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Background: Monoallelic expression of autosomal genes has been implicated in human psychiatric disorders.
However, there is a paucity of allelic expression studies in human brain cells at the single cell and genome wide

levels.

Results: In this report, we reanalyzed a previously published single-cell RNA-seq dataset from several postmortem
human brains and observed pervasive monoallelic expression in individual cells, largely in a random manner.
Examining single nucleotide variants with a predicted functional disruption, we found that the “damaged” alleles
were overall expressed in fewer brain cells than their counterparts, and at a lower level in cells where

their expression was detected. We also identified many brain cell type-specific monoallelically expressed genes.
Interestingly, many of these cell type-specific monoallelically expressed genes were enriched for functions
important for those brain cell types. In addition, function analysis showed that genes displaying monoallelic
expression and correlated expression across neuronal cells from different individual brains were implicated in the

regulation of synaptic function.

Conclusions: Our findings suggest that monoallelic gene expression is prevalent in human brain cells, which may
play a role in generating cellular identity and neuronal diversity and thus increasing the complexity and diversity of

brain cell functions.
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Background

In diploid eukaryotic organisms, it is generally thought
that the maternal and paternal copies of individual genes
are expressed simultaneously at comparable levels.
However, there are exceptions where only one of the
two alleles is expressed; chromosome X-linked genes
and imprinted genes are the best-known examples [1].
In addition, monoallelic expression of autosomal genes
has also been observed in several large gene families that
are active in the nervous or immune systems, such as
the olfactory receptor gene family [2, 3], protocadherins
[4, 5], interleukins and immunoglobulins [6]. There,
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monoallelic expression is functionally essential for gen-
erating cellular identity and diversity [2, 7, 8]. Moreover,
recent transcriptome-wide analyses have showed that
monoallelic expression is much more widespread than
previously appreciated [1, 9-13]. The extent of monoal-
lelic expression, however, remains unclear and is subject
to debate, as the experimental technology and the oper-
ational definition of monoallelic expression vary from
study to study. Arguably, many of the previous studies
actually investigated allele-biased expression rather than
monoallelic expression, including our published work
[14], as pointed out by recent reports [15, 16].

When allelic expression occurs in humans, it may be
uniformly biased to the same allele in one tissue or
organ, or throughout the body, or the two alleles may be
expressed randomly. Conceivably, random monoallelic
expression can contribute to developmental disorders
when this occurs in a gene containing heterozygous
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loss-of-function mutations. A known example is the X-
linked MECP2 gene. It is mutated in Rett Syndrome and
approximately half of the cells in a female patient would
be expected to express the mutated copy, leading to dis-
rupted cellular functions [17, 18]. Likewise, autosomal
genes undergoing monoallelic expression may also be
implicated in human disorders. For example, the AGCI
gene, which leads to a severe developmental abnormality
with loss of function mutations, has been shown to be
expressed monoallelically in a random manner in mice
[19]. Monoallelic expression of APP and SNCA may also
be involved in the risk of Alzheimer and Parkinson dis-
eases, respectively [9, 20]. The functional impacts of
monoallelic gene expression, however, remain largely
unclear.

To study monoallelic expression and its potential role
in human brain disorders, both in vitro cell cultures and
post-mortem brain samples have been employed. Our
previous study identified many allele-biased expressed
genes in induced pluripotent stem cells (iPSCs) and
differentiated neurons, some of which are implicated in
schizophrenia and autism [14]. The finding was sup-
ported by other investigators [21]. Two recent studies
found that the establishment of monoallelic gene expres-
sion during embryonic stem cell (ESC) differentiation
was stably maintained over multiple cell divisions [20, 22].
When ESC cells were differentiated into neural progenitor
cells (NPCs), however, the monoallelic expression pattern
can be reset [22]. On the other hand, when NPCs were
further differentiated into other neural cells such as as-
trocytes, the allelic expression patterns seemed to be
preserved [20]. This discovery may explain why some
disease-related mutations show variable penetrance and
supports the hypothesis that monoallelic expression
may be a reason for discordance for monozygotic twins
in human diseases such as schizophrenia and Parkinson
Disease, as the mutated gene copies may not be expressed
in all individuals or among all cells [14]. Consistent with
this idea, several genes important for neurodevelopment
and implicated in neurological disorders, such as ASD, in-
tellectual disability, and developmental delay have been
shown to exhibit monoallelic expression, such as AUTS2
(autism susceptibility candidate 2) in lymphoblastoid cell
lines [23] and human neurons [14]. Studies have also ob-
served that genes encoding the GABAA-receptor subunits
GABRB3, GABRAS5 and GABRG3 showed allele-biased ex-
pression in the frontal cortex of ASD individuals but not
in controls [24], while SLCIA3 and NHP2L1 displayed
allele-biased expression in selected brain regions [25].
Most recently, Huang et al. reported that allelic effects
were developmental stage and cell type specific, and they
found that the allelic expression of genes, including risk
genes for mental disorders, could give rise to mosaics of
monoallelic and biallelic expression in macaque and
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human brain cells [26]. Despite these important findings,
little is known about monoallelic expression in individual
human brain cells.

Furthermore, as a brain is composed of various cell
types, it is difficult to interpret transcriptome data de-
rived from whole brains for studying allelic expression
and understanding cellular functions. The development
of single-cell RNA-seq (scRNA-seq), however, has made
it feasible to study gene expression of all brain cells at
the same time and resolve expression profiles down to
individual cells. The first scRNA-seq of brain cells was
conducted on fetal cortical tissue samples, in which the
authors revealed the heterogeneity of gene expression
in individual cells and discovered that the Notch signal-
ing pathway is activated in human radial glia [27].
Another scRNA-seq of brain cells was conducted on
both fetal (n = 4) and adult cortical samples (n = 8)
[28]. The authors used two complementary approaches
to classify the adult brain cells into five major cell
types: astrocytes, microglia, neurons, oligodendrocytes,
and oligodendrocyte precursor cells (OPC) [28]. An in-
dependent study separated neural progenitors in hu-
man fetal cortex by fluorescence-activated cell sorting,
analyzed the sorted progenitors using RNA-seq, and
found that both neurogenin targets and long noncoding
RNAs were enriched in human outer radial glia [29].
Finally, an RNA-seq study using human prenatal brain
tissues echoed the importance of IncRNAs in human neo-
cortex development, as it demonstrated that LOC646329,
one of the most radial glia-enriched IncRNAs, regulated
cell proliferation [30]. In short, these scRNA-seq studies
have uncovered brain cell heterogeneity, mapped gene
signatures for different cell types, provided invaluable
resources for investigating gene expression of brain cells,
and highlighted the importance of studying gene expres-
sion at the single cell level.

Here, we studied the scRNA-seq datasets from several
adult human brains [28] and re-analyzed them for
allele-biased gene expression. We found that monoalle-
lic gene expression occurred widely in brain cells and
the monoallelic genes tended to be cell type-specific.
When compared to co-expressed gene modules, mono-
allelic genes were enriched in the neuron module, indi-
cating that these genes may be important for neuronal
specification and functions.

Results

Method to call single nucleotide polymorphism (SNP)
from scRNA-seq datasets

Heterozygous DNA markers are required for allelic ex-
pression analysis. These are usually derived from SNP
genotyping data [14, 20, 22]. In this study, we re-analyzed
previously published single cell RNA-seq data, for which
genotype information is not available. We reasoned that a



Zhao et al. BMC Genomics (2017) 18:860

subset of heterozygous SNPs (hetSNPs) in an individual
subject could be discovered directly by pooling scRNA-
seq data from all cells, since the two alleles of a gene could
be expressed in different single cells [12, 31, 32]. By largely
following the SNP calling method applied to bulk RNA-
seq data [33, 34], we developed a hetSNP calling pipeline
using pooled scRNA-seq data and information from the
dbSNP database (see Methods; Fig. 1la). To test our
method, we first applied it to a mouse embryonic scRNA-
seq dataset with available genotying information. In the
dataset, RNAs from 269 single cells from multiple F1 em-
bryos at different developmental stages - from zygote to
late blastocyst - were sequenced, with cell numbers ran-
ging from 1 to 27 [12]. We excluded the scRNA-seq data
of four zygotes and four early 2-cell embryos (Fig. 1b) be-
cause we found very few hetSNPs from those data (on
average 22 for zygotes and 35 for early 2-cell embryos),
which is consistent with the fact that the paternal genome
is not fully activated at these two stages and thus the ma-
ternal alleles were the predominant alleles for most genes
[12]. We masked the 58,817,922 SNP sites (dbSNP version
142) in the mouse reference genome, among which
17,491,332 sites are known heterozygous SNPs (hetSNPs)
between the two mouse strains, CAST/Ei and C57BL/6,

Page 3 of 18

used to generate the F1 embryos. We called SNPs for 34
embryos after merging scRNA-seq data from different
cells of the same embryo (Additional file 1: Figure Sla).
Comparing the hetSNPs called from the scRNA-seq data
in each embryo with the list of known hetSNPs derived
from the mouse genome project (Additional file 1: Figure
S1b), we calculated the positive predictive values (Fig. 1c).
For all the 34 tested embryos, regardless of different cell
numbers and depths in the scRNA-seq data, the positive
predictive values increased dramatically from 53.09% to
97.20% on average when the read depth cutoff was in-
creased from 1 to 6, after which the positive predictive
values reached a plateau phase. To be highly conservative
while keeping a reasonable number of hetSNPs for ana-
lysis, we decided to use the cutoff of 20 for each of the
two alleles in pooled RNA-seq data, yielding a positive
predictive value of 99.46% on average (Fig. 1c). Although
the positive predictive values were high, the true positive
rate, as expected, was small (Additional file 1: Figure Slc)
due to various reasons. For example, most hetSNPs were
located at intergenic or regulatory regions and could not
be detected in RNA-seq due to the lack of expression. As
an alternative option, we tried to call SNPs directly from
pooled RNA-seq data using the GATK at the genome-
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wide level [35, 36]. However, this resulted in much fewer
hetSNPs (min 100 SNPs, max 3037 SNPs; ~7% of hetSNPs
identified above), of which 77% were present in the
dbSNP. Moreover, we compared the allelic ratios of the
SNPs from the GATK pipeline and those from our
method, and found the allelic ratios of most SNPs missed
by GATK were deviated from 1:1 (Additional file 1: Figure
S1d). Considering this finding, we have decided not to
pursue this option for calling variants.

Identification of hetSNPs in individual human brains

After testing the SNP calling method on mouse scRNA-
seq data, we applied it to a human scRNA-seq dataset
that contained 466 cells from eight adult and four fetal
brains [28] (Additional file 2: Table S1). The original
study provided a clear overview of cellular heterogen-
eity and complexity of the adult and fetal human cor-
tical regions at the single cell transcriptome level [28].
Here, we re-analyzed the dataset to study the pattern of
allelic expression across cell types in human adult brain
cells, using the cell type classification provided by the
original authors. Since the fetal brain cells were not
mapped to specific cell types, they were excluded from
current analysis. We also excluded the two adult sam-
ples with only four and five cells. In the end, we ana-
lyzed 323 single cells from six adults (adult21, adult37,
adult47, adult50, adult54, and adult63B) (Additional file
2: Table S1). We first called SNPs in each adult using
the method described above (Fig. 1a; Additional file 1:
Figure S2). Again, we tried a series of read depth cut-
offs. When the read depth cutoff was increased from 1
to 10, the average numbers of hetSNPs dropped quickly
from 1,321,004 to 30,902; when the cutoff was further
increased to 20 and 30, the average hetSNP numbers de-
creased to 14,925 and 9316 (Additional file 1: Figure S3).
The overall declining trend of hetSNP numbers was simi-
lar to the pattern in the mouse data (Additional file 1:
Figure S1). It should be noted that both the mouse and
human studies used the SMART-seq protocol and the
Fluidigm C1 system to generate the scRNA-seq data [12,
28]. In the end, we decided to use a read depth of 20,
which yielded <0.5% false positive rate based on our

Table 1 hetSNPs and monoallelic genes in human brain cells
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analysis of the mouse scRNA-seq datasets (Table 1). Due
to different genetic backgrounds and differences in the
number of cells analyzed, we obtained variable numbers
of hetSNPs for the six individuals (Additional file 1: Figure
S4a; Table 1). On average, we obtained 14,925 hetSNPs
across the six individuals. For adult50 brains, which had
the largest number of cells (77 cells), we got the largest
number of hetSNPs (41,465). In contrast, for adult47,
which had the smallest number of cells (24 cells), we only
identified 3569 hetSNPs. This is expected, as larger num-
bers of cells sequenced would result in more sites with
greater read coverage (Additional file 1: Figure S4a). This
also indicates that although genetic backgrounds were dif-
ferent among the six individuals, cell number usage is
likely a more important factor for the number of hetSNPs
identified from scRNA-seq data. We next analyzed the
genomic distribution of these hetSNPs based on the
Ensembl gene annotation (release 74). Across individuals,
~80% of the called hetSNPs were located in the genic re-
gions (Additional file 1: Figure S4b), with ~25% in exons.
The exonic hetSNPs covered 2193 genes on average, with
the maximal of 4413 genes in adult50 and the minimal of
851 genes in adult47 (Table 1).

Biased expression of functionally disrupted alleles at
hetSNP sites

To study the potential impacts of allelic gene expression,
we first addressed if a functionally disrupted allele would
be expressed differently from its counterparts. We pre-
dicted the functional impacts of the alternative alleles at
hetSNP sites using WANNOVAR [37] and examined if the
deleterious alleles were expressed in fewer cells (Fig. 2a;
Additional file 1: Figure S5) or at a lower level (Fig. 2b;
Additional file 1: Figure S6). Indeed, using the adult21
brain as an example, we found that the alternative dele-
terious alleles were expressed in significantly fewer cells
than the reference alleles, as the medians of expressing cell
numbers for the reference and alternative alleles were 13.5
and 5 (p = 0.018, one-sided Wilcoxon rank-sum test) for
gain-of-stop (G, termed “stopgain” in wWANNOVAR) mu-
tations (n = 6) (Fig. 2a, SNV annotation). This difference
is possibly explained by the fact that the transcripts with a

Individual Cell Called Exonic Genes with Cell-type MA genes
number hetSNPs hetSNPs exonic hetSNPs Astrocyte Microglia Neurons Oligodendrocyte OPC

adult21 57 12,032 3736 2294 0 0 225 76 0
adult37 63 18,101 4072 2491 31 0 358 0 0
adult47 24 3569 1340 851 22 2 7 0 0
adult50 77 41,465 7627 4413 548 0 438 0 0
adult54 58 9996 2612 1667 0 27 0 107 98
adult63B 44 4386 2192 1444 0 0 71 24 0
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Fig. 2 Effects of functionally disrupted alleles on expression in human brain cells. a Boxplots showing the numbers of adult21 brain cells
expressing reference (R) or alternative (A) alleles (allelic read depth = 2). Each point represents a heterozygous SNP whose classification was
derived from the exome summary results by wANNOVAR annotation (see Methods). b Boxplots showing the percentages of reference reads

(vs total reads) at hetSNPs sites in adult21 brain cells (read depth for each of the alleles was =22 and the sum of read depths was =10). The SNV
classification of hetSNPs: S, synonymous (n = 559); N, non-synonymous (n = 435); L, stoploss (n = 6); G, stopgain (n = 6). SIFT classification: S,
synonymous (n = 578); T, tolerated (n = 340); D, deleterious (n = 77). Polyphen2_HDIV classification: S, synonymous (n = 587); B, benign (n = 387);
P, possibly damaging (n = 49), D: probably damaging (n = 72). Polyphen2_HVAR classification: S, synonymous (n = 587); B, benign (n = 315);

P, possibly damaging (n = 43), D: probably damaging (n = 50). As the numbers of functionally disrupted SNPs were small, we also plotted
individual points with summary statistics illustrated by boxplots. Note that a SNP expressed in multiple cells would appear as multiple points
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gain of stop mutation would be degraded by the
nonsense-mediated mRNA decay (NMD) pathway [38].
The six genes with a stopgain mutation were IL17RB,
SBDS, DGCR6L, SEPT4, TMEMI14B, DFNAS (Fig. 2a,
SNV annotation). Using SIFT annotation, the alterna-
tive alleles with predicted functional disruptions were
also expressed in significantly fewer cells than the refer-
ence alleles: the medians of expressing cell numbers for
the reference and alternative alleles were 6 and 4
(p = 0.001, one-sided Wilcoxon rank-sum test) for dele-
terious (D) mutations (n = 77) (Fig. 2a, SIFT annota-
tion). In contrast, no large difference was detected at
hetSNPs with predicted synonymous changes (S), al-
though a slight bias to reference alleles was observed.
Similar results were obtained using the Polyphen2 H-
DIV and Polyphen2_HVAR annotations (Fig. 2a), and
scRNA-seq from other brains (Additional file 1: Figure
S5). Taken together, these results indicate that function-
ally disrupted (alternative) alleles were less abundant in
cells than the non-disrupted (either reference or alter-
native allele) ones, but the mechanisms other than
NMD need to be studied in the future.

We then examined if the deleterious alleles were
expressed at a lower level. We analyzed hetSNPs with

both alleles expressed in the same cell, defined as a read
depth for each allele >2 and the sum of read depths =10
(Fig. 2b; Additional file 1: Figure S6). In general, we ob-
served a slightly biased expression of reference alleles,
probably due to technical artifacts, e.g, mapping bias,
which remains a big challenge in alignment based analysis
[39]. For hetSNPs sites with gain-of-stop (G, n = 10)
mutations in adult21 brain, the percentages of reads
from the reference alleles were significantly higher than
50% and greater than the percentages at sites with syn-
onymous (S, n = 677) changes: the medians of reference
allele percentages were 89.57% and 60% (p = 0.0002,
one-sided Wilcoxon rank-sum test; Fig. 2b, SNV), re-
spectively. Similar results were obtained using the predic-
tions from SIFT, Polyphen2 HDIV, and Polyphen2 HVAR
annotations, with the reference alleles expressed 15~20%
higher at the hetSNPs with deleterious (D in SIFT and
P/D in Polyphen2) changes than the hetSNPs with syn-
onymous (S) changes (p < 0.00004, one-sided Wilcoxon
rank-sum test). Analysis of data from other brains re-
vealed a similar pattern except in the adult47 brain, in
which the “deleterious” and “probably damaging” alleles
showed similar or lower expression of the reference al-
leles when compared to synonymous SNVs (Additional
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file 1: Figure S6). Although the alterative alleles were
generally expressed at a lower level than the reference
alleles, we found that compared to the alternative al-
leles leading to synonymous changes, the expression
differences between functionally disrupted alleles and
the reference alleles were significantly bigger across
cells from different brains.

Allele-biased gene expression in human brain cells

We next analyzed the exonic hetSNPs for allele-biased
expression. For each of the hetSNPs, we evaluated its
allele-biased expression in a single cell by performing a
binomial test of the read counts for the two alleles and
considering the allelic ratio (see Methods and Add-
itional file 1: Figure S2). To evaluate our method, we
first checked the allelic expression of imprinted genes
(obtained from Geneimprint: http://www.geneimprint.-
com/). We found that in pooled RNA-seq reads the ra-
tios of reference expression for imprinted genes were
significantly deviated from 0.5, using either mouse or
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human data (Fig. 3a; Additional file 1: Figure S8). At the
single cell level, we analyzed a total of 927 hetSNP sites
(the occurrences of the same site in multiple cells were
considered independently) in the human imprinted
genes and classified 416 as MA, 48 as BA, and 463
Unknown (Fig. 3a; Additional file 1: Figure S7a). The 48
BA occurrences were from 23 unique hetSNP sites in 8
genes (NTM, MEG3, MAGI2, GNAS, MEST, DGCR6L,
PPPIR9A and NLRP2) and they accounted for only a
small percentage of total SNPs analyzed in each of these
genes (0.8% ~ 13.1%, except for NLRP2) (Additional file
1: Figure S7b). Note that BA from imprinted genes could
be due to either isoform-dependent allelic expression,
e.g., GNAS [40], or allelic expression leakage [15]. This
result indicates that our criteria for defining allelic
expression are reasonably accurate.

To get an overview of the allelic bias status, we first
summarized the allelic bias at 284,220 sites in all cells
among the six individuals. As expected, the reference
allelic ratios of 25,856 biallelic (BA) sites centered

pooled scRNA-seq reads from neurons of adult37
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Fig. 3 Allele-biased expression of hetSNPs in human brain cells. a Distribution of reference allele ratios for imprinted and non-imprinted genes.

b Distributions of hetSNP frequencies (top) and binomial test p-values (bottom) for all hetSNPs broken down by the ratios of reference alleles
(x-axis). Data are for all cells and for all hetSNPs in the six adult brains. ¢ The distribution of biased hetSNPs in all brain cells grouped by individuals
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around 0.5 (Fig. 3a). For 136,422 monoallelic (MA) sites,
the distribution of the reference allelic ratios was bimodal,
with ratios near 0 or 1 (Fig. 3a). We also noted that the
number of MA sites was approximately 5x larger than
that of the BA sites, while 42.90% (“Unknown”) of the
tested sites were not well covered for statistical inference
at the single cell level (Fig. 3a). We then examined the al-
lelic biased status in each cell (Fig. 3b). Although the num-
bers of detected hetSNPs varied greatly among cells, the
allelic expression patterns were quite similar among all
the cells (Fig. 3b). The average percentage of hetSNPs that
showed monoallelic and bi-allelic expression is 56.69%
and 4.69%, respectively (Fig. 3b), indicating that at a single
cell level the majority of genes are expressed from a single
allele at a particular time point, consistent with recent
findings [12, 26, 31, 32]. To address how frequently two
single cells shared MA alleles, we randomly chose two
neurons from adult37 and calculated the percentages of
shared MA alleles between two neurons. Repeating this
process 1000 times we found that the percentage of shared
MA alleles was 9.50% on average (1.82% ~16.88%), indi-
cating a high degree of cellular heterogeneity and/or tech-
nical noise.

To see how allelic expression in single cells would be
reflected at the cell population level, we pooled scRNA-
seq data from the same cell types of the same individuals
and then called allelic expression from the pooled scRNA-
seq reads (to mimic bulk RNA-seq analysis). Taking
neurons in adult37 as an example (Fig. 3¢, d), which had
the largest number of cells for a specific cell type in any of
the six individuals (Additional file 2: Table S1), we found
that at the single cell level for 83.87% of the 99,723 total
hetSNPs, the reference allele ratios were near 0 or 1 (i.e,
strongly MA) in the 50 cells. However, when scRNA-seq
reads from the 50 neurons were pooled and analyzed as
bulk RNA-seq data, we found that 6484 (36.93%) of the
17,559 non-redundant hetSNPs showed reference allele
ratios between 0.4 and 0.6 (Fig. 3c, d). Taken together,
these results indicate that the paternal and maternal alleles
were randomly expressed in a highly biased manner in in-
dividual human neurons. The same analysis for other cell
types showed that as scRNA-seq data from more cells
were pooled, more hetSNP sites exhibited biallelic expres-
sion (Additional file 1: Figure S9 and S10). These results
indicate that both alleles of a gene can be expressed but
only one is predominately expressed in a single cell and
the choice is mostly random. This finding is consistent
with previous observations [12, 32] and suggests that al-
lelic expression in human brains is not much different
from other tissues.

Biased gene expression in individual human brain cells
To study the potential functional impact of allele-biased
expression, we mapped the hetSNPs to genes in each
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cell. There were 257,167 non-unique (i.e., redundant)
hetSNP sites in total when all the cells were considered
together, and they were mapped to 198,690 genes in
total (a gene might be counted more than once if it was
expressed in many cells) (Additional file 3: Table S2).
158,899 out of the 198,690 genes (79.97%) had only one
hetSNP detected by scRNA-seq from a particular cell,
while 28,688 (14.44%) harbored two hetSNPs and 11,103
(5.59%) contained >2 hetSNPs (Fig. 4a). One way to
evaluate the accuracy of our allelic expression results is
to check the self-consistency between two hetSNPs
within the same gene. Among the 13,570 genes harbor-
ing two hetSNPs, 11,439 (84.30%) genes showed consist-
ent biased expression, either both were monoallelically
(MA-MA) or both were biallelically (BA-BA) expressed
(Fig. 4b), supporting that our calls for allelic expression
were accurate. We also compared the expression level of
the three groups of genes and found that genes of BA
expression were overall expressed at a higher level (BA-
BA vs. MA-BA: Wilcoxon rank sum test, p value = 0.007;
MA-BA vs. MA-MA: Wilcoxon rank sum test, p value
<2.2e-16) (Additional file 1: Figure S11a,b).

After the hetSNPs were mapped to genes, we deter-
mined the allelic expression status of all the expressed
genes for each cell (Additional file 1: Figure S2). We con-
sidered a gene to be bi-allelically expressed if any of its
hetSNPs was BA, or otherwise monoallelically expressed if
it contained a MA hetSNP. In the end, we found that the
average percentages of genes exhibiting MA and BA ex-
pression were 50.24% and 10.08%, respectively (Fig. 4c).

Biased gene expression in individual human brain cell
types

A human brain is made up of a heterogeneous mix of cell
types, each performing their unique functions. We thus
asked how allelic gene expression differed among cell
types. We began by identifying genes that exhibited MA
(or BA) across multiple cells of the same cell type. As a
previous study raised the concern that low expressed
genes were more likely to be called monoallelic expression
due to technical limitations in the scRNA-seq assay [12],
we restricted our analysis to genes that were expressed at
the top 30th percentile level in each cell, after excluding
non-expressed genes. The cutoff values for the top 30th
percentile of genes in the cells were 24.8 FPKM on aver-
age, but they varied among cells (Additional file 1: Figure
S12). To test if we could get consistent MA genes for a
certain cell type from the available cells, we randomly split
the 50 neurons in adult37 into two groups (25 cells each)
1000 times and calculated the percentages of overlapping
MA genes. The mean percentage was 27.78% (min
20.22%, max 35.71%). As the number of cells became a
factor in assessing allelic expression at the level of cell
type, we evaluated its influence using again the 50 neurons
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from adult37 brain. We randomly sampled a subset of the
50 cells (from 1 to 49) and then determined the number
of allelically expressed genes by our method. We repeated
the process 1000 times (or used all possible combinations
when fewer than 1000) and found that the number of MA
genes continually increased as the number of neurons
used for analysis increased, indicating that the 50 neurons
were still insufficient to identify all MA genes in this cell
type (Additional file 1: Figure S13). A close examination of
this issue found that for most genes their MA statuses
were shared in only a few cells (Additional file 1: Figure
S14). For example, in adult50 neurons, 2160 out of the
3488 MA genes (61.93%) were called MA in less than four
cells. Likewise, in adult54 microglia, 526 out of 565 MA
genes (93.10%) were evaluated as MA in less than four
cells.

Nevertheless, we reasoned that a gene needs to exhibit
MA “consistently” if its MA expression would confer
any functional affect to a brain cell type, so we analyzed
the genes that were called MA expression in at least four
cells of the same type, with no cell exhibiting a BA

pattern (Additional file 1: Figures S2 and S14). By this
definition, we obtained 145 MA expressed genes on
average in the five brain cell types of six individuals, with
the most (n = 548) in astrocytes from the adult50 brain
and the least (7 = 2) in microglia from the adult47 brain
(Table 1; Additional file 4: Table S3). When we took the
total hetSNPs called for an individual into consideration,
on average 5.37% of the heterozygous genes in the six
individuals showed strong biased allelic gene expression
in one of the six brain cell types (Table 1). To evaluate
our list of MA genes, we merged our lists of MA genes
from all cell types and all individuals and checked them
(1515 unique genes in total) against the database of hu-
man and mouse autosomal monoallelic genes — dbMAE,
which contained two broad classes of data: direct meas-
urement of allelic expression imbalance (termed ‘experi-
mental’) and indirect chromatin-based inference
(‘inferred’) [41]. We found that 688 of our 1515 MA
genes were present with experimental evidence, among
which 65 genes (9.45%) were biased in at least one of
the eight human tissues recorded in the dbMAE. We
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also found that among 1256 genes with inferred evi-
dence for MA, 468 genes (37.26%) showed biased ex-
pression in at least one human tissue (Additional file 4:
Table S3). We also compared our list against the mouse
data in dbMAE. We found 1214 MA genes with experi-
mental evidence, among which 712 genes (58.65%) were
biased in at least one mouse tissue, and 1213 genes with
inferred evidence, among which 562 genes (46.33%) were
biased in at least one mouse tissue. This comparison
shows that there is a broad agreement between our calls
and the allelic expression reported in the dbMAE.

Functional analysis of biased genes in human brain cell
types

After we obtained the small lists of MA genes for differ-
ent cell types (Additional file 4: Table S3), we first stud-
ied their functions separately for each cell type using the
software GOseq [42] (Fig. 5). Genes with expression
levels similar to MA genes, i.e. the top 30% in expression
level in each cell of the same cell type, were combined
and used as background genes. We did not obtain
significantly enriched terms (adjusted p value <0.05) in
oligodendrocytes, OPC, and microglia, possibly due to
the small numbers of MA genes for those cell types
(Additional file 4: Table S3). To determine if the MA
genes from astrocytes and neurons in different individ-
uals showed similar functions, we used a network to il-
lustrate the relationship between groups of cells of the
same cell type in different individuals and enriched GO
terms (see Methods) (Fig. 5). For neurons, GO terms
shared across the MA genes among individuals were
neuron projection, signal transduction, and several
others (Fig. 5). For astrocytes, the shared GO terms
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include neurogenesis and immune system process, con-
sistent with its role in regulation of neurogenesis [43]
and immune response in the CNS [44]. There were also
terms shared by astrocytes and neurons such as cell
communication (Fig. 5).

In addition to function enrichment analysis, we also
checked against the risk genes for autism [45] and schizo-
phrenia [46]. Although we found that 50 and 67 of the
MA genes have been implicated in autism and schizophre-
nia, the lists of MA genes in the brain cell types as a whole
showed no significant enrichment for either autism or
schizophrenia (Fisher’s exact test, p = 0.33 for autism,
p = 0.83 for schizophrenia) (Additional file 2: Table S4).
Nevertheless, there are several notably interesting
genes, including GRIA3, GRIK2, NRXNI, and NRXN3
(Additional file 2: Table S4). In addition, 20 of our brain
MA genes, including autism risk genes (e.g., ANK2,
NFI) and schizophrenia risk genes (e.g., APC, EGRI,
FGFR3, PMP22, TCF4, TFRC, and YWHAE), were also
included in the database of human haploinsufficient
genes [47] (Fisher’s exact test, p = 0.54; Additional file
2: Table S4), suggesting that some of our MA genes
may be quite susceptible to damaging mutations that
could lead to a loss of gene expression in subsets of
brain cells.

Cell type-specific monoallelic gene expression in human
brains

To address if the MA genes were cell type-related, we
compared the MA genes between cell types. To obtain
meaningful results, we restricted our analysis to individ-
uals with relatively large numbers of cells in two or more
cell types. We first compared MA genes in neurons and
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oligodendrocytes from adult21, with 35 and 12 cells ana-
lyzed by scRNA-seq, respectively. There were 2283 and
2121 genes with expressed hetSNPs in neurons and oli-
godendrocytes respectively, among which 2114 genes
(92.31%) were shared between the two cell types (Fig. 6a).
However, there were only 16 MA genes (5.61%) shared
by the two cell types (Fig. 6b), indicating that most of
the MA genes were cell type-specific. We then repeated
this analysis using brain data from another individual —
adult63B, and obtained a similar result with 1187 back-
ground genes (83.36%) shared but only 4 MA genes
(4.40%) shared between neurons and oligodendrocytes
(Fig. 6d,e). Comparisons of MA genes in another two
cell types, astrocytes and neurons, from three individuals
(adult37, adult47 and adult50) uncovered a similar trend
(Additional file 1: Figure S15). To address if the small
overlap was due to small and unequal numbers of cells
being analyzed and thus likely technical artifact, we per-
formed permutation tests. For adult21 data (Fig. 6¢), we
randomly sampled two sets of 12 cells (no cells common
between the two sets) from the 35 adult21 neurons 1000
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times and obtained the frequency of shared MA genes
between the two sets of neuronal cells. We also ran-
domly selected 12 cells from the 35 adult21 neurons and
iterated the analysis 1000 times; overlap was computed
for the MA genes between the random neuron set and
the 12 oligodendrocytes. The result shows that the
numbers of overlapping MA genes between cell types
(neurons vs oligodendrocytes) was significantly smaller
than that obtained from intersecting two sets of the
same cell type (neurons). Repeating this analysis using
scRNA-seq data from adult63B yielded similar results
(Fig. 6f). The same permutation tests were also done
with astrocytes and neurons in three individuals, yielding
the same conclusions. (Additional file 1: Figure S15).
Taken together, these results support the idea that MA
expressed genes in human brains are generally cell type
specific, an intriguing observation to be further explored
with more cells.

We found some shared MA genes in the same cell
types across individuals. For example, 86 of the 1006
MA genes in neurons showed MA expression in at least
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2 individuals. Among them, PCDH9 exhibited MA ex-
pression in 4 individuals; PCDH9 is a member of the
cadherin superfamily of calcium-dependent cell adhesion
molecules and was previously reported to show monoal-
lelic expression [4, 5]. In Oligodendrocytes, 11 of the
196 MA genes showed MA expression in at least 2 indi-
viduals. There were no shared MA genes across individ-
uals for microglia (29 MA genes in total) or OPC (98
MA genes in total). The reason for the small overlap of
MA genes is explained by the scarcity of shared
expressed hetSNPs among individuals.

Co-expression of monoallelic genes in neurons

Next, we studied if MA genes were co-expressed by
WGCNA analysis [13, 48]. Using the scRNA-seq data
from all 323 cells, we performed a WGCNA analysis
[49] and identified 181 co-expression gene modules. We
found that the magenta module showed the highest ex-
pression only in neurons, while the salmon2 module and
the salmon4 modules exhibited the highest expression in
oligodendrocytes and astrocytes, respectively (Fig. 7a;
Additional file 2: Table S5). We did not observe modules
that were especially highly expressed in microglia or
OPC. The expression profiles of the eigengenes for the
three modules also supported the idea that these mod-
ules were highly expressed in only one particular type of
cell (Fig. 7b). GO analysis showed that the 34 genes in
the salmon2 module were enriched for axon ensheath-
ment and central nervous system myelination. The 52
genes in the salmon4 module were enriched for astro-
cyte differentiation functions. The 147 genes in the ma-
genta module were enriched for synaptic transmission,
regulation of membrane potential, and Alzheimer’s dis-
ease. We further examined the module genes and found
that they contained cell type-related marker genes (Add-
itional file 2: Table S5). For example, neuron marker
genes, such as TMEMI130 [50], MAP2, MAPIB,
SNAP25, PGM2L1 and SCG2 [51], were in the magenta
module; oligodendrocyte marker genes, such as the ma-
ture oligodendrocyte marker MBP [51, 52], CLDNI11
[53], OPALIN [54], ERMN [55], PLP1, HSPA2, MOG and
PPPIRI4A [51] were in the salmon2 module; and astro-
cyte marker genes, such as AQP4 [56], ATPIA2,
ALDOC, SLCIA2, GLUL and AHCYLI1 [51] were in the
salmon4 module. This result indicates that the three
modules are possibly cell type-related modules contain-
ing genes that could potentially serve as marker genes
for the respective cell types.

We then examined if MA genes were enriched in these
three modules. Interestingly, we found that MA genes in
neurons of adult50 were enriched in the magenta mod-
ule (Fisher exact test, p value = 2.9E-3) (Fig. 7c), which
was highly expressed in neurons. Analyzing data from
neurons of individuals with different ages, we found 13%
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of the MA genes in adult50 neurons also showed MA
expression in at least one of other samples, indicating
that some MA genes may function at different develop-
mental stages. Surprisingly, five hub genes, SYTI,
STMNI, NGFRAPI, NAPB and BEX1I, were identified as
monoallelically expressed. SYT1, which showed MA ex-
pression in neurons from three individuals, is a synaptic
vesicle integral membrane protein thought to serve as a
Ca®* sensor in vesicular trafficking and exocytosis. Cal-
cium binding to SYT1 protein participates in triggering
neurotransmitter release at the synapse [57]. STMNI,
showing MA expression in two individuals, is a neuronal
growth associated protein that is involved in micro-
tubule dynamics and plays an important role in synaptic
plasticity and neurite outgrowth [58]. NGFRAPI (also
known as BEX3), identified as a MA gene in neurons of
two individuals, is involved in regulating NGE-
dependent neuronal survival and differentiation [59].
The NAPB gene encodes a cofactor involved in soluble
N-ethylmaleimide-sensitive fusion attachment protein
receptor (SNARE)-complex-dependent synaptic vesicle
fusion and recycling (synaptic vesicle docking) [60] Bex1I
is involved in the regeneration of axons after injury [61]
and serves as an interactor of the p75 neurotrophin re-
ceptor, linking neurotrophin signaling to the cell cycle
[62]. It will be interesting to determine whether the
monoallelic expression pattern of these genes in neurons
plays a role in diversifying synaptic activity.

Discussion

Monoallelic gene expression, such as imprinting, X-
chromosome inactivation, and selective expression of
immune response genes and olfactory receptor genes,
has been known for decades. The two alleles of a gene
can also be expressed differently if genetic mutation(s)
disrupts the regulatory regions in one of them specific-
ally, rendering one allele to be expressed at a lower level
or not at all. The application of massively parallel tran-
scriptomic technologies, either microarray or RNA-seq,
has revealed that for most human and mouse genes the
two alleles are frequently expressed in a biased manner,
largely due to genetic variation [63, 64]. While most of
the previous studies were performed in cell lines or stem
cells, in this study, we re-analyzed scRNA-seq data of
adult brain cells and found that at the single cell level
most of the genes show allele-biased expression, indicat-
ing that monoallelic expression seems to be the norm
rather than exception. Our finding is consistent with re-
cent in vitro studies [20, 22] and indicates that neurons
and other cell types in the brain all display widespread
monoallelic gene expression at the single cell level. In
addition, based on bulk RNA-seq analysis, the GTEx
project has also studied the allelic expression across hu-
man tissues and found that the proportion of shared
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MA genes between tissues varies from 0.85% to 39%
(mean 11%), suggesting substantial tissue specificity [64].
Although we did not find a big difference among brain cell
types in terms of the extent of monoallelic gene expres-
sion, we showed that some MA genes were expressed
monoallelically in specific brain cell types and MA genes
in oligodendrocytes and neurons were involved in cellular
functions specific for them. These findings suggest that
some deleterious heterozygous mutations may affect par-
ticular cell types more than others, adversely affecting

brain development by disrupting different cellular compo-
nents of the brain.

Identification of MA genes from scRNA-seq data is a
challenging task and needs more studies at the levels of
both data collection and algorithm development. Many
tools have been successfully developed for allelic gene
expression from bulk RNA-seq data. For example, a
meta-analysis based allele-specific expression detection
for ASE expression (MBASED) works quite well by ag-
gregating information across multiple SNPs of the same
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gene [65]. In scRNA-seq, for most cases, however, only
one SNP of a gene has sufficient coverage in a sample
and the same SNP is rarely covered across multiple sam-
ples. Several studies have mentioned that the technical
allelic dropout in scRNA-seq could inflate the observa-
tion of MA expression [12, 31]. Dynamic transcriptional
burst can also result in a “failure” in capturing both al-
leles in scRNA-seq [12]. Considering these possibilities,
we have taken a strategy that would call BA genes favor-
ably. Moreover, we only studied genes whose expression
was ranked at the top 30% in the analysis of cell type al-
lelic expression, to reduce the possibility for false identi-
fication of MA genes, because it was found that genes
with higher expression levels were less prone to show a
false pattern of MA expression [12, 31]. The reasons are
both technical and biological. Firstly, it is easier to cap-
ture both alleles in scRNA-seq for higher expressed
genes; secondly, more highly expressed genes may have
a greater probability of being activated from both alleles,
and thus both alleles are present in the cell at any given
time [16]. Of the genes with hetSNPs, we found 5.37%
on average in the six individuals showed MA expression
at the cell-type level (Table 1). This is smaller than what
has been reported in previous studies. Using microarray
analysis, 10-15% of autosomal genes were found mono-
allelically expressed in clonal populations of human and
mouse lymphoblastoid cells [66]. A scRNA-seq analysis
on mouse embryonic cells showed that 12-24% of auto-
somal genes were monoallelically expressed across the
pre-implantation developmental stages [12]. Much of the
difference could be due to the different definition of allelic
expression (i.e., monoallelic vs allele-biased), but the small
number of cells used in our scRNA-seq datasets may be a
key reason behind the difference, as discussed above
(Additional file 1: Figure S13). Allelic gene expression
from scRNA-seq data is an active research area, with new
algorithms being constantly released and improved. Some
recent developments include the usage of combining Fish-
er’s exact test with expression threshold to dissect clonal
and dynamic monoallelic expression [15] and SCALE, or
Single-Cell AlLlelic Expression for examining allele-
specific transcriptional bursting kinetics [67]. As shown in
Figs. 3 and 4, a large portion of hetSNPs and genes were
marked as allelic expression “unknown” due to insufficient
read coverages for statistical analysis. New experimental
procedures should be developed in the future to capture
the lowly expressed genes that were either excluded or
marked as “unknown” in the current analysis in order to
find out if they are indeed subject to the same level of al-
lelic expression as the highly expressed genes.

Previous studies of in vitro neural stem cells or neu-
rons showed that MA genes are enriched in neuroactive
ligand-receptor interactions and extracellular interac-
tions [20], and neurodevelopmental disorders such as
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autism and schizophrenia [14, 19, 21]. Our analysis of
cells derived from human brains showed that MA genes
are enriched for functions closely related to individual
cell types (Fig. 5). For example, MA genes in astrocytes
are enriched in neurogenesis [43] and immune system
process [44]. We also observed that 50 and 67 genes
exhibiting MA expression in multiple cells of the same
cell types were implicated in autism and schizophrenia,
but the overlap is statistically insignificant.

Overall, we did not observe a significant overlap of
MA genes between different brain cell types, indicating
that MA expression is likely cell type-specific in in vivo
brain cells (Fig. 6). In a previous study on ASD patients
and controls, the authors found that the monoallelic ex-
pression of several genes (found in two patients) was
confined to specific brain regions or cell types [68]. Our
finding is also in line with a recent study of allelic ex-
pression in developing brains [26]. The tissue- or cell
type-specific MA expression patterns suggest that there
may be tissue or cell type-specific transcription regula-
tors that can activate one allele while repressing the
other. Although the mechanism remains unclear, genes
coding for olfactory receptors [3] and protocadherins [4,
5] are known to be expressed in a monoallelic manner
in individual neurons. Once monoallelic expression is
established, descendant cells can inherit the pattern by
epigenetic mechanisms, such as differential DNA methy-
lation or histone methylation in the two parental alleles.
In fact, a comprehensive study of DNA methylation in 18
human tissues from 4 post-mortem individuals showed
that allele-specific methylation is well correlated with
allele-specific expression [69]. An independent study also
showed that monoallelic DNA methylation could be asso-
ciated with some genes, though no common feature could
be identified to account for this remarkable epigenetic sta-
bility of MA expression [20]. Histone methylation of
H3K4 (H3K4me2 and H3K4me3) and H3K9 (H3K9me3)
was associated with active and inactive alleles, respectively
[22], but H3K27me3, a mark for repressed genes, was sur-
prisingly not associated with inactive alleles [22]. Up to
now, there is still no single epigenetic mark that can ex-
plain the maintenance of MA expression except imprint-
ing and X-linked inactivation [16]. One possible reason is
that the cellular memory at different MA loci may rely on
a combination of epigenetic marks or a variety of mecha-
nisms including some still to be discovered. Recently,
investigators have begun to understand gene regulation
from the perspective of the 3D genome, which refers to
gene expression changes caused by inter- and intra-
chromosomal interactions. Both Hi-C and ChIA-PET data
demonstrate that the 3D organization of the genome
shows cell type-specific patterns [70-73]. Similar to the
intensively studied CpG methylation, mCH, the newly dis-
covered non-CG methylation [69, 74] also shows a cell
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type-specific pattern [69]. Both 3-D genome organization
and mCH could be novel perspectives to study the regula-
tion of MA expression. In summary, monoallelic expres-
sion can occur in a cell type-specific manner but the
underlying epigenetic mechanisms for its stable inherit-
ance remain unclear.

Our co-expression analysis identified gene modules that
are actively expressed in individual cell types (Fig. 7),
indicating that brain cell types can be distinguished by
their gene expression signature, and also confirming the
classification of brain cell types by the original authors
[28]. In addition, the result expanded the cell type-
enriched gene list beyond the few known gene markers
used in the original study. When comparing our cell type-
specific MA genes with the cell-type WGCNA modules,
we found that neuron MA genes were enriched in the
magenta module, which is involved in various neural func-
tions, such as synaptic transmission and neuron projec-
tion. It is conceivable that genes in this module may allow
more diverse response to neurotransmitters among neu-
rons. On the other hand, monoallelic expression could
also increase disease susceptibility, conceivably, if one
copy of the MA gene possesses deleterious mutations such
that its expression or lack of expression leads to abnormal
function of a specific brain region derived from the clonal
expansion of a precursor in which MA expression first oc-
curred. This is consistent with the finding that ~50% of
monozygotic twins are discordant for schizophrenia [14].

There are several limitations in our current study.
First of all, the genotypes for all individuals are
unknown. Our method of deriving hetSNPs from RNA-
seq data will miss hetSNPs that express only one of the
two parental alleles across all cells in an individual.
Secondly, without phasing the hetSNPs, for the MA
genes with more than one SNP, we could not accurately
tell whether biased SNPs at different sites originated
from the same parental allele. Thirdly, the number of
cells for some cell types was small, making it hard to
identify monoallelic expression at the cell-type level.
Fourthly, we could not tell fixed monoallelic expression
from dynamic monoallelic expression due to lack of cell
lineage information for isolated brain cells. Finally, due
to technical limitation in capturing reads from very
small amounts of RNA in a cell, there is much noise in
scRNA-seq data, especially for low expressed genes. In
addition, despite masking the hetSNPs, our method
could not totally overcome the inherent reference bias
problem in alignment-based data analysis, an area
under active investigation. One potential reason is the
presence of private SNPs in individuals that are in link-
age disequilibrium with the masked hetSNPs. We hope
these limitations will be reduced when we apply our
analysis to scRNA-seq datasets containing thousands of
cells, as they become available.
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Conclusions

In this study, we re-analyzed the human brain scRNA-
seq data from the perspective of allelic gene expression,
which is different from the original study, and found
monoallelic gene expression is prevalent in human
brain cells, which may play a role in generating cellular
identity and neuronal diversity and thus increasing the
complexity and diversity of brain cell functions. We
demonstrated that the accumulating scRNA-seq data-
sets are invaluable resources for further re-exploration.
We also pointed out some problems encountered dur-
ing our analysis, which may help other researchers to
better their experimental designs on allelic expression
research using scRNA-seq.

Methods

Datasets

Two scRNA-seq datasets were downloaded from the
GEO database. The dataset of human brain cells
(Additional file 2: Table S1, GEO accession: GSE67835)
classified adult brain cells into astrocytes, microglia,
neurons, oligodendrocytes and oligodendrocyte precur-
sor cells (OPCs) [28]. We used the authors’ original
classification. The dataset of mouse embryos (GEO
accession: GSE45719), in which 42 F1 embryos of two
mouse strains, CAST/Ei and C57BL/6, at 10 stages,
including zygote, early 2-cell, middle 2-cell, later 2-cell,
4-cell, 8-cell, 16-cell, early blast, middle blast and later
blast stages, were used to determine the expression of
maternal and paternal alleles [12]. We used this dataset
to calibrate our hetSNP calling method.

Identifying hetSNPs from scRNA-seq data without geno-
typing data

In order to study the different expression of two alleles,
we first need to identify genes with heterozygous SNPs.
There are software programs that can call SNPs from bulk
RNA-seq datasets, such as GATK [35], samtools [75], and
eSNV-detect [76]. However, they usually do not work as
well on RNA-seq data as they do on genomic sequencing
data, because the assumption of a 1:1 ratio of the two par-
ental alleles are often violated in RNA-seq data, resulting
in increasing errors (see discussions in http://gatkforums.
broadinstitute.org/gatk/discussion/3891/calling-vari-
ants-in-rnaseq). They are therefore especially not suitable
for our study. As such, we adapted a more straightforward
SNP calling method for bulk RNA-seq to scRNA-seq [33,
34]. The method uses known SNPs in the dbSNP that are
polymorphic in general human population, computes
RNA-seq read coverage for the two alleles, and then eval-
uates heterozygosity (Fig. 1a). To do this, we pooled the
scRNA-seq data for cells from the same individual and
then analyzed reads covering candidate SNP sites that
were reported in the dbSNP database (for human, dbSNP
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version 142 downloaded from UCSC) or the mouse
genome resequencing project [77] (version 5, ftp://ftp-
mouse.sanger.ac.uk/REL-1505-SNPs_Indels/mgp.v5.merge
d.snps_all. dbSNP142.vcf.gz). We first masked these SNP
sites with “N” in the human genome (hgl9) or mouse
genome (mml0) and then aligned pooled scRNA-seq
reads to the modified genomes by STAR (ver. 2.4.2a) [78],
allowing 4% mismatches at most (——outFilterMismatch-
NoverLmax 0.04), or 2 mismatches in the 50 bp reads.
Since the multi-mapped rates were low, only uniquely
mapped reads were kept for later analysis (——outFilter-
MultimapNmax 1) to reduce ambiguity. Duplicate reads
were removed using samtools (ver. 0.1.19) with default
settings. Next, we used the samtools mpileup command to
obtain allelic read depth at the candidate sites that were
masked. For mouse embryonic data, we extracted a list of
hetSNPs (n = 17,491,332, 0.67% of the mouse genome)
that are different between the two parental mouse strains
(CAST/Ei and C57BL/6). We then called hetSNPs from
the scRNA-seq data. We considered a site heterozygous if
each of the two alleles was supported by a minimal num-
ber of reads (read depth cutoff), which was tested from 1
to 30. The resultant hetSNPs were then checked against
the known genotype derived from the mouse genome
project to evaluate the accuracy of our SNP calling
(Additional file 1: Figure S1). Based on the mouse data, we
determined that for human brain cells, a site could be
confidently scored as heterozygous if both alleles were
supported by >20 reads.

Identifying monoallelic genes from scRNA-seq of human
brain cells

After testing our SNP calling method on mouse data,
we applied it to human brain cells. If neither of the two
alleles was the reference allele, the SNP position was
excluded from further analysis. Only a few such posi-
tions (min 5, max 92) were observed in the samples.
After a list of hetSNPs was called for each individual
from the pooled scRNA-seq data, to get an overview of
the genomic distribution of the hetSNPs, we first anno-
tated the hetSNPs based on Ensembl gene annotation
(Release 74), which contains 63,677 genes including
22,810 protein-coding and 56,337 non-coding genes. A
hetSNP would be excluded from further analysis if it is
mapped to more than one gene. We predicted the func-
tional impacts of all hetSNPs using wANNOVAR and
specifically analyzed the “exon summary results” from
wANNOVAR [37], which separated SNPs into syn-
onymous (S), non-synonymous (N), stoploss (L) and
stopgain (G) mutations. For non-synonymous muta-
tions, we further used the SIFT scores and PolyPhen
scores from wWANNOVAR to identify the deleterious
(D) or tolerated (T) mutations (Two databases, HVAR
and HDIV, were used), and to classify the “probably
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damaging” (D), “possibly damaging” (P) and “benign”
(B) mutations. Then, we compared the numbers of cells
and expression level between reference and alternative
alleles across SNPs in different categories. In this
analysis, an allele covered by at least two reads was
considered expressed in a cell. After that, we analyzed
allele-biased expression of these SNPs in each cell. The
data processing procedure is illustrated in a supplemen-
tary figure (Additional file 1: Figure S2). To determine
the allelic expression pattern for each hetSNP, a
binomial test was applied with p values adjusted (FDR)
by the BH method, and an allelic ratio was calculated
[14, 22, 79]. The hetSNP sites were considered to show
a monoallelic (MA) expression pattern, if the FDR was
<0.05 and >95% reads were from one allele, similar to
what was described previously [15]. Even though 95%
was a very strict bias cutoff, the application of binomial
test was necessary; otherwise misclassification could
occur to a true BA expressed hetSNP with very low al-
lelic read coverage and all reads (e.g., 5) from one allele.
To reduce false calls, we only considered a SNP site to
show biallelic expression (BA) if it did not satisfy the
MA criteria and both alleles had at least two reads to
confirm their expression [12]. The allele expression pat-
tern of the remaining hetSNPs (with at least one read)
was classified as “Unknown.”

To map the SNP-level biased expression to gene-level
biased expression in each cell, we considered the biased
status (MA and BA, excluding “Unknown”) of all the
hetSNPs in the exons of a gene in a hierarchical manner.
A gene was considered to show BA expression in a cell
if any of its hetSNPs was assessed as such. However, if
only a MA pattern was observed for its hetSNPs, this
gene would be regarded as MA in a cell.

After assessing the biased expression states of each
gene in each cell, we compared a gene’s biased expres-
sion across cells of the same cell type (from the same
individual) to evaluate cell-type biased expression. Pre-
vious studies showed that lowly expressed genes tended
to be misidentified as MA genes. Deng et al. found that
the allelic losses are a function of the expression level
with low expressed genes showing a high rate of allelic
losses [12]. Another report using external RNA spike-
ins also demonstrated that low expressed genes fre-
quently display stochastic monoallelic expression which
is unlikely to be genuine [31]. To minimize the effect of
gene expression level on gene bias decision, especially
for low expressed genes, we classified a gene as BA ex-
pression in a cell type if it was called BA in any cell of
the cell type. For MA expression in a cell type, we set
the following criteria: (1) all cells (at least four) support
the MA expression in the cell type; and (2) in each cell,
the gene expression level should rank at the top 30% by
expression level [12].
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Function analysis of MA genes

We performed a gene ontology enrichment analysis of all
MA genes using GOseq, which corrects the over-
detection of long and highly expressed transcripts in en-
richment analysis [42]. Both the Biological Process and
Cellular Component ontologies were used for the enrich-
ment analysis. P values from GOseq were further adjusted
using BH method implemented in the R function p.adjust.
Only terms with adjusted p value <0.05 are shown. GO
terms with too general meanings (e.g. “GO:0044464:cell
part”) were not shown in results. To compare enriched
GO terms across cell types, we created a GO-term net-
work. We first took genes that were called MA in any
cell type and used GOseq to identify enriched terms.
An edge was used to link an enriched GO term to a
sample (a group of cells from a specific cell type in an
individual were treated as a sample), if the percentage
of MA genes with the enriched terms in the sample is >
the percentage of MA genes with the same term for all
samples. The network with samples was reproduced in
Cytoscape 3.2.0. MA genes were compared to databases
of disease candidates, i.e. SzGene [46] and ASD candi-
dates [45], to find enrichment.

Comparison of MAs between cell types

To compare MA expression between cell types statisti-
cally, we used the Fisher’s exact test and the expressed
genes (mean FPKM =1 in the cell type) with hetSNPs in
each cell type as the background genes. To get an empir-
ical statistical significance, we randomly sampled the same
number of cells between and within cell types 1000 times,
identified the MA genes in each sampling set, and com-
pared the overlaps between and within groups.

Enrichment of MA genes in WGCNA module

A signed network was constructed using genes with aver-
age FPKM value 21 in cells expressing that gene [49].
Missing entries and zero-variance genes were removed.
Soft-thresholding power for network construction was es-
timated and used to derive a pairwise distance matrix for
the remaining genes using the topological overlap meas-
ure. The intramodular connectivity, i.e. connectivity of
nodes to other nodes within the same module, was used
to evaluate the “hub-ness” of a gene within each module.
The closest 150 edges of a module with MA genes
enriched were exported to Cytoscape for visualization.

Additional files

Additional file 1: Figures S1-S15. Figure S1. SNP calling result using
mouse embryonic scRNA-seq data. Figure S2. A cartoon illustrating the
steps and criteria in our allelic expression. Figure S3. Numbers of hetSNP
called for the six human brains. Figure S4. The effect of cell numbers on
hetSNP calling and the genomic distribution of hetSNPs. Figure S5.
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Boxplots showing the numbers of brain cells expressing reference (R) or
alternative (A) alleles (allelic read depth = 2). Figure S6. Boxplots
showing the percentages of reference reads (vs total reads) at hetSNP
sites in brain cells (read depth for each of the alleles was 22 and the
sum of read depths was 210). Figure S7. Allelic expression of hetSNPs
within human imprinted genes in brain cells. Figure S8. Allelic expression
of hetSNPs within mouse imprinted genes in embryonic cells. Figure S9.
Numbers of hetSNPs sites with different reference allele ratios. Figure
S$10. Numbers of hetSNPs sites with different reference allele ratios, after
scCRNA-seq reads from cells of the same type in individual brains were
pooled. Figure S11. Statistical summaries of allelic expression at the gene
level. Figure S12. FPKM cutoff values for defining the top 30 percentile
of genes in each cell. Figure S13. Monoallelic expression in subsampled
neurons. Figure S14. Numbers of individual cells in which a MA gene
was detected. Figure S15. Comparison of monoallelic expression between
neurons and astrocytes in adult37, adult47 and adult50. (PDF 2190 kb)

Additional file 2: Tables S1, S4 and S5. Table S1. Cell numbers used
for scRNA-seq of the brains. This table is based on the cell classification in
the original study (Darmanis et al,, 2015). The column of “Experiment_-
sample_name” lists the sample labels in the original research. Only the
first six adult samples were used in our analysis. Table S4. List of disease-
related genes showing monoallelic expression in human brains at the
cell-type level. Table S5. List of module genes from WGCNA. Gene symbols
of three significant modules (salmon2, salmon4 and magenta) were listed.
(DOC 68 kb)

Additional file 3: Table S2. Gene biased status in each cell of
individual brains. The three numbers of SNPs supporting allele bias (MA/
BA/Unknown) and the letter indicating gene bias status (M: MA; B: BA; U:
Unknown) were separated by slash (/). A dot () means data not available.
(TXT 5965 kb)

Additional file 4: Table S3. Lists of monoallelic genes in individual cell
types. The number of cells supporting the monoallelic gene expression
was in column SupportingCellNum and the corresponding single-cell
RNA-seq files (GEO accession IDs) were in the column scRNAsegFiles.
(XLSX 143 kb)
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