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The intertidal and subtidal zones are characterized by daily and seasonal fluctuations
in environmental conditions. Seaweeds that inhabit these environments face wide-ranging
temperatures, nutrient deficiency, changes in salinity, and long periods of desiccation [1–7].
Accordingly, like terrestrial plants, these seaweeds possess the innate ability to acclimate to
environmental stresses [8–12].

The ‘life-cycle trade-off’ is a well-described phenomenon of both algae and terrestrial
plants that controls the timing of growth and reproduction in response to environmental
stresses; this trade-off can optimize survival by selecting sexual or asexual propagation to
promote adaptation to changes in environmental conditions [13–16]. Despite these similari-
ties, the effects of environmental stresses differ between algae and terrestrial plants. For
instance, although heat stress negatively affects reproduction in terrestrial plants [17–19],
positive effects of heat stress on the sexual life-cycle progression have been observed in
sessile red algae of the order Bangiales [13,20] and in the green alga Volvox carteri [21].
Thus, elucidation of the regulatory mechanisms of the life-cycle trade-off in seaweeds could
provide insights valuable not only for enhancing production during mariculture farming
of economically important marine resources but also for sustaining the sea environment
via maintenance of seaweed forests.

In ‘Bangia’ sp. ESS1 (Bangiales), the asexual life-cycle—which involves the production
of asexual spores from thalli—is promoted by heat stress [22]. Moreover, non-lethal tem-
perature stress promotes heat stress tolerance in ‘Bangia’ sp. ESS1, which enables survival
under otherwise lethal heat stress conditions [23]. Since spore release was observed to
coincide with acquisition of tolerance in ‘Bangia’ sp. ESS1 [22,23], the promotion of the
asexual life-cycle by heat stress is proposed to be triggered by establishment of heat stress
tolerance. No spore release was observed in Neopyropia yezoensis, a major cultivar of nori
in Japan, under heat stress conditions [24]; therefore, it is possible that such promotion
of the asexual life-cycle by heat stress and its relationship to the acquisition of heat stress
tolerance is genus or species specific in Bangiales and other algae.

This Special Issue on “Research on the Regulatory Mechanism of Algae Reproduction
under Abiotic Stress Conditions” comprises five studies covering aspects of the life-cycle
trade-off. They address the effects of the loss of water current on stimulation of asexual
life-cycle progression [25], the effects of combined heat and nutritional depletion stresses
on promotion of the asexual life-cycle [26], the relationship between heat stress tolerance
and loss of life-cycle trade-off ability [27], and the role of a heat stress-insensitive asexual
life-cycle trade-off in the maintenance of vegetative growth [28]. In addition, Khoa et al. [29]
focus on the intrinsic ability to acquire tolerance to lethal heat stress in different Bangia
species based on memory of non-lethal heat stress in relation to asexual spore release. Thus,
the studies in this Special Issue cover a broad range of recent findings on environmental
stress-dependent life-cycle trade-offs in seaweeds. In this Editorial, I summarize the high-
lights of each study and focus on the promotion of the asexual life-cycle under combined
environmental stress conditions.
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Omuro et al. [25] explore the acquisition of freezing tolerance and the promotion
of the freezing-dependent asexual life-cycle by loss of hydrodynamic stress in ‘Bangia’
sp. ESS1. Since Bangiales inhabit the intertidal zone with dynamic water currents, it is
likely that hydrodynamic stress is required for their growth and survival. Membrane fatty
acids of ‘Bangia’ sp. ESS1 were unsaturated during static culture (lacking water current),
which resulted in acquisition of freezing tolerance and asexual spore release after thawing.
Though the relationship between asexual spore release and unsaturation of membrane fatty
acids needs to be elucidated, there is clearly a tight relationship between freezing tolerance
acquisition upon loss of hydrodynamic stress and the promotion of the life-cycle trade-off
in ‘Bangia’ sp. ESS1.

According to a recent revision of the Bangiales phylogeny, the genus Bangia sensu lato
was separated into four genera, Bangia, ‘Bangia’ 1, ‘Bangia’ 2, and ‘Bangia’ 3 [30]. ‘Bangia’ sp.
ESS1 belongs to ‘Bangia’ 2 [31] and has an intrinsic ability for heat stress memory to acquire
heat stress tolerance with the release of asexual spores [22,23]. However, little is known
about whether other Bangia species also remember and adapt to heat stress. Khoa et al. [29]
classified ‘Bangia’ sp. ESS2 as ‘Bangia’ 3 and compared its heat stress response with those
in ‘Bangia’ sp. ESS1 and Bangia atropurpurea [32]. ‘Bangia’ sp. ESS2 was not able to acquire
heat stress tolerance and remember previous heat stress, whereas the acquisition of heat
stress tolerance but not heat stress memory was observed in B. atropurpurea. In addition,
the asexual life-cycle was repressed by heat stress in ‘Bangia’ sp. ESS2, and B. atropurpurea
did not release asexual spores under heat stress conditions. Thus, intrinsic heat stress
responses, including the life-cycle trade-off, appear to be species-specific. Overall, these
findings underscore that there is a relationship between heat stress memory and heat
stress-dependent promotion of the asexual life-cycle.

Endo et al. [26] demonstrate a high tolerance of holdfasts (the equivalent of roots in
seaweeds, which anchor the organism to the sea floor) to heat stress in the brown alga
Sargassum fusiforrme. Under high temperature and low nutrition conditions, holdfasts can
grow and regenerate into new shoots by vegetative reproduction, i.e., asexual reproduction.
Thus, S. fusiforrme proliferates in summer via the regeneration of shoots, suggesting a
relationship between high temperature tolerance and transition to the asexual growth
phase. In addition, regeneration was enhanced by the fragmentation of holdfasts. Thus, the
combined effects of high temperature and nutrition starvation on regeneration could be
strengthened by wounding stress. The authors also demonstrate that heat stress tolerance
is associated with nitrogen accumulation.

Sato et al. [27] report differences in temperature dependency of growth and sporulation
in several strains of the green alga Ulva prolifera. Although asexual spore release was
generally accelerated at 20 ◦C in this species, one strain did not sporulate at 20 ◦C, which is
a notable characteristic for mariculture of U. prolifera in the face of increases in seawater
temperature due to global warming. In addition, although heat stress generally increases
nitrogen contents in this species, this strain did not show heat-stress-dependent nitrogen
accumulation. Hiraoka [28] support these findings in their study comparing attached-type
U. prolifera subsp. prolifera and bloom-type Ulva prolifera subsp. qingdaoensis. Although the
former produces spores in spring, the latter is fragmented in spring and grows vegetatively
in summer, suggesting that sporulation is inhibited under heat and nutrient starvation
conditions in the bloom type. These findings indicate that heat stress tolerance is negatively
related to the asexual life-cycle trade-off in U. prolifera subsp. qingdaoensis, which is in
contrast to the red alga ‘Bangia’ sp. ESS1, although the heat-stress-dependent promotion of
vegetative growth in U. prolifera subsp. qingdaoensis is similar to that in S. fusiforrme. These
findings again demonstrate that the relationship between stress tolerance and life-cycle
trade-off differs among seaweed phyla.

Overall, the studies in this Special Issue increase our understanding of the effects of
combined stresses on stress tolerance and life-cycle trade-off, which differ among species,
genera, and phyla, and will contribute to the expansion and development of biological
research on seaweeds. Elucidation of the mechanisms regulating stress-dependent repro-
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ductive responses will enhance our understanding of the flexible life-cycle strategies that
enable seaweeds to survive in fluctuating environmental conditions by promoting the
life-cycle trade-off.
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