processes
in endothelial cells (20). In addition Ephrin-B2 promotes
leukocyte extravasation and infiltration necessary for vascular
remodeling associated with arteriosclerosis (21).

Sex differences involving Eph-B4 and Ephrin-B2 within
the vascular system have not been described. However, sex
differences have been described in downstream targets. One
target of Eph-B4 is Akt, which phosphorylates endothelial NO
synthase (eNOS), a critical mediator of venous dilation (22).
Phosphorylated eNOS is increased in vein grafts, and absence
of eNOS prevents thickening and remodeling of the venous
wall (22). In an elegant analysis of a murine AVF model,
eNOS mediates dilation of the remodeling vein exposed to the
fistula environment; overexpression of eNOS was associated
with larger diameter and less neointimal hyperplasia, and eNOS
knockout was associated with small diameter and increased
neointimal hyperplasia. eNOS overexpression was also associated
with smoother blood flow streamlines, less shear stress at the
vessel wall, luminal fluid vorticity, and radial wall thinning. These
data suggest that eNOS increases NO release from endothelial
cells to stimulate smooth muscle cell relaxation (23).

Interestingly, in ovariectomized mice, estrogen induces eNOS
to produce and release NO from endothelial cells via the Akt
pathway, leading to subsequent arterial dilation (24). In human
endothelial cells, there is greater eNOS expression and activation
in female-derived cells (25). After menopause there are reduced
circulating estrogens, with subsequent reduced arterial NO,
that likely contributes to the increased risk for cardiovascular
events observed in post-menopausal women compared with
pre-menopausal women (26–28). Thus, while sex differences in
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Eph-B4 and Ephrin-B2 expression have not yet been reported,
components of the Eph signal transduction pathway shows sex
differences, suggesting that this family of ligands and their
receptors may play a large role in the observed differences in
venous remodeling.

Transforming growth factor (TGF)-β and TGF-β activated
kinase-1 (TAK1) are also important mediators of venous
remodeling that promotes wall thickening and dilation by
regulating ECM deposition, collagen, fibronectin, and lumen
dilation necessary for AVF maturation (29, 30). In endothelial
cells, TGF-β can stimulate inflammation and fibrosis via
expression of cell adhesion molecules such as intercellular
adhesion molecule 1 (ICAM-1) and vascular cell adhesion
molecule 1 (VCAM-1), matrix metalloproteinases such as MMP-
2, and fibronectins (31). Increased expression of TGF-β during
early venous remodeling is likely required for initial maturation
of fistulae, and may be a mechanism of compensation to
hemodynamic changes, but sustained increased TGF-β and
platelet derived growth factor (PDGF) expression likely leads
to neointimal hyperplasia that contributes to late AVF failure
(32). Several TGF-β polymorphisms alter TGF-β expression and
may determine late AVF patency rates in human patients (33).
However, sex differences in the TGF-β pathway and downstream
effects on the ECM have not been adequately assessed during
AVF maturation, despite strong evidence that sex hormones
directly interact with the TGF-β superfamily (34). It is possible
that sex differences in upstream regulatory pathways, such as in
toll-like receptors, may also exist (35).

Since remodeling of the vein during AVF maturation results
in expression of both arterial and venous identities in the
remodeled venous wall, understanding of sex differences in
arterial remodeling may suggest mechanisms relevant to venous
remodeling (Table 1). Arterial remodeling involves multiple
inflammatory processes. Inflammation and vasoactive peptides
promote vessel remodeling by promoting the migration of
monocytes and macrophages into the vascular wall, mediated
by cell adhesion proteins such as ICAM-1 and VCAM (44,
45). Increased shear stress also promotes vascular remodeling
by upregulating TNF-α and NF-κB, as well as activating
cellular adhesion molecules to recruit leukocytes (46). Sex
differences present during arterial remodeling may be relevant to
venous remodeling.

In arterial remodeling, estradiol administration inhibits
monocyte migration in a MCP-1-dependent manner (47). In
human endothelial cells treated with lipopolysaccharide (LPS)
to induce VCAM-1 expression, estradiol decreases VCAM-1
expression to a greater extent, compared with dexamethasone,
by inhibiting NF-kB, activator protein-1 (AP-1), and GATA
(48). Estradiol can also influence ICAM-1 expression; treatment
of endothelial cells with estradiol leads to a shift from the
NF-kB pathway to the c-Jun N-terminal kinase (JNK)/AP-1
pathway (49). Estradiol treatment inhibits TNF-α-dependent
VCAM-1 and ICAM-1 expression, as well as inhibition of NF-
kB via activation of AMP-activated protein kinase (AMPK)
and peroxisome proliferator-activated receptor (PPAR)-α (50).
Conversely, administration of androgens to both female and
male human endothelial cells shows increased TNF-α signaling
and greater expression of inflammatory cytokines, and increased

VCAM-1 expression (51). Since sex differences are present in
inflammation-driven arterial remodeling, it is likely that similar
sex differences exist in venous remodeling.

VENOUS DILATION

After an AVF is created, early outward remodeling of the vein
is driven by Poiseuille’s law, whereby contact with the higher
arterial pressure, flow and oxygen content leads to increased
venous diameter; this increased diameter, and thus increased
volume of the vessel, is necessary for the vein to accommodate
increased magnitudes of shear stress and volume flow (12).
Preoperative vein diameter is a main predictor of clinical AVF
success; in a retrospective review, Lauvao et al. showed that
vein diameter was the only independent predictor of fistula
maturation (odds ratio = 0.15) (8). Of note, women frequently
have smaller diameter vessels compared with men; in a mouse
AVF model, outflow veins in male mice were larger than
female mice immediately after surgery, and remained larger
postoperatively (8, 37, 52).

Outward remodeling is driven by immune and inflammatory
processes, particularly CD4+ T cells (53). Rats devoid of mature
T cells have decreased lumen sizes following AVF surgery and
lower inflammatory cell counts at the fistula site; rescue with
euthymic CD4+ T cells leads to increased blood flow through the
fistula (54). Sex differences have yet to be assessed in the T cell-
mediated venous dilation observed during AVF maturation.
However, estrogen can influence Th responses, promote Treg
cell populations, and mediate IL-17 release (55). Notably,
estrogens can dampen inflammatory responses by modulating
Th1 responses to Th2 responses (56). In addition, men have
higher Th1:Th2 cytokine ratios (57). Future work is necessary
to identify sex-associated differences in T cell-mediated outward
remodeling in AVF.

MMP may also play sex-dependent roles in inflammatory
venous remodeling. MMP are a family of zinc-dependent
endopeptidases that degrade collagen and elastin in the ECM
and have been implicated in dilatory venous and arterial
diseases, including chronic venous insufficiency and aneurysmal
disease (58–60). MMP are secreted by various cell types,
particularly inflammatory cells (i.e., lymphocytes, macrophages,
neutrophils), endothelial cells, and vascular smooth muscle
cells (58). In chronic venous disease, multiple MMP have
been implicated (58). During AVF maturation, serum levels of
MMP-2, MMP-9, and metalloproteinase tissue inhibitors (TIMP)
are associated with successful creation of AVF; higher MMP-
2/TIMP-2 andMMP-9/TIMP-2 ratios were associated with better
prognosis (61).

Notably, the relaxin family of hormones upregulates MMP-
2 and MMP-9 expression to contribute to vessel remodeling
(62, 63), suggesting that relaxin-relaxin receptor signaling might
be a significant contributor to the sex differences present
during AVF maturation as relaxin and its downstream molecules
differ between sexes (64–68). Knockout of the relaxin receptor
resulted in decreased outward remodeling in a murine model
of AVF failure, accompanied by increased elastin content,
reduced elastase activity, increased CD45+ leukocytes, and
increased MCP-1 expression (69). Chronic administration
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TABLE 1 | Observed sex differences in clinical studies and animal models.

Indication Model Inflammatory marker Men:Women Women:Men References

AVF Mice KLF2, eNOS, VCAM-1 ↑ in male mice following

AVF creation

(36)

Mice TGF-β1, TGFβ-R1, α-smooth muscle

actin, fibroblast-specific protein-1,

CD68+

↑ in female mice following

AVF creation

(37)

AAA Human Peripheral blood mononuclear cells

(Monocytes, B-cells, T cells)

↑ in men with AAA

compared with men without

AAA (effect not seen in

women)

(38)

Human MMP-9 ↑, compared with men with

AAA

(39)

Rat Neutrophils ↑ in elastase-perfused rat (40)

↓ in elastase-perfused rat (41)

Rat Macrophages ↑ in elastase-perfused rat

↓ in elastase-perfused rats (41)

Rat MMP-13 ↑ in elastase-perfused rats (40)

Rat BMP, TNF ligands ↓ in elastase-perfused rats (41)

Rat TGF-β and VEGF ↓ in elastase-perfused rats (41)

Mice JNK1 and downstream proMMP9,

proMMP2, active MMP2

↑ in elastase-perfused mice (42)

Atherosclerosis Human CD68+, CD3+, macrophage foam

cells

↑ in carotid plaque caps (43)

↑, Increased and ↓, decreased.

of recombinant relaxin reduces arterial load by decreasing
systemic vascular resistance, reduces pulsatile arterial load by
increasing compliance, and increases cardiac output in female
mice (65); interestingly, there were no sex differences, despite
relaxin being considered specific to female physiology (64,
66). Elastins may also be involved in the sex differences of
vessel remodeling, as estrogen may decrease MMP-9 production,
thus decreasing elastin degradation (70). Elastin haplodeficient
mice show increased outward remodeling, without increased
intimal hyperplasia, resulting in larger diameter venous outflow
tracts (71). Although the data showing elastin regulates venous
remodeling is strong in animal models, human clinical trials with
recombinant elastase did not show clear improvements in AVF
outcomes (72, 73).

The inflammatory process of venous outward remodeling
may be similar to remodeling that occurs during the formation
of arterial aneurysms (Figure 1). Sex differences in arterial
aneurysms have been extensively described. Both thoracic aortic
aneurysms (TAA) and abdominal aortic aneurysm (AAA) occur
less commonly in women than in men (74). Women, however,
have worse prognosis; in women, AAA and TAA grow at faster
rates, rupture at smaller diameters, and are associated with
higher mortality (75–81). Aortic stiffness predicts TAA growth in
women but not men, further suggesting a potential sex difference
in the pathophysiology (81). In addition, women develop AAA
at older ages than men (82), which has been suggested to
be associated with menopausal status and decreasing estrogen
levels (39).

Similar to venous remodeling, AAA are driven by T cell-
mediated inflammatory processes (Table 2); both CD4+

and CD8+ T-cells are highly activated in the aortic wall,
and perivascular T cell counts correlate with aneurysm

progression (89). Th2 cytokines, particularly IL-1, IL-4, and
IL-10, simultaneously activates MMP, which promotes the
outward remodeling of the aneurysmal wall (90–92). Estradiol
attenuates inflammatory cytokines and chemokines necessary
for MMP-2 and MMP-9 release and monocyte infiltration,
which protect against AAA; this may be mediated through
the JNK pathway (42, 70). Similarly, following aortic elastase
perfusion in male rats there are increased numbers of infiltrating
macrophages compared with female rats, and treatment with
estrogen in male rats leads to smaller aneurysms accompanied
by decreased macrophage infiltration (41, 70). Human aortic
smooth muscle tissue incubated in testosterone showed
increased MMP-3 expression, whereas incubation with estrogen
and progesterone reduced collagen deposition and increased
elastin deposition (83). In rats, MMP-13 expression is increased
in male rats perfused with elastase compared with female
rats (40). In mice, increased estrogen receptor-α (ER-α) in
female mice was inversely correlated with MMP activity and
aneurysm formation (84). Estrogen administration decreases
MMP-2 and−9 expression, adhesion molecule expression and
macrophage stimulators such as ICAM-1, VCAM-2, E-selectin,
MCP-1, and macrophage colony-stimulating factor (M-CSF)
(38, 70, 85). Since estrogen plays a protective mechanism in AAA
formation via the inflammatory MMP pathway, further research
is needed to understand the contribution of this mechanism to
fistula maturation.

VENOUS WALL THICKENING

Vascular remodeling is composed of both changes in vessel
diameter as well-changes in wall thickness. Excessive venous
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FIGURE 1 | Sex differences in vascular dilation. Potential pathways of interest in vessel wall dilation that may be affected by sex, sex hormones, and sex hormone

receptors. Created with BioRender.com.

neointimal thickening leads to late AVF failure, observed
more commonly in women than men (9). Venous neointimal
thickening also depends on Eph function; in mouse models,
decreased Eph-B4 signaling is associated with increased venous
wall thickening (16, 93). Eph-B4 also regulates wall thickening in
human veins, at least in vitro (94–96).

Interestingly, recent data using a mouse AVF model has
shown that Kruppel-like factor 2 (KLF2), eNOS, and VCAM-1
increase in male but not female mice, despite being similar at
baseline prior to AVF creation; in addition, female mice showed
reduced laminar shear stress that was followed by reduced
AVF patency at 42 days (36). Transcriptome RNA sequencing
has also showed that inflammatory pathways are differentially
upregulated in male mice following AVF creation; expression
of proinflammatory cytokine IL-17 was less in females, but
fibrotic markers TGF-β1 and TGF-β receptor 1 were increased,
with correlation to negative vascular remodeling and increased
medial fibrosis (36, 37). HIF-1α and heme oxygenase-1/2 are
also inflammatory mediators of neointimal hyperplasia that
forms during AVF maturation and that may differ between
sexes (97–99). Although partial HIF-1α deficiency regulates
differential changes in cardiac gene expression between female
and male mice (100), and heme oxygenase expression differs
in the setting of trauma and hemorrhage (101), sex differences
in these mediators have not been studied in the setting of
venous remodeling.

Macrophages and T cells contribute significantly to venous
neointimal hyperplasia and may further contribute to sex

differences observed during AVF maturation (53). Following
angioplasty of fistulae, female mice had increased neointimal
area-to-media ratio, accompanied by increased numbers of
CD68+ cells, suggesting sex differences in macrophages
during venous remodeling (102). M2-type macrophages are
important for vascular wall thickening by secreting IL-10 that
is necessary for wall thickening during AVF maturation (53,
103). Rapamycin, an immunosuppressant, decreases AVF wall
thickness, ECM deposition, and smooth muscle cell proliferation
via suppression of both M1-type and M2-type macrophages
(104). The fractalkine receptor 1 (CX3CR1) reduces venous
stenosis in AVF by decreasing proinflammatory signaling,
including TNF- α, IL-1β, MCP-1, and NF-kB (105). In a
murine AVF model, liposomal prednisolone inhibits venous
inflammation and improves outward remodeling; inflammatory
cytokine release from M1-type macrophages was reduced,
suggesting conversion of macrophages into an anti-inflammatory
profile (106). However, no significant effects on neointimal
hyperplasia were observed, similar to the lack of efficacy observed
in the human Liposomal Prednisolone to Improve Hemodialysis
Fistula Maturation (LIPMAT) clinical trial (106, 107). These
data suggest that the role of inflammatory signaling during AVF
maturation is complex, and additional studies that separately
examine the role of inflammation during early maturation and
later patency are warranted.

In both atherosclerosis and arterial neointimal hyperplasia,
macrophages have been implicated in sex differences (Figure 2)
(108). Notably, men have more frequent atherosclerotic-related

Frontiers in Cardiovascular Medicine | www.frontiersin.org 5 July 2021 | Volume 8 | Article 715114

BioRender.com
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Chan et al. Sex Differences in Venous Inflammation

TABLE 2 | Differences in vascular inflammation due to sex hormones in clinical studies and animal models.

Indication Model Inflammatory marker Androgen-related Estrogen-Related References

AAA Human MMP-3 ↑ (83)

Mice MMP-2, MMP-9 ↓ (inversely correlated with

estrogen receptor α)

(84)

Ovariectomy resulted in

higher levels of MMP-2 and

MMP-9

(38)

↓ in male rats given estradiol (70)

Mice ICAM-1, VCAM-2, E-selectin, MCP-1,

M-CSF

↓ (85)

Mice IL-1α mediated inflammatory

response (MCP-1, MMP-2, MMP-9),

TGF-β

↑ (knock-out of AR leads to

↓)

(86)

Atherosclerosis Human Monocyte migration ↓, in a MCP-1 dependent

manner

(47)

Human VCAM-1 ↑ (51)

↓ via NF-kB, AP-1, GATA

inhibition

(48)

↓ via TNF- α, NF-kB

inhibition

(50)

Human ICAM-1 No significant change (51)

↓ via TNF- α, NF-kB

inhibition

(50)

Causes shift in pathway

(NF-kB JNK/AP-1)

(49)

Human E-selectin No significant change (51)

Rats Adhesion molecules (P-selectin,

VCAM-1, ICAM-1), monocyte

chemoattractant (CINC-2β, MCP-1),

proinflammatory mediators (IL-1, IL-6)

↓ (87)

Mice SOCS3 ↑ (88)

Mice JAK/STAT ↓ (88)

↑, Increased and ↓, decreased.

events and at younger ages compared with women, but
cardiovascular diseases increase in women after menopause,
suggesting significant sex hormone-dependent factors (109, 110).
Sex differences are also present in the content of inflammatory
cells in atherosclerotic lesions; for example, carotid plaque caps
show more CD68+ and CD3+ inflammatory cells, including
macrophage foam cells, in women compared with men (43).
Macrophages express sex hormone receptors; higher levels of ER-
α in premenopausal women are associated with a lower incidence
of atherosclerosis (108). In addition, estradiol can attenuate
macrophage foam cell formation within atherosclerotic plaques,
via JAK/STAT/SOC3 pathway (88). Interestingly, administration
of androgens to human male-derived macrophages showed
increased expression of inflammatory genes associated with
atherosclerosis, but not in female-derived macrophages, further
suggesting differential susceptibilities to atherosclerosis based on
sex (111). Thus, similar to sex differences observed in arterial
neointimal hyperplasia, macrophages may contribute to sex-
related differences in late AVF failure.

Vascular smooth muscle cells also play a dynamic role
during AVF maturation. Differentiated, mature smooth muscle

cells primarily contribute to medial wall thickening and
dedifferentiated smooth muscle cells contribute to neointimal
hyperplasia (112, 113). Sex differences in smooth muscle cell
function have not been directly studied during AVF remodeling;
however, it is reasonable that these differences exist, as studies
in arterial neointimal hyperplasia have shown that smooth
muscle cells function in a sex-dependent manner. In vein grafts
implanted into arterial environments, Eph-B4 is found in both
endothelial cells and smooth muscle cells, although Eph-B4 is
preferentially distributed in endothelial cells (93). In cell culture,
female-derived smooth muscle cells show more hypertrophic
changes, whereas male-derived smooth muscle cells show more
hyperplastic changes; additionally, female-derived cells were
more adhesive, suggesting slower proliferation (114). In female
rats, increased ER in smooth muscle cells was associated with
reduced arterial contraction (115). Mineralocorticoid receptors
in smooth muscle cells mediate later onset of aortic stiffening and
vascular fibrosis in female mice compared with male mice (116).
These studies suggest that sex differences in smooth muscle cell
functionmay also be a mechanism of the sex differences observed
during AVF maturation. However, the failed PREVENT trials
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FIGURE 2 | Sex differences in vascular wall thickening. Potential pathways of interest in vessel wall thickening that may be affected by sex, sex hormones, and sex

hormone receptors. Created with BioRender.com.

suggest that inhibition of smooth muscle cell proliferation during
vein graft adaptation is unlikely to be a clinically successful
strategy, and thus inhibition of smooth muscle cell function
during AVF maturation would require another approach to
optimize venous remodeling (117, 118).

CONCLUSION

AVF maturation and utilization remains poor, particularly in
women. There is growing understanding of the inflammatory
mechanisms that drive successful AVFmaturation andmay differ
between men and women. Successful AVF creation depends
on venous dilation and wall thickening, both of which involve
inflammatory mechanisms. Outward remodeling is dependent
on CD4+ T cells, and venous hyperplasia is dependent on
distinct subsets of macrophages. In arterial aneurysms and
atherosclerosis, where sex differences have long been recognized,
there is a larger body of evidence supporting sex differences
in inflammatory vessel remodeling. Mechanisms of arterial

remodeling may help guide understanding of venous remodeling

and may lead to improved clinical outcomes for women
needing AVF.
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