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Abstract

Recently, large numbers of normal human tissues have been profiled for non-coding RNAs
and more than fourteen thousand long intergenic non-coding RNAs (lincRNAs) are found
expressed in normal human tissues. The functional roles of these normal lincRNAs (nlincR-
NAs) in the regulation of protein coding genes in normal and disease biology are yet to be
established. Here, we have profiled two RNA-seq datasets including cancer and matched
non-neoplastic tissues from 12 individuals from diverse demography for both coding genes
and nlincRNAs. We find 130 nlincRNAs significantly regulated in cancer, with 127 regulated
in the same direction in the two datasets. Interestingly, according to lllumina Body Map, sig-
nificant numbers of these nlincRNAs display baseline null expression in normal prostate tis-
sues but are specific to other tissues such as thyroid, kidney, liver and testis. A number of
the regulated nlincRNAs share loci with coding genes, which are either co-regulated or op-
positely regulated in all cancer samples studied here. For example, in all cancer samples

i) the nlincRNA, TCONS_00029157, and a neighboring tumor suppressor factor, SIK1, are
both down regulated; ii) several thyroid-specific nlincRNAs in the neighborhood of the thy-
roid-specific gene TPO, are both up-regulated; and iii) the TCONS_00010581, an isoform of
HEIH, is down-regulated while the neighboring EZH2 gene is up-regulated in cancer. Sever-
al nlincRNAs from a prostate cancer associated chromosomal locus, 8q24, are up-regulat-
ed in cancer along with other known prostate cancer associated genes including PCAT-1,
PVT1, and PCAT-92. We observe that there is significant bias towards up-regulation of
nlincRNAs with as high as 118 out of 127 up-regulated in cancer, even though regulation of
coding genes is skewed towards down-regulation. Considering that all reported cancer as-
sociated lincRNAs (clincRNAs) are biased towards up-regulation, we conclude that this
bias may be functionally relevant.
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Introduction

The promise of the Human Genome Project was to deliver hundreds of thousands of proteins
for use as drug targets. However, to everyone’s surprise, large-scale annotation efforts by large
consortia, such as ENCODE project[1], delivered tens of thousands of drug targets of a differ-
ent kind; non-coding RNAs. It is now known that majority of the human genome is transcribed
even though only a small fraction translates into proteins. It is now understood that a large
number of non-coding RNAs, both long and short, play critical roles in the complex regulation
of the relatively small number of coding proteins that are essential for life.

Of the diverse types of non-coding RNAs, long intergenic non-coding RNAs (lincRNA) are
attractive because they can be easily discovered with high confidence from existing RNA-seq
datasets and correlated with gene expression information from the same dataset using existing
bioinformatics tools. More recently, tens of thousands of lincRNAs have been discovered from
RNA-seq datasets from diverse normal human tissues, here to referred nlincRNAs, such as the
Mlumina Body Map[2]. The functional roles of these nlincRNAs are yet to be established.

Despite the fact that lincRNAs are new to cancer biology and their molecular mechanisms
still in its infancy, several review papers have already appeared in the literature detailing prog-
ress in this area to date[3] [4]. Of the roughly 60+ lincRNAs that have been shown to be associ-
ated with various cancer types, majority of them are up-regulated in cancer[3] [4] and only a
few lincRNAs are shown to be down-regulated in cancer samples including GAS5(5] and
MEG3]6].

Recent reports linking expression levels of lincRNA with cancer offer an excellent opportu-
nity for establishing functional role of lincRNAs in regulating gene expression. One of the most
exhaustive search for lincRNAs associated with prostate cancer include, identification of 121
lincRNAs, called PCATSs (Prostate Cancer Associated Transcripts) discovered from 102 disease
stratified prostate tissues and cell lines[7]. Out of these, PCAT-1 inhibition with siRNA is
shown to reduce proliferation of celllines expressing high-levels of PCAT-1. Since publication
of this report, PCAT-1 over-expression has been shown to be a biomarker in colorectal cancer
[8]. More recently, lincRNAs from RNA-seq data from a large number of lung cancer samples
from the public repository has been used to identify 111 lung cancer associated lincRNAs,
called LCALs[9]. The bias of lincRNAs towards up-regulation in cancer requires interrogation.

It is tempting to conclude that the bias towards up-regulation of lincRNAs in cancer, in the
large-scale efforts cited above, may results from the practice of discovering lincRNAs from can-
cer samples. Here, our aim was to perform an integrative analysis of both coding and non-cod-
ing nlincRNAs (lincRNAs discovered from normal human tissues) across multiple RNA-seq
datasets pertaining to prostate cancer from public repository to both address this bias and dis-
cover novel co-regulation of genes and nlincRNAs.

Materials and Methods
Datasets used

We have used two RNA-seq datasets from NCBI public repository generated by two indepen-
dent groups with accession IDs of SRP002628 and ERP000550. As shown in Table 1, 5 tumor-
normal pairs from SRP002628 and 7 from ERP000550 datasets are considered in this study ei-
ther because the corresponding pairs were not available for some individuals or the depth of se-
quencing were not compatible to obtain good statistics. These two datasets are from two
diverse demographics. For example, patients selected to generate data within the accession
ERP000550 are Chinese in origin and, although the demography of patients in the SRP002628
dataset is not known, it is safe to assume that the individuals considered to generate data within
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Table 1. RNA-seq runs selected from SRP002628 and ERP000550 to obtain the signature and those from ERP00550 used in the validation.

Accession

ERR031029_N02
ERR031031_N03
ERR031039_N07
ERR031043_N09
ERR031017_N10
ERR031023_N13
ERR031025_N14

ERR031033_N04
ERR299299_N06
ERR031041_N08
ERR031019_N11
ERR299296_N12

Accession

SRR057658_N23
SRR057657_N19
SRR057656_N15
SRR057655_N13
SRR057658_N11

Normal

Number of reads

35534313
31921622
38401723
34266043
34536162
31245264
33918112

33965736
36320661
33191569
36250477
32272887

Normal
Number of reads
14676269
11914701
14236982
14747638
14761953

doi:10.1371/journal.pone.0122143.t001

ERP000550
Tumor
Percent Mapped Accession Number of reads PercentMapped
74.33 ERR031030_C02 32289266 77.63
70.33 ERR031032_C03 32319406 73.02
74.07 ERR031040_C07 33974921 77.36
75.15 ERR031044_C09 34758125 75.69
83.17 ERR031018_C10 34007787 82.16
77.53 ERR031024_C13 37576110 79.35
70.52 ERR031026_C14 36886097 73.57
Validation Dataset
72.88 ERR299297_C04 34505542 74.25
72.60 ERR031038_C06 35679519 7713
76.51 ERR031042_N08 34988865 77.83
79.04 ERR299295_C11 34718521 80.04
70.55 ERR031022_C12 36820858 72.47
SRP002628
Tumor

PercentMapped Accession Number of reads PercentMapped
73.11 SRR057642_C23 15212560 72.26
68.06 SRR057641_C19 16307495 71.15
70.08 SRR057638_C15 16274538 72.38
69.06 SRR057637_C13 15530810 72.03
67.62 SRR057636_C11 10996701 59.43

the accession SRP002628 are not Chinese. Table 1 gives the depth, individual accession IDs
and mapping percentages for each sample in these datasets.

For profiling known and novel lincRNAs we used GENCODE (http://www.gencodegenes.
org/) and lincRNA-catalog (http://www.broadinstitute.org/genome_bio/human_lincrnas/?q =
lincRNA_ catalog). Also for gene expression analysis we have used the table browser from the
URL https://genome.ucsc.edu/cgi-bin/hgTables for hgl9 with track as refseq genes and output
format as BED.

For baseline expression of coding gene data we have used both E-MTAB-513 with 16 and
E-MTAB-1733 with 27 normal human tissues from Expression Atlas under ArrayExpress. In
this study we have used a FPKM value of less than 0.5 to make baseline null calls and FPKM
value of greater than 100 to call them tissue-specific.

Method used to compute transcript expression

Selected datasets were mapped to hg19 reference genome using Bowtie[10] with percentage
mapped shown in Table 1. For the reads under the accession SRP002628 the entire length of
the reads, which is 36mer, were mapped. However for reads under ERP000550 25 bases were
trimmed from both ends of the reads of length 90 leading to mapping of 40mers from the mid-
dle. The tool coverageBed from BEDTools were used to extract count per transcript per sample
using the annotation files and lincRNA-catalog mentioned in the above section. These individ-
ual count files were collated into a table with rows representing transcripts.
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Computing differential expression

For computing differential expression we selected two widely used count-based R packages,
edgeR[11] and DESeq[12]. Although these two methods are very similar they differ in the use
of dispersion. The package edgeR uses single common dispersion factor as opposed to a flexible
variance estimation used by the package DESeq. The important distinction of edgeR is that it is
anti-conservative to low expressed genes and more conservative to highly expressed genes.
Where as, the flexible dispersion model used by DESeq allows for lesser bias in selection of
genes based on their expression levels. This way DESeq and edgeR complement each other in
the selection of differentially expressed genes. In other words edgeR is more sensitive to outliers
where as DESeq is less sensitive to outliers but provides unbiased outcome through the dynam-
ic range[13].

DESeq and edgeR both accepts a collated count file as input and produce single p-value and
log fold-change per transcript per dataset representing the overall differential expression state
of the transcripts in the annotation file between two given states, tumor and matched non-
neoplastic tissues. To obtain cancer-specific transcripts that are statistically significant we used
a p-value cutoff of less than 0.05 and a abs (log fold change to base 2) greater than 1.0 for cod-
ing genes and greater than 0.59 for nlincRNAs. The variation in the filtering criteria chosen for
fold change is to reflect the relatively lower levels of nlincRNA expression compared to coding
genes reported in the literature [2].

Clustering heatmap

For generating heatmaps we used Pearson Correlation Coefficient and for dendrograms we
used Euclidian distance using ‘pheatmap’ and ‘hclust’ functions from R statistical package re-
spectively. In order to produce heatmaps for samples across datasets additional normalization
was required to account for the variation in the dispersion in gene expression levels between
datasets stemming from different sample preparation protocols used by different investigators.
Although RPKM values are computed to normalize expression levels across samples, this nor-
malization is sufficient to account for variation in sample preparation protocol. Normalizing
by rows, representing transcripts, between datasets by dividing them by row average was used
to handle the differential dispersion between the two datasets stemming from variation in sam-
ple preparation protocols. Such an approach has already been implemented in DESeq package
for samples within a given dataset[12].

Validation of datasets

To show that the two selected datasets are suitable for profiling non-coding RNAs, the
expression levels of known lincRNAs, which are reported as implicated in cancer, have been
profiled across the two RNA-Seq datasets selected for this study. We have identified that sev-
eral prostate-cancer associated lincRNAs are up-regulated in a tumor-specific fashion in
both these datasets. For example, PCAT-1, a prostate cancer associated lincRNA from the
gene-desert locus in chromosome 8q24 is significantly up-regulated in all tumor samples
from both datasets compared to adjacent non-neoplastic tissues. Several other prostate and
other cancer-specific lincRNAs, such as PVT1, PCA3, CCAT-1 PCAT-92, PCAT-114,
PCAT-120, PCAT-19, PCAT-27, PCAT38, PCAT-39, PCAT-43, PCAT-59, PCAT-72,
PCAT-80, and PCAT-83 are also found to be up-regulated in both datasets in a cancer-
specific fashion. These findings, not only authenticates the use of these two datasets for
nlincRNA profiling but provide additional validation for these newly minted lincRNAs in
prostate cancer.
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Gene Network
Gene network in this manuscript is created by GeneMANIA, a package under Cytoscape [14].

Results and Discussion

Profiling Coding Genes

Gene expression profiling of the two RNA-seq datasets, SRP002628 [15] and ERP000550 [16],
were performed using two commonly used R statistical analysis packages, edgeR [11] and
DESeq [12]. Genes with p-values of less than 0.05 and absolute log fold changes (base 2) greater
than 1.0 are used to make a call that a gene is regulated in prostate cancer. Converging numbers
of significantly regulated genes at each stage of the analysis pipeline is presented in Fig 1. Using
edgeR, 4449 and 5034 transcripts are found differentially regulated from the two datasets,
SRP002628 and ERP000550 respectively. Out of these, 1358 transcripts representing 786 genes
are found commonly regulated between the two datasets with 302 genes up-regulated and 455
genes down-regulated in cancer. Interestingly, only 29 genes showed opposite expression pat-
tern in the two datasets. Similarly, using DESeq package 2942 and 4260 transcripts are identi-
fied as differentially regulated in prostate cancer from the two datasets, SRP002628 and
ERP000550 respectively. The 881 common transcripts represent 497 genes, which are regulated
in prostate cancer with 180 genes up- and 313 genes down-regulated. Again, only 4 genes dis-
play opposite regulation in the two datasets based on DESeq pipeline.

The list of differentially expressed genes (DEGs) from the two datasets using the two meth-
ods, edgeR and DESeq, is listed in S1 Table, which contain 366 coding genes with 117 up- and
249 down-regulated in prostate cancer. Interestingly, with the exception of only one gene, all

<«

SRP002628 ERP000550 SRP002628 ERP000550

! . | }

4260 transcripts
988 nlincRNA

2942 transcript
576 nlincRNA

4449 transcripts
1140 nlincRNA

5034 transcripts

; 497 genes
1702 nlincRNA

1358 genes
316 nlincRNA

135 nlincRNA

genes — 366 (1174/249¥)
nlincRNA — 130 (1184/94/3H)

Fig 1. Flowchart with converging significance of genes and nlincRNAs differentially regulated from the two datasets and the two methods.

doi:10.1371/journal.pone.0122143.g001
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Fig 2. A) dendrogram and B) Heatmap of the 366 genes differentially regulated in cancer sample in both datasets.

doi:10.1371/journal.pone.0122143.9002

are regulated in the same direction in both cancer datasets (Fig 2). In Fig 2, it is also shown that
the row-wise normalized RPKM values from the two datasets for all the 366 DEGs, clusters all
the 12 cancer and 12 normal samples in two distinct clades. Also shown in Fig 2, are the clus-
tering of five additional samples from the accession ERR000550, not used in extracting the sig-
nature, in the respective clades.

Gene enrichment studies on the 366 genes suggests inactivation of genes in both 17q21 and
19q13 loci, which are both reported as prostate cancer susceptibility loci [17], [18], [19]. Fig 3
shows the gene network for loci 17q21 and 19q13. Interestingly, the genes inactivated in 17921,
including KRT15, ITGA, AOC3, HOXB3, RND2, SGCA, WFKKN2, ARHGAP27, NGF, and
NOG, are implicated in cell-cell interaction, cytoskeletal reorganization, extra-cellular matrix and
cell death; lack of which could cajole epithelial to mesenchymal transformation and migration.

Profiling nlincRNAs

A total of fourteen-thousand three hundred and fifty-three (14,353) lincRNAs, referred here to
as nlincRNAs, has been reported to be expressed in various normal human tissues[2]. Out of
these, there are 9,600 nlincRNAs that show very low evidence of transcription in prostate nor-
mal and as low as 196 nlincRNAs are reported as specific to prostate tissues.
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Fig 3. Interaction network of inactivated gene cluster from 17¢g21 locus using GeneMania.

doi:10.1371/journal.pone.0122143.9003

As shown in Fig 1, using edgeR, 1140 (773 up and 367 down-regulated) and 1702 (1258 up-
and 444 down-regulated) nlincRNAs are found differentially regulated from the two datasets,
SRP002628 and ERP000550, respectively. Out of these, 316 nlincRNAs (252 up and 42 down)
are commonly regulated in prostate cancer in both datasets. Similar analysis using DESeq pipe-
line resulted in 576 (383 up and 193 down) and 988 (867 up and 121 down) nlincRNAs regu-
lated in prostate cancer in both datasets, SRP002628 and ERP000550, respectively. The
number of commonly differentially regulated nlincRNAs in both datasets using DESeq package
is 135 with 124 up- and 9 down-regulated in cancer.

The number of nlincRNAs that are found differentially regulated in cancer in both datasets
using both edgeR and DESeq methods, is 130 with 118 up-, 9 down- and as low as 3 oppositely
regulated. Fig 4 shows the heatmap of the 127 nlincRNAs, listed in S2 Table, that are differen-
tially regulated in cancer. With the exception of C13_5, one of the cancer sample from acces-
sion SRP002628, the 127 nlincRNAs allow clustering of all the cancer and normal samples in
the respective clades. Using principal component analysis, shown in Fig 4, it is confirmed that
C13_5 is more normal-like.

Out of the 127 differentially regulated nlincRNAs, 58 have null baseline expression in pros-
tate normal tissue according to both in-house efforts and the report by Broad Institute [2]. Of
these nlincRNAs, many are testis-specific and a number of them are thyroid-specific. As
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doi:10.1371/journal.pone.0122143.9004

shown in the S2 Table, profiling of these nlincRNAs in prostate cell-lines from RNA-seq data-
set with accession IDs of SRP004637[7], reveal that 12 out of the 58 display significant expres-
sion in one or more of the three prostate celllines. This trend is observed in prostate cancer
associated coding genes such as EZH2[20], which is differentially up-regulated in cancer sam-
ples from both datasets display baseline null expression in prostate. Also, as shown in S3 Table,
many reported prostate cancer associated lincRNAs, like PCAT-1, PCA3, PCAT-92, PCAT-
114, PCAT-120-PCAT-27, PCAT-38, PCAT43, PCAT72, and PCAT-80 [7], which are also dif-
ferentially up-regulated in cancer in both datasets, has no overlapping nlincRNAs according
UCSC tracks.

There are many nlincRNAs from chromosome 8q24 locus, listed in Table 2, that are express-
ed in normal human tissues. While a number of nlincRNAs share exons with known lincRNAs,
such as PVT1 and CCAT]1, several others including TCONS_00014535 (BC042052, CASC11),
TCONS_00015171 (BC106081), TCONS_00015167 (PCAT2), TCONS_00015170 and
TCONS_00015168 (JX003871), TCONS_00015498, TCONS_00015165 and TCONS_00015166
are novel nlincRNAs that are differentially up-regulated in prostate cancer in at least one of the
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Table 2. Lists all the nlincRNAs within the 8q24 loci p-value and fold-change in the two datasets by the two methods.

Locus Tissue Specificity TCONS_ID

PCAT-1 /CCAT-1 -
Testes
Testes

Liver

PVT-1 /MYC =

doi:10.1371/journal.pone.0122143.1002

TCONS_00015165
TCONS_00015166
TCONS_00015167
TCONS_00015168
TCONS_00015170
TCONS_00015498
TCONS_00015169
TCONS_00015171
TCONS_00014531
TCONS_00015353
TCONS_00015354
TCONS_00015355
TCONS_00015356
TCONS_00015357
TCONS_00015358
TCONS_00014535

edgeR

p-value

0.07
0.01
0.06
0.00
0.00
0.00
0.00
0.00
0.01
0.09
0.09
0.02
0.02
0.03
0.01
0.01

Chinese
DESeq

FC p-value FC

1.08 0.08 1.30
1.65 0.00 1.83
1.22 0.09 1.44
217 0.00 2.36
2.16 0.00 2.34
1.85 0.00 2.03
2.08 0.00 2.24
1.83 0.00 2.00
1.77 0.03 1.90
1.11  0.04 1.28
111 0.04 1.28
1.42 0.01 1.60
141 0.01 1.59
1.27 0.02 1.43
1.44 0.01 1.62
1.65 0.01 1.79

5 Sample
edgeR DESeq

p-value FC p-value FC

0.73 -0.13 0.83 -0.19
0.06 0.51 0.25 0.46
0.43 0.69 0.62 0.72
0.03 0.67 0.15 0.64
1.00 0.20 0.98 0.19
0.16 0.55 0.24 0.49
0.00 1.34 0.00 1.29
0.00 1.92 0.01 1.90
0.00 1.80 0.01 1.85
0.25 0.32 044 0.28
0.05 0.55 0.20 0.50
0.00 1.05 0.01 1.01
0.22 0.52 0.21 0.46
0.00 1.34 0.00 1.33
0.05 0.96 0.02 0.93
0.82 0.09 0.78 0.05

Mapping to

PCAT2
JX003871

CCAT1
BC106081
CCAT1
PVT1

CASC11

two datasets used in this study. Again, many of these are specific to testis and liver and are not ex-
pressed in normal prostate.

Co-regulation of lincRNAs and neighboring genes

As shown in Fig 5, 15 differentially regulated nlincRNAs out of the 127 are near 12 differential-
ly regulated genes on various chromosomes. Table 3 provide significance of nlincRNAs and
their respective coding gene. For example, the nlincRNA, TCONS_00029157, and a known
tumor suppressor factor, SIK1, are both down regulated in all cancer samples. Reduced SIK1

expression is correlated with poor prognosis in two large human breast cancer data sets and is

linked with p53-dependent anoikis that may be targeted during tumerogenesis [21].

The thyroid-specific TPO gene is up-regulated in prostate cancer along with a few thyroid-
specific nlincRNAs, TCONS_00004663-4666 and TCONS_00004668-4669. TPO is one of the
genes known to be associated with oxidative stress. It has been shown that lens epithelial de-
rived growth factor p75 (LEDGF) in PC3, results in the change in TPO expression[22]. This
change is likely to play a protective role against oxidative stress and chemotherapeutic drugs.

TCONS_00010581, an isoform of HEIH, which is known to be up-regulated in hepatocellu-
lar carcinoma [23], is in the proximity of the gene EZH?2 of the polycomb complex-2 [24] The
gene EZH?2 is also found up-regulated in all cancer samples compared to adjacent non-neoplas-

tic tissues in both datasets.

A testis-specific nlincRNA, TCON_00025002, is in the neighborhood of the gene TOX3 on
chromosome 16, which are both up-regulated in a cancer-specific fashion in our study. TOX3

is a high motility group box protein involved in mediating calcium-dependent transcription.

TOX3 maps to the known triple-negative breast cancer susceptibility locus; a mutation in this
locus in implicated in the development of breast cancer[25]. A SNP in TOX3 gene is also impli-
cated in pancreatic[26] and lung cancer[27].

PLOS ONE | DOI:10.1371/journal.pone.0122143 May 1, 2015
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Fig 5. A) Heatmap and B) dendrogram for all the lincRNAs along with their neighboring genes, which are also differentially regulated. Red arrows
indicate clusters of neighboring gene and lincRNAs.

doi:10.1371/journal.pone.0122143.9005

Prostate-specific nlincRNAs, TCONS_00017728 and TCONS_00010086, are found to be in
the vicinity of GATA3 and ADAMTS19 genes respectively. All four, including the nlincRNAs
and genes, are down regulated in a cancer-specific fashion in this study. GATA3 is an impor-
tant transcription factor known to be involved in androgen regulation of PSA gene[28]. A glob-
al methylation pattern in androgen sensitive and androgen independent prostate cancer shows
a significant difference in the methylation pattern in GATA3 under these two conditions[29].
Tumor biopsies and various cancer cell lines have show high levels of expression of
ADAMTSI19 in osteosarcomas[30].

A few liver-specific nlincRNAs, TCONS_00014531, TCONS_00015169 and
TCONS_000015171, are all up-regulated in prostate cancer in this study along with the neigh-
boring pseudogene POUSF1, which is adjacent to MYC locus in the major prostate cancer sus-
ceptibility locus in 8q24[31]. Another liver specific TCONS_00016903 is juxtaposed to gene
EGFL7, both recorded as down-regulated in our analysis. Contrary to our findings EGFL7 has
been shown to have an elevated expression in various cancer types including lung cancer,
breast cancer, prostate cancer and hepatocellular carcinoma[32]. However, there has been a re-
port of a microRNA, miR-126, located within the intron of EGFL7, which is shown to be
down-regulated in cancer cell lines and in primary bladder and prostate tumors[33].
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Table 3. Lists p-value and fold-change for all the nlincRNAs that are differentially regulated along with their neighboring genes in cancer.

Gene / TCONS_ID

TCONS_00029157
SIK1
TCONS_00004663
TCONS_00004664
TCONS_00004665
TCONS_00004666
TCONS_00004668
TCONS_00004669
TPO
TCONS_00010581
EZH2
TCONS_00025002
TOX3
TCONS_00017728
GATA3
TCONS_00010086
ADAMTS19
TCONS_00014531
TCONS_00015169
TCONS_00015171
POUS5SF1B
TCONS_00028940
TMPRSS2

DESeq EdgeR
5 Sample Chinese Sample 5 Sample Chinese Sample
pvalue foldchange pvalue foldchange pvalue foldchange pvalue foldchange
0.02 -1.23 0.00 -2.02 0.01 -1.17 0.00 -2.20
0.00 -0.96 0.01 -1.50 0.00 -1.02 0.04 -1.51
0.00 2.54 0.00 2.69 0.00 2.52 0.00 2.53
0.00 3.01 0.00 2.69 0.00 3.00 0.00 2.53
0.00 3.25 0.00 2.69 0.00 3.27 0.00 2.53
0.00 2.66 0.00 2.69 0.00 2.66 0.00 2.53
0.00 1.73 0.00 3.20 0.00 1.75 0.00 2.93
0.00 1.99 0.00 3.20 0.00 1.99 0.00 2.93
0.00 2.37 0.00 3.56 0.00 2.31 0.00 3.56
0.01 -0.88 0.00 -0.61 0.01 -0.96 0.00 -0.73
0.01 1.15 0.03 1.26 0.01 1.10 0.00 1.24
0.04 0.87 0.05 1.31 0.01 0.91 0.02 1.13
0.00 1.91 0.01 1.40 0.01 1.86 0.01 1.40
0.04 -1.85 0.00 -2.80 0.01 -1.81 0.00 -3.00
0.05 -0.86 0.00 -2.32 0.06 -0.92 0.00 -2.33
0.03 1.07 0.01 2.04 0.01 1.13 0.00 1.83
0.45 0.62 0.00 4.90 0.65 0.56 0.17 4.88
0.01 1.85 0.03 1.90 0.00 1.80 0.01 1.77
0.00 1.29 0.00 2.24 0.00 1.34 0.00 2.08
0.01 1.90 0.00 2.00 0.00 1.92 0.00 1.83
0.01 1.60 0.01 1.42 0.11 1.62 0.00 1.41
0.00 3.10 0.02 3.08 0.00 3.09 0.00 3.02
0.82 -0.09 0.30 0.54 0.88 -0.15 0.32 0.54

doi:10.1371/journal.pone.0122143.t003

Among the more interesting nlincRNAs, TCONS_00028940, in the neighborhood of the
gene TMPRSS2, is highly differentially expressed in all cancer samples studied here. The
TMPRSS2-ERG gene fusion is one of the most widely spread chromosomal rearrangements in
carcinomas [34], although the gene TMPRSS2 is not expressed in a cancer-specific fashion in
samples studied here We find that this nlincRNA shows significant expression in VCaP and
not in PC3 and LnCaP.

Conclusion

Recently, more than fourteen thousand lincRNAs have been discovered from large number of
normal human tissues, suggesting that these normal lincRNAs (nlincRNAs) play a role in nor-
mal biology. It can be hypothesized that nlincRNAs with gene regulatory functions in normal
conditions may actually be down-regulated in cancer. For this purpose, here we have attempted
to take two independently generated RNA-seq datasets from demographically diverse cohort
to profile both protein coding genes and nlincRNAs. We have identified 127 nlincRNAs that
are not only significantly regulated in cancer samples from both datasets but could be used to
cluster data from samples, not used in this study, by disease context. Contrary to our hypothe-
sis, profiling of coding genes and nlincRNAs suggests that a majority of the nlincRNAs are up-
regulated in cancer even though 2 fold more protein coding genes are down-regulated in can-
cer. This together with the activation of many non-coding genes in 8q24 and inactivation of
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many coding genes in 17q21 and 19q13 loci would suggest systems level activation of many
nlincRNAs during cancer.

We have found that a number of coding genes and nlincRNAs specific to other tissues with
baseline null expression in prostate tissue are up-regulated in prostate cancer. Perhaps these
genes and nlincRNAs are responsible for the loss of cellular identity leading to tumerogenesis.
To our knowledge this is the first attempt to profile nlincRNAs along with coding genes in can-
cer. We believe that the approach used here for functional characterization of nlincRNAs will
allow researchers to advance the understanding of the role of nlincRNAs in normal and disease
biology, in general.

Supporting Information

S1 Table. Genes differentially regulated in cancer samples from both datasets identified
using both DESeq and edgeR analysis pipelines. Columns 2-5 gives the average p-values and
fold change obtained from DESeq and edgeR pipeline for both SRP002628 and ERP000550.
(XLS)

S2 Table. Lists p-value and fold-change for all the nlincRNAs differentially regulated in
both datasets using both methods. The table lists neighboring genes along with their respec-
tive p-value and fold-change in the two datasets. Last three columns lists the RPKM values for
these lincRNAs in three prostate celllines.

(XLS)

S3 Table. Lists p-value and log fold-change for known lincRNAs that are differentially reg-
ulated in both datasets along with the status of the transcript overlapping with nlincRNAs
on UCSC browser.

(XLS)
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