@’PLOS ‘ ONE

CrossMark

click for updates

E OPEN ACCESS

Citation: Suzuki S, Kakuta M, Ishida T, Akiyama Y
(2016) GPU-Acceleration of Sequence Homology
Searches with Database Subsequence Clustering.
PLoS ONE 11(8): e0157338. doi:10.1371/journal.
pone.0157338

Editor: Arndt von Haeseler, Max F. Perutz
Laboratories, AUSTRIA

Received: September 9, 2015
Accepted: May 27, 2016
Published: August 2, 2016

Copyright: © 2016 Suzuki et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: Sequencing data of
soil metagenome and marine metagenome are
available from International Nucleotide Sequence
Database Collaboration partners (DDBJ (http://www.
ddbj.nig.ac.jp/), EMBL-EBI (https://www.ebi.ac.uk/),
and NCBI (http://www.ncbi.nlm.nih.gov/)) with
accession numbers SRR407548 and ERR315856.
Sequencing data of human metagenome is available
from HMP-DACC (http:/hmpdacc.org/) with
accession number SRS011098.

Funding: This work was supported by a Grant-in-Aid
for the Japan Society for the Promotion of Science
Fellows (Grant number 248766) to SS, the Strategic

RESEARCH ARTICLE

GPU-Acceleration of Sequence Homology
Searches with Database Subsequence
Clustering

Shuji Suzuki'2, Masanori Kakuta', Takashi Ishida'-?, Yutaka Akiyama'-?*

1 Graduate School of Information Science and Engineering, Tokyo Institute of Technology, Meguro-ku,
Tokyo, Japan, 2 Education Academy of Computational Life Sciences (ACLS), Tokyo Institute of Technology,
Meguro-ku, Tokyo, Japan

* akiyama @cs.titech.ac.jp

Abstract

Sequence homology searches are used in various fields and require large amounts of com-
putation time, especially for metagenomic analysis, owing to the large number of queries
and the database size. To accelerate computing analyses, graphics processing units
(GPUs) are widely used as a low-cost, high-performance computing platform. Therefore,
we mapped the time-consuming steps involved in GHOSTZ, which is a state-of-the-art
homology search algorithm for protein sequences, onto a GPU and implemented it as
GHOSTZ-GPU. In addition, we optimized memory access for GPU calculations and for
communication between the CPU and GPU. As per results of the evaluation test involving
metagenomic data, GHOSTZ-GPU with 12 CPU threads and 1 GPU was approximately
3.0- to 4.1-fold faster than GHOSTZ with 12 CPU threads. Moreover, GHOSTZ-GPU with
12 CPU threads and 3 GPUs was approximately 5.8- to 7.7-fold faster than GHOSTZ with
12 CPU threads.

Introduction

Sequence homology search is widely used in bioinformatics. This method is needed to identify
evolutionary relations among sequences. It can also be used to estimate possible functions and
structures of DNA and proteins. Nonetheless, sequence homology searches have become a
major bottleneck of such analyses, especially metagenomic analyses, because of the increasing
number of queries and database size.

In a metagenomic analysis, environmental samples frequently include DNA sequences from
several species, and the reference database often does not contain closely related homologous
sequences. Therefore, a sequence homology search is used to identify novel genes in these sam-
ples. In a typical metagenomic analysis, reads are translated into protein-coding sequences and
assigned to protein families by means of a homology search in publicly available databases
such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) [1, 2], COG [3, 4] and Pfam
[5]. The BLASTX software [6, 7] is commonly used for such binning and classification
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searches. To identify homologs that may not have high identity of nucleotide sequences,
BLASTX translates nucleotide sequences into protein sequences because such sequences are
often more similar than the original nucleotide sequences [8, 9]. Nonetheless, the search speed
of BLASTX is insufficient for analysis of large quantities of sequence data now available. For
instance, sequence homology searches for metagenomic data produced by HiSeq2500, which is
one of the latest DNA sequencers, require approximately 100,000 days with BLASTX on a sin-
gle workstation containing 12 CPU cores.

Developers of several homology search tools currently available, such as RAPSearch [10,
11], GHOSTX [12], GHOSTZ [13], and DIAMOND[14], claim that their tools search faster
than BLASTX, without a significant decrease in search sensitivity. GHOSTZ is one of the fastest
homology search tools. It uses the database subsequence clustering method. This method clus-
ters similar subsequences from a database to perform an efficient seed search and ungapped
extension by reducing the number of alignment candidates on the basis of triangle inequality.
GHOSTZ achieved a 2-fold increase in speed, without a substantial decrease in search sensitiv-
ity, as compared to GHOSTZ without the database subsequence clustering method. Originally,
GHOSTZ was approximately 2.2-2.8 times faster than RAPSearch and approximately 185-261
times faster than BLASTX. Nevertheless, the sequencing technology has since improved and
bigger sequence data can now be obtained. Therefore, the speed of homology searches needs a
further increase to facilitate efficient metagenomic analysis.

To accelerate computing analyses, graphics processing units (GPUs) are widely used as a
low-cost high-performance computing platform. Among top-level supercomputers worldwide,
several systems incorporate multiple CPU cores and GPUs within a node, as in TSUBAME 2.5
of the Tokyo Institute of Technology. GPUs have greater computational power and memory
bandwidth than CPUs do. Recently, several bioinformatic tools have been enhanced by means
of GPUs [15-17].

Several tools for sequence homology searches on the basis of GPUs have also been devel-
oped. They are roughly classified into 2 types: implementation of the Smith-Waterman algo-
rithm [18] and a seed-and-extend algorithm such as BLAST. GPU accelerated Smith-
Waterman algorithms [19-21] and seed-and-extend algorithms for DNA sequences [22, 23]
were several times faster than those of implementation for CPU with multiple CPU cores.
SWidb [20] is one of the GPU-based Smith-Waterman algorithms, and showed that when it is
based on 1 GPU, it works 4- to 5-fold faster than does SSEARCH [24], which is a CPU-based
Smith-Waterman algorithm, with 4 CPU cores. G-BLASTN [22] is one of the GPU-based
BLAST with 1 GPU achieves 7.2-fold acceleration relative to the MEGABLAST mode of
NCBI-BLAST [25] with 4 CPU cores and 1.6-fold acceleration relative to the BLASTN mode of
NCBI-BLAST with 4 CPU cores. On the other hand, GPU accelerated seed-and-extend algo-
rithms for protein sequences, such as GPU-BLAST [26] and CUDA-BLASTP[27], achieved
limited success. GPU-BLAST [26] and CUDA-BLASTP[27] with 1 GPU achieve 6-fold and 5-
to 6-fold acceleration, respectively, relative to the BLASTP mode of NCBI-BLAST with a single
CPU core. These results mean that the acceleration of GPU-BLAST or CUDA-BLASTP with 1
GPU is estimated to be less than 1.5-fold as compared to NCBI-BLAST with a single CPU
socket with 4 CPU cores. Therefore, mapping an algorithm of a protein sequence homology
search onto GPUs is still a challenging task. In addition, faster algorithms of protein sequence
homology searches than BLAST have not yet been mapped onto GPUs.

In this study, we mapped the GHOSTZ algorithm onto GPUs to accelerate sequence
homology searches. This task was more challenging than GPU implementation of BLASTX
because GHOSTZ is faster than BLASTX. We introduced several speed-up methods in addi-
tion to simple GPU mapping of the algorithm. To accelerate a sequence homology search on
GPUs, we optimized access of the data in the GPU memory. Moreover, we reduced the
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waiting time for synchronization to attain full use of a computing environment by setting up
GHOSTZ-GPU to reduce inactive threads in gapped extension and to use asynchronous exe-
cution on CPU and GPU. GHOSTZ-GPU was implemented in C++ and CUDA 6.0. It is dis-
tributed under the BSD 2-clause license and is available for download at https://github.com/

akiyamalab/ghostz-gpu.

Methods
GHOSTZ

The workflow of GHOSTZ is shown in Fig 1. The GHOSTZ protocol consists of 5 main steps:
seed search, similarity filtering, ungapped extension, chain filtering, and gapped extension. To
accelerate the sequence homology search with the GHOSTZ algorithm, subsequences are
extracted from database sequences and similar subsequences are clustered during preprocess-
ing for the sequence homology search. Subsequently, hash tables are constructed containing
indexes for the subsequences within database sequences. GHOSTZ uses the hash tables to select
seeds for the alignments from representative sequences in the clusters. In the sequence homol-
ogy search, the seed search process selects seeds that are subsequences of database sequences
similar to those of the query sequence. Similarity filtering is then performed to reduce the num-
ber of seeds, whereby the distance between a query subsequence and the cluster representative
is calculated, and the lower bounds of the distance between the query subsequence and other
members of the cluster are computed on the basis of triangle inequality. If the computed lower
bound is lower than or equal to the distance threshold, then the seed is taken to the next step,
that is, the ungapped extension, to assess the homology between the query and the member
sequences of the cluster. Finally, chain filtering is used to bring similar extended seeds together,
and gapped extension is performed to obtain an alignment from the extended seed that con-
tains gaps.

Queries Database

Seed search

Similarity filtering
Distance calculation

Ungapped extension

Chain filtering
Gapped extension
Results

Fig 1. The workflow of GHOSTZ.
doi:10.1371/journal.pone.0157338.g001
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Table 1. Average and standard deviation of computation time of each component of a GHOSTZ calculation with 1 CPU thread.

CPU Time (sec.) Ratio (%)
Distance calculation 1340.7 £45.7 3.2+0.0
Ungapped Extension 18554.8 + 695.8 44.3+0.1
Gapped Extension 17191.5+672.7 41.1+0.2
Others 4772.6+116.5 11.4+03
Total 41859.6 + 1499.1 100.0+0.0

This profile was obtained from the calculation involving 1,000,000 short DNA reads in metagenomic sequences of a soil microbiome (accession number
SRR407548, read length 150 bp) as queries and KEGG GENES (as of May 2013) as the database. The reads were randomly selected from dataset
SRR407548. The profile was obtained on a workstation with a single CPU core of 2.93 GHz (Intel Xeon 5670 processor) and 54 GB of memory. GHOSTZ
was compiled by means of GCC (version 4.3.4) with the -O3 optimization option. To obtain a profile, the functions of distance calculation, ungapped
extension, and gapped extension were not in-lined. This experiment was repeated 5 times.

doi:10.1371/journal.pone.0157338.t001

The GHOSTZ system has several limitations. Table 1 shows the ratio of calculation time for
each step of GHOSTZ. The ungapped-extension step requires most (44.3%) of the total calcula-
tion time. Nonetheless, mapping of an ungapped extension onto GPUs by itself is insufficient
for improvement of the search speed. This is because other calculations also require consider-
able time, for example, gapped extension and the distance calculation, which is a subprocess of
similarity filtering.

GPU Implementation Overview

To improve the search speed of GHOSTZ with GPUs, the mapping of the steps, including dis-
tance calculation, ungapped extension, and gapped extension, onto GPUs is evidently crucial
for achievement of effective acceleration. Therefore, we mapped these steps onto GPUs. Cur-
rent computing systems often have multiple CPU cores and multiple GPUs in a computing
node. Therefore, we focused on a computing node with multiple CPU cores and multiple
GPUs. For the GPU implementation, we used NVIDIA’s CUDA 6.0.

The CUDA software contains a function (performed on a GPU) called a kernel. It represents
the operations to be launched by a single CPU thread and is invoked as a set of concurrently
executed GPU threads. These threads are organized in a hierarchy consisting of thread blocks
and grids. A thread block is a set of concurrent threads, and a grid is a set of independent
thread blocks. The kernel uses several types of memory, such as global memory, local memory,
shared memory, and registers. Global memory is used for communication between a CPU and
GPU. Local memory stores local variables of a thread when a register is not used. Although
global and local memory are larger than other memory types in the GPU, access to them is
slow. Therefore, it is important for GPU calculations to reduce the number of accesses to these
memory types, often via the use of shared memory, to which the access is faster than to either
global or local memory. Shared memory is also used to communicate among threads in a
block. However, it is smaller than either global or local memory. Therefore, it is used as a soft-
ware cache.

Simply mapping the distance calculation, ungapped extension, and gapped extension onto a
GPU is insufficient for acceleration of GHOSTZ. It involves a number of accesses to global
memory, the large inactive threads in a GPU, and the lengthy computation time of other CPU
calculations. Therefore, we applied 4 main optimizations: memory access for sequence data,
memory access for dynamic programing (DP) matrices and load balancing in gapped exten-
sion, asynchronous execution on the CPU and GPU, and addition of a special thread for load-
ing the database.
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Optimization of the Distance Calculation

The distance calculation is a part of similarity filtering. Distance calculations are independent
of each other. Therefore, these calculations can be performed within different GPU threads.
Nevertheless, when each thread executes a different task in a block, the memory access for the
query or database sequence is random. These memory accesses take a long computational
time. Therefore, it is important to utilize efficiency of the GPU to reduce the number of ran-
dom accesses to global memory for sequence data. We use 2 approaches to reduce the number
of random accesses: “vectorized memory access” and “group memory access”.

A character in a protein sequence is represented by 5 bits in GHOSTZ-GPU because the
alphabet size for a protein is 20. Therefore, an 8-bit memory module is sufficient for each char-
acter in the sequence. On the other hand, if 8 bits are used for character access, then a large
number of accesses to global memory are required for the protein sequence. To solve this prob-
lem, vectorized load instruction (64- or 128-bit access) is often used to reduce the number of
global memory accesses and is called “vectorized memory access” in CUDA programming.
When we use this memory access method, the accessed data have to be assigned to a consecu-
tive region in global memory. Suppose w is the number of characters to be accessed once and /
is the length of the sequence for calculation. With this memory access, the number of accesses
to global memory is [(I + w — 1)/w]. In GHOSTZ-GPU, the sequence data are allocated to con-
secutive regions in global memory. The sequences in a database are connected with inserted
delimiters to transform them into a long single sequence. Query sequences are connected in
the same manner as database sequences are. Therefore, GHOSTZ-GPU can use vectorized
memory access for sequence data. GHOSTZ-GPU uses 64-bit access to protein sequences. In
distance calculations, the length of the sequence used [is 10. In the GPU, the bit size of a char-
acter is 5. Therefore, when GHSOTZ-GPU uses 64-bit memory access, w is 12. In this case, the
number of memory accesses for sequence data is 2.

Moreover, we propose “group memory access” to speed up global memory access. For
group memory access, we subdivided threads in a block into small groups. Then, the threads in
a group load the data with communication among them. The threads in a group access one
consecutive region at a time in global memory. These memory accesses are merged into a single
transaction in a GPU, called coalesced memory access, which is used when threads in a block
access the same region in global memory. With coalesced memory access for sequence data,
the number of memory accesses for sequence data is reduced. The threads that have the same
group ID are combined into 1 group. The group ID is calculated as follows. If i, is the
thread ID and N,,;c;per is the number of threads in a group, then let us assume that ig,,,, =
lishread! Nmmember| 18 the group ID of the thread iy,.,4. Examples of memory access with and
without group memory access are shown in Fig 2. For group memory access, we used shared
memory to temporarily store sequence data and for communication among threads in a group.
The number of accesses to global memory decreases with the use of this memory. In the dis-
tance calculation, the number of threads in a group N,,.epmper is 2. [ and w have the same value as
with vectorized memory access. In this case, the minimal number of memory accesses with
group memory access is only 1.

Moreover, the distance calculation also has memory access to global memory for the posi-
tions of seeds. In addition, the memory access for the postion of a seed is required for coalesced
memory access to reduce the number of global memory accesses. The positions of a seed are a
query position and database position. We use the structure of array for the positions of seeds to
use coalesced memory access for these data. The structure of an array is often used for coa-
lesced memory access in the structure of GPU computing.
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A)
Thread 0 Thread 1
step 1
i i+1 jj+1
Thread 0 Thread 1
step 2
i i+1 jji+1
B)
Thread 0
Thread 1
step 1
i i+1 jj+1
Thread 0
Thread 1
step 2

i i+1 jj+1
Fig 2. Examples of sequence data accesses. A) An example of sequence data accesses without group
memory access. B) An example of sequence data accesses with group memory access.

doi:10.1371/journal.pone.0157338.9002

Fig 3 shows a pseudocode for distance calculation. The subsequences are loaded into shared
memory from global memory with vectorized memory access and group memory access (lines
14 and 15 in Fig 3). After that, the distance between the query subsequence and database subse-
quence is calculated.

Using these optimizations, we reduced the number of global memory accesses.

Optimization of Ungapped Extension

Most of homology search algorithms perform ungapped extension before gapped extension to
reduce the number of candidates because gapped extension generally requires a lot of computa-
tion time. Because ungapped extensions are independent of each other, these calculations can
also be performed in different GPU threads.

Ungapped extension requires a number of memory accesses for sequence data and the posi-
tions of seeds. We use vectorized memory access, group memory access, and the structure of
an array for the positions of seeds during ungapped extension, as in distance calculation. On
the other hand, the use of group memory access to all sequence data leads to performance deg-
radation because the lengths of extensions vary (X-dropoff [6, 7] is used [13] for extensions).
The threads that finish ungapped extensions wait for the other threads. Thus, we use group
memory access only for the first memory access for each sequence. The number of members in
a group is 4. If more memory accesses are required, GHOSTZ-GPU uses only vectorized mem-
ory access for the remaining sequence data.
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Algorithm 1 Distance calculation on a GPU
1: 84 © the sequence formed by connecting queries with inserting delimiters.

2: Sap > the sequence formed by connecting database sequences with
inserting delimiters.

3: seeds, > the array of query positions in seeds.

4: seedsqp > the array of database positions in seeds.

5: Nseed > the number of seeds.

6: distances > the outputs for distance calculation.

7 lihread = blockIdx.x x blockDim.x + threadldx.x

8: Ninread = blockDim.x x gridDim.x

9: igroup = Lithread/NmemberJ

10: Ngroup = Nthread/Nmember
11: for iy = igroup t0 [Nsced/(Ngroup * Nmembper)| With step Ngroup do

12: Seedi <~ ig * Nmember + ithread mod Nmember

13: seedy, seedqy <= seedsg[isced), seedsap[isced)

14: __syncthreads()

15: load sequence data into S; form S [seed, —1/2, seed, +1/2] with vector-
ized memory access and group memory access

16: __syncthreads()

17: load sequence data into SJ, form Sg[seeda, — /2, seedqy + 1/2] with
vectorized memory access and group memory access

18: __syncthreads()

19: calculate distance d between S; and Sy,

20: distances|iseed) < d

21: end for

Fig 3. The pseudocode of distance calculation.

doi:10.1371/journal.pone.0157338.g003

Fig 4 shows a pseudocode for ungapped extension of the rightward on a GPU. Ungapped
extension of the leftward on a GPU is almost the same as ungapped extension of the rightward
on a GPU. The subsequences are loaded into shared memory from global memory with vector-
ized memory access and group memory access (lines 15 and 16 in Fig 4). Then, the ungapped-
extension score between the query subsequence and database subsequence is calculated. If the
ungapped extension is not terminated in line 17 of Fig 4, then the ungapped extension is con-
tinued until its termination (lines 23-30 in Fig 4). The lengths of this loop are different for
every seed. Thus, group memory access is not used in this loop (lines 24 and 25 in Fig 4).

Optimization of Gapped Extension

During gapped extension, the seeds are extended with gaps. Gapped extensions are indepen-
dent of each other. Therefore, these calculations can be performed in different GPU threads.
There are 2 main reasons why gapped extension increases computation time in a GPU calcula-
tion: the access to global memory and branch divergence.

Gapped extension mainly involves memory accesses for sequence data, the positions of
seeds, and the DP matrix. Memory accesses of gapped extensions for sequence data and the
positions of seeds are also optimized in the same manner as for ungapped extensions. Fig 5
shows a pseudocode for gapped extension of the rightward on a GPU. Gapped extension of the
leftward on a GPU is almost the same as gapped extension of the rightward on the GPU. The
subsequences are loaded from global memory with vectorized memory access and group mem-
ory access (lines 15 and 19 in Fig 5). The remaining sequence data are loaded with vectorized
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Algorithm 2 Ungapped extension of the rightward on a GPU

UngappedExtensionRightwardGPU(Sq, Say, seedsq, seedsdp, Nseed, scores)

1: 84 © the sequence formed by connecting queries with inserting delimiters.
2: Sap > the sequence formed by connecting database sequences with

10:
11:
12:
13:
14:
15:

16:
17:

18:
19:
20:
21:
22:
23:
24:

25:

26:
27:
28:
29:
30:
31:
32:

inserting delimiters.
seeds, > the array of query positions in seeds.
seedsqp > the array of database positions in seeds.
Nseced > the number of seeds.
scores > the scores for ungapped extension.
Ithread = blocklIdzx.x * blockDim.x + threadldx.x
Ninreaq = blockDim.x x gridDim.x
igroup == Lithread/NmemberJ
Ngroup = Nthread/Nmember
for ig = igroup to |— seed/( group * Nmemberﬂ with Step Ngroup do
Seedi ~ ig * Nmember + 'Lthread mod Nmember
offset,, offsety, < seedsg[iseed|, seedsqp[isced
__syncthreads()
load sequence data into S,; form Sq[o[fsetq, offset, + w x Nimembper] With
vectorized memory access and group memory access
__syncthreads()
load sequence data into S%, form Sgy[offsety,, offsety + w * Nipember)
with vectorized memory access and group memory access
__syncthreads()
calculate score s between S; and S7,
score <= s
oﬁsetq + W * Nopember
offset g + W * Nppember
while ungapped extension did not terminate do
load sequence data into Sy, form Sy[offset,, offset ,+w] with vectorized
memory access
load sequence data into S, form Sap[offset g, offset g, + w] with vec-
torized memory access
calculate score s between S; and Sy,
score <= score + S
offset, +w
offset g4, +w
end while
scores|igeed| < score
end for

Fig 4. The pseudocode of ungapped extension.

doi:10.1371/journal.pone.0157338.9004

memory access (lines 17 and 25 in Fig 5). After loading the sequence data, we calculate the
score from these sequence data. If the gapped extension is not terminated in line 21 of Fig 5,

then the gapped extension is continued until the termination (lines 24-29 in Fig 5).

In addition, memory accesses for the DP matrix in gap extensions also require a lengthy

computation time. Each cell in the DP matrix is computed by other cells, and the greatest value
of a cell is termed “the score” in gapped extension. When we calculate a gapped-alignment
score only, we do not need to store all data in the DP matrix. Thus, GHOSTZ-GPU stores only
1 column of the DP matrix in local memory of the GPU in the same way as BLAST does [7].
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Algorithm 3 Gapped extension of the rightward on a GPU

1: 84 © the sequence formed by connecting queries with inserting delimiters.

2: Sap > the sequence formed by connecting database sequences with
inserting delimiters.

3: seeds, > the array of query positions in seeds.

4: seedsqp > the array of database positions in seeds.

5: Nseed > the number of seeds.

6: scores > the scores for gapped extension.

T Gthread = DlockIdx.x * blockDim.x + threadldx.x

8: Ninread = blockDim.x x gridDim.x

9: igroup = Lithread/NmemberJ

10: Ngroup = Nthread/Nmember
11: for iy = igroup t0 [Nseed/(Ngroup * Nmember)| With step Ny oy, do

12: Seedi ~ ig * Nmember + ithread mod Nmember

13: offset,, offset gy, < seedsqliseed], seedsap|iseced

14: __syncthreads()

15: load sequence data into S,; form Sq[o[fsetq, w * Nypembper| with vectorized
memory access and group memory access

16: __syncthreads()

17: load remains of sequence data into S; from S, with vectorized memory
access

18: __syncthreads()

19: load sequence data S7, form Sgploffset gy, offsety, + w * Npemper] with
vectorized memory access and group memory access

20: __syncthreads()

21: calculate score s between S; and Sy,

22: score < s

23: offset g + W * Npember

24: while gapped extension did not terminate do

25: load sequence data into S’ form Sgp[offset 4, offset 4, + w] with vec-
torized memory access

26: calculate score s between S; and Sy,

27: score <= score + S

28: offset g4, +w

29: end while

30: scores|iseed| < score

31: end for

Fig 5. The pseudocode of gapped extension.

doi:10.1371/journal.pone.0157338.9005

The length of a column in the DP matrix depends on the query length, which is generally
shorter than the database sequence in current metagenomic analyses. Local memory in a GPU
is slower than a register or shared memory. For acceleration of the gapped-extension process,
we have to reduce the number of accesses to local memory. This task is accomplished by adding
another loop to those used to calculate gapped extension and by recruiting shared memory for
this loop. The calculation workflows of GHOSTZ and GHOSTZ-GPU during gapped extension
are shown in Fig 6. The loop length k in GHOSTZ-GPU is 4. This loop requires additional
memory access for this loop. Nevertheless, the required data for this loop can be assigned to
shared memory. Therefore, the memory accesses for this loop are quick. The shared memory
during gapped extension is reused as in group memory access. Thus, the additional shared
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Start of seed
database sequence

query sequence

Start of seed
database sequence

query sequence

w‘{
vy v Vv vYyY vy

vy v Vv vYyY vy

Fig 6. Examples of gapped extension on a GPU. A) An example of accesses for sequence data in
GHOSTZ. B) An example of gapped extension with the short loop.

doi:10.1371/journal.pone.0157338.g006

memory allocations for this loop are not needed. With this optimization, the search results
with GHOSTZ-GPU may be different from those with GHOSTZ. The gapped extension is ter-
minated when the score drops by more than X below the maximal score previously seen. Thus,
the difference in the calculation order for filling the cells in the DP matrix may shift the termi-
nated cells when X-dropoff is used. Nonetheless, the alignments are not changed when they
have a high score. This is because the alignment paths rarely pass though the cell near a termi-
nated one. Therefore, we believe that the search results are influenced by this optimization only
slightly.

Moreover, it is important to decrease branch divergence to reduce the computation time of
gapped extension. Several threads in a block in the GPU execute the same instruction at any
given moment, leading to branch divergence. For instance, when some threads in a block run
an “if” statement, threads split in two for the branch, and the GPU causes all paths to be exe-
cuted sequentially, even though each thread executes only one of the paths. On the other hand,
when the threads run a “while” statement, the threads wait for execution of another thread to
end. Branch divergence causes an increase in computation time and the number of inactive
GPU threads. Therefore, there is a need to reduce branch divergence. We used the DP matrix
to calculate the score of gapped extension, and the primary cause of the problem was the differ-
ence in size of the DP matrix among gapped extensions. The order of calculations for cells in
GHOSTZ-GPU gapped extension is shown in Fig 6B. The loop for query length is an inner one
during gapped extension. Therefore, the query length has a greater influence on branch diver-
gence than the database sequence length does. For better load balancing, GHOSTZ-GPU sorts
seeds by query length and then assigns a seed to a GPU thread successively. With this
approach, the lengths of inner loops in gapped extensions are sorted in GHOSTZ-GPU xten-
sions are sorted in GHOSTZ-GPU.

PLOS ONE | DOI:10.1371/journal.pone.0157338 August 2, 2016 10/22



@’PLOS | ONE

GPU-Acceleration of Sequence Homology Searches

Asynchronous Execution on a CPU and GPU

To make full use of a computing environment with GPUs, an overlap between CPU and GPU
calculations is necessary. GHOSTZ-GPU divides a process with a CPU and GPU into 2 main
phases. The first phase consists of a seed search and similarity filtering. The second phase con-
sists of chain filtering and gapped extension. CPU threads calculate data independently in each
phase. To create an overlap between CPU and GPU calculations, the double-buffering tech-
nique is used for CPU and GPU types of memory. Two buffers are used as input and output to
store results of the GPU calculations. Because of this method, the waiting time for synchroniza-
tion of the CPU and GPU is reduced. Moreover, the computation time of memory copying
between a CPU and GPU is hidden by the CPU and GPU calculations.

The first phase is shown in Fig 7. GHOSTZ uses 3 tables, B,, B,, and B,, for a seed search. B,
is a hash table for the representatives of clusters where the cluster contains only 1 member. B,
is a hash table for a representative of a cluster (not stored in B,). B,, is a table for members of
clusters. As shown in Fig 7, a seed search is performed against B, for distance calculation.
Then, distances for similarity filtering are calculated on the GPU. The seed search against hash
table is performed on the CPU simultaneously with this GPU calculation because this seed
search is independent of similarity filtering. If the distance calculation is finished on the GPU,
ungapped-extension calculation on the GPU is initiated. Once the seed search against B, on the
CPU is completed, the seed search and similarity filtering for hash tables B, and B,,, are per-
formed on the CPU. After that, seeds from tables B, and B,, are built, and ungapped extension
for these seeds is performed. This phase is continued until the process for all subsequences of
queries is completed.

The second phase is shown in Fig 8. Chain filtering is performed on the CPU. If the memory
is full, then seeds are sorted by query length for alignment, and then gapped extension is per-
formed using these seeds. This phase continues until the process for all seeds is completed.

If multiple GPUs are used, then they are individually used by CPU threads. Each GPU is
assigned to almost the same number of CPU threads. Each CPU thread has different global

CPU GPU
Seed search against B,
for distance calculation
Seed search against B, Distance
for ungapped extension calculation
Seed search against B, and By, Ungapped
for ungapped extension extension
and similarity filtering
Time YV

Fig 7. The workflow of the first phase in GHOSTZ-GPU.
doi:10.1371/journal.pone.0157338.g007
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CPU GPU
Chain filtering
Chain filtering Gapped Extension
Chain filtering Gapped Extension
;s
Time

Fig 8. The workflow of the second phase of GHOSTZ-GPU.

doi:10.1371/journal.pone.0157338.9008

memory in the GPU. Because GPUs do not require communication among one another with
this approach, GHOSTZ-GPU utilizes multiple GPUs effectively.

Optimization of Loading a Database

Loading a database, including indexes, represents a larger fraction of the computation time in
GHOSTZ-GPU than in GHOSTZ because a sequence homology search is faster with a GPU
calculation. GHOSTZ-GPU uses a special CPU thread to hide the latency of loading the data-
base from threads for a sequence homology search. In GHOSTZ and GHOSTZ-GPU, a data-
base is divided into several chunks to reduce working memory. The default chunk size is 1 GB.
These tools sequentially search each database chunk and merge its results with the results of
previous chunk searches. In GHOSTZ-GPU, the chunks are loaded sequentially by a special
thread. Fig 9 shows the workflow with this thread. While the other threads perform the

CPU thread 1 CPU threadn  CPU threadn + 1

Sequence Sequence Loarding
homology homology database
search search chunk 2
(chunk 1) (chunk 1)

Sequence Sequence Loarding
homology homology database
search search chunk 3
(chunk 2) (chunk 2)
Time
Y

Fig 9. The workflow for loading of a database thread.

doi:10.1371/journal.pone.0157338.g009
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sequence homology searches against a database chunk, this thread loads the next database
chunk. Due to this approach, the computation time of loading the database is hidden during
the sequence homology search.

Results
Datasets and Computing Environment

We used the same dataset as Suzuki et al.[13] did for evaluation. We used amino acid sequences
from the KEGG GENES database (as of May 2013). This database contains approximately 10
million protein sequences, which comprise a total of approximately 3.6 billion residues. For the
query sequences, we used 3 datasets: metagenomic sequences of a soil microbiome (accession
number SRR407548, read length 150 bp), metagenomic sequences of a human microbiome
(accession number SRS011098, read length 101 bp), and metagenomic sequences of a marine
microbiome (accession number ERR315856, read length 104 bp). SRR407548 and ERR315856
were obtained from the DNA Data Bank of Japan (DDB]J) Sequence Read Archive. SRS011098
was obtained from the web site of the Data Analysis and Coordination Center for the Human
Microbiome Project (http://www.hmpdacc.org/). We used the whole metagenomic shotgun
sequencing data from dataset SRS011098. To evaluate the computation time, 1,000,000 ran-
domly selected short DNA reads were used for all datasets. Each experiment was repeated 5
times, but we used only 10,000 randomly selected short DNA reads and used each tool once to
evaluate the search sensitivity levels because of the computational costs. All the calculations
were conducted on the TSUBAME 2.5 supercomputing system, Tokyo Institute of Technology,
Japan. We used this node in all experiments, which consists of two 2.93-GHz Intel Xeon 5670
processors (6 cores), 54-GB memory, 3 NVIDIA Tesla K20Xes, and SUSE Linux Enterprise
Server 11 Service Pack 3.

The parameters of GHOSTZ and GHOSTZ-GPU were set to default values. To execute
GHOSTZ and GHOSTZ-GPU, similar sequences were arranged close to each other in the data-
base file based on the results of CD-HIT [28] before construction of database indexes.

Evaluation of the Acceleration by GPUs

To evaluate acceleration by GPUs and the relation between the number of GPUs and the accel-
eration, we ran GHOSTZ-GPU and GHOSTZ with their default options, except for the multi-
threading option. We used 1,000,000 randomly selected short DNA reads from dataset
SRR407548 as queries in this evaluation. Fig 10 shows the averages and standard deviations of
the computation time for each program with 1, 2, 4, 8, or 12 CPU threads and 1, 2, or 3 GPUs.
According to the figure, GHOSTZ and GHOSTZ-GPU with 12 CPU threads show the best per-
formance. In addition, GHOSTZ-GPU showed acceleration of approximately 4.1, 6.2, and
7.7-fold when we used 12 CPU threads with 1, 2, or 3 GPUs, respectively, as compared to
GHOSTZ with 12 CPU threads.

Evaluation of the Acceleration of Each Component by a GPU

For this purpose, we ran GHOSTZ-GPU and GHOSTZ with their default options. We used the
same dataset as in Table 1. Table 2 shows the averages and standard deviations of computation
time for each step of GHOSTZ with 1 CPU thread and GHOSTZ-GPU with 1 CPU thread and
1 GPU. With a GPU, we found that distance calculation, ungapped extension, and gapped
extension in GHOSTZ-GPU were accelerated by the factor of 28.7, 33.3, or 36.6, respectively,
relative to GHOSTZ.
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Fig 10. Computation time with multithreading of a CPU and multiple GPUs.
doi:10.1371/journal.pone.0157338.g010

Evaluation of Search Sensitivity

To evaluate the search sensitivity of GHOSTZ-GPU, we ran GHOSTZ-GPU, GHOSTZ, RAP-
Search (version 2.12), and DIAMOND (version 0.7.9). The sensitivity of the homology search
for the different query sequences was estimated using the search results obtained by the Smith-
Waterman local alignment algorithm implemented in SSEARCH [24] as the correct results.

Table 2. Averages and standard deviations of computation time for each step of GHOSTZ-GPU and GHOSTZ calculations.

Distance calculation
Ungapped Extension
Gapped Extension

GHOSTZ (sec.) GHOSTZ-GPU (sec.) Acceleration Ratio
1340.7 £45.7 46.8+0.1 28.7+1.0
18554.8 + 695.8 557.5+4.6 33.3x14
17191.5+672.7 469.1+0.4 36.6+1.4

This profile was obtained from the calculation involving short DNA reads in metagenomic sequences of the soil microbiome (SRR407548) as queries and
KEGG GENES as a database. To obtain a profile for GHOSTZ, the functions of distance calculation, ungapped extension, and gapped extension were not
in-lined. To obtain a profile for GHOSTZ-GPU, the computation time of memory copy between CPU and GPU was excluded. This is because this process is
hidden by CPU and GPU calculations during asynchronous execution on a CPU and GPU.

doi:10.1371/journal.pone.0157338.1002
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Because the Smith-Waterman algorithm is based on the dynamic programming algorithm and
does not use any heuristics, it returns an optimal local alignment. The performance was esti-
mated in terms of the fraction of the results that corresponded to the correct result. A search
result was considered correct when the subject sequence with the highest score in SSEARCH
was the same as the subject sequence obtained by each tool. We used only 10,000 randomly
selected short DNA reads from SRR407548, SRS011098, and ERR315856 as queries and used
each tool once during this evaluation for comparison with the results of SSEARCH. This is
because the latter requires a lengthy computational time for large query datasets. To evaluate
the software, we executed the RAPSearch program with 2 cases. One involved the default
options, and the other involved command line options “-a T”, which instructed the program to
perform a fast search [we called it RAPSearch (fast)]. We executed the DIAMOND program
with 2 cases. One involved the “-c 1” [we called it DIAMOND (fast)], and the other involved
command line options “-c 1 —sensitive” [we called it DIAMOND (sensitive)]. “-¢” instructed
the program to change the number of chunks for processing the seed index. “-sensitive”
instructed the program to perform a sensitive search.

The results for SRR407548, SRS011098, and ERR315856 are shown in Figs 11, 12 and 13.
These figures indicate that the search sensitivity of GHOSTZ-GPU was almost equal to that of

100% - otetene .
90% - .
80% - .
70% .

g 60% |- -
8 50%} .
O
40% | -
= GHOSTZ
30%
»<—< GHOSTZ-GPU
O=0
0% RAPSerch
=@ RAPSearch (fast)
10%| | ®=@ DIAMOND (sensitive)
00 DIAMOND (fast)
(y | | | | |
(i.Oe—29 1.0e-24 1.0e-19 1.0e-14 1.0e-09 1.0e-04

E-value

Fig 11. Search sensitivity of different search methods. Searches of SRR407548 sequences against the
KEGG GENES database.

doi:10.1371/journal.pone.0157338.g011
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Fig 12. Search sensitivity of different search methods. Searches of SRS011098 sequences against the
GG GENES database.

KE
doi:

10.1371/journal.pone.0157338.9012

GHOSTZ. Because it is difficult to compare many plots involving the results obtained with dif-
ferent parameters, we used single-value search sensitivity, which is calculated as the ratio of
correct queries to all queries whose E-values <1.0 x E~> because the hits that have a high E-
value are unreliable and not used in practice. For instance, Trunbaugh et al. used hits with E
values less than 1.0 x E~°[8], and Kurokawa et al. used hits with E values less than 1.0 x E"3[9].
Table 3 shows search sensitivity for each program. The search sensitivity of GHOSTZ-GPU for
SRR407548 was almost equal to that of GHOSTZ, RAPSearch, and DIAMOND (sensitive) and
higher than that of RAPSearch (fast) and DIAMOND (fast). The search sensitivity values of
GHOSTZ-GPU for SRS011098 and ERR315856 were almost equal to those of GHOSTZ and
RAPSearch and higher than those of RAPSearch (fast), DIAMOND (fast), and DIAMOND
(sensitive).

Moreover, we compared the subject sequences that had the highest score in the results of
GHOSTZ-GPU with those of GHOSTZ. The results of GHOSTZ-GPU were different from
those of GHOSTZ. This difference is caused by the difference in the calculation order for filling
the cells in the DP matrix during gapped extension. However, the difference between them is
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Fig 13. Search sensitivity of different search methods. Searches of ERR315856 sequences against the
KEGG GENES database.

doi:10.1371/journal.pone.0157338.9013

only 2-4 queries. Therefore, we believe that GHOSTZ-GPU has sufficient search sensitivity for
most of metagenomic applications.

Evaluation of Computation Time

To further evaluate GHOSTZ-GPU, we compared its computation time with that of GHOSTZ,
RAPSearch, and DIAMOND. Optimization of loading the database is also effective for

Table 3. Search sensitivity for SRR407548, SRS011098, and ERR315856.

SRR407548 SRS011098 ERR315856
GHOSTZ-GPU 0.86 0.98 0.97
GHOSTZ 0.86 0.98 0.97
RAPSearch 0.89 0.98 0.97
RAPSearch (fast) 0.62 0.93 0.88
DIAMOND (fast) 0.72 0.78 0.90
DIAMOND (sensitive) 0.88 0.79 0.93

The search sensitivity is calculated as the ratio of correct queries with the E-values < 10°.

doi:10.1371/journal.pone.0157338.t003
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Table 4. Averages and standard deviations of computation time for datasets SRR407548, SRS011098, and ERR315856.

GHOSTZ-GPU (1 GPU)
GHOSTZ-GPU (2 GPUs)
GHOSTZ-GPU (3 GPUs)

GHOSTZ (+ loading database thread)
GHOSTZ (original)

RAPSearch

RAPSearch (fast)

DIAMOND (fast)

DIAMOND (sensitive)

We assessed each tool with 12 CPU threads.

doi:10.1371/journal.pone.0157338.t004

SRR407548 (sec.) SRS011098 (sec.) ERR315856 (sec.)
1038.2+47.4 730.8 £35.7 1025.3+42.8
682.4 + 56.6 500.9 +70.7 701.6 + 56.6
551.5+34.4 375.2+10.2 574.8+17.6
4051.6+110.5 2249.8 + 34.1 3533.8 £ 96.0
4231.8+159.7 2178.3+11.0 3560.2 + 52.1
19781.2 + 2349.6 9075.8+101.4 12379.2+192.9
996.4 +13.2 654.8+5.9 993.1 +31.6
479.3+55.2 275.6+74.8 279.0+6.7
2071.7 £4.7 713.6+1.9 931.5+18.0

GHOSTZ; therefore, we applied this optimization to GHOSTZ. We evaluated these tools using
1,000,000 randomly selected short DNA reads from datasets SRR407548, SRS011098, and
ERR315856 and from the KEGG GENES database. These software packages were used with the
same commands that were used to analyze search sensitivity.

The averages and standard deviations of computation time of the tested methods for
SRR407548, SRS011098, and ERR315856 are shown in Table 4. GHOSTZ-GPU with 1 GPU
was approximately 3.0-4.1, 3.1-3.9, 12.1-19.0, and 0.9-2.0 times faster than GHOSTZ (origi-
nal), GHOSTZ (+ loading database thread), RAPSearch, and DIAMOND (sensitive) with 12
CPU threads, respectively. Moreover, GHOSTZ-GPU with 3 GPUs was approximately 5.8-7.7,
6.0-7.4,21.6-35.9, and 1.6-3.8 times faster than GHOSTZ (original), GHOSTZ (+ loading
database thread), RAPSearch, and DIAMOND (sensitive) with 12 CPU threads, respectively.
GHOSTZ-GPU with 3 GPUs was slower than RAPSearch (fast) with 12 CPU threads on
ERR315856 and slower than DIAMOND (fast) with 12 CPU threads on all the data. Neverthe-
less, the sensitivity of RAPSearch (fast) and DIAMOND (fast) was clearly worse than that of
GHOSTZ-GPU. Thus, GHOSTZ-GPU shows the best performance when high sensitivity is
required.

Evaluation of Optimizations for GPU calculations

To further evaluate GHOSTZ-GPU, we evaluated key optimizations: asynchronous execution
on a CPU and GPU, addition of a thread to loading of a database, group memory access, and
load balancing of gapped extension. We performed GHOSTZ with 12 CPU threads and
GHOSTZ-GPU with 12 CPU threads and 3 GPUs. We ran GHOSTZ-GPU with and without
each optimization. We used 1,000,000 randomly selected short DNA reads from SRR407548
against the KEGG GENES database. The acceleration ratios with these optimizations relative to
GHOSTZ without the thread for loading a database are shown in Table 5. Each optimization
was found to accelerate GHOSTZ-GPU. Asynchronous execution on a CPU and GPU and
addition of a thread to the loading of a database yielded the greatest increase in computation
speed. Therefore, these optimizations are important for accelerating a search for protein
sequence homology using a GPU.

Discussion

In this study, we mapped distance calculation, ungapped extension, and gapped extension of
GHOSTZ onto a GPU. GHOSTZ-GPU with 2 GPUs is approximately 6 times faster than
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Table 5. Averages and standard deviations of computation time and acceleration ratio for each optimization of GHOSTZ-GPU.

Computation time (sec.) Acceleration ratio of each optimization Cumulative acceleration ratio
GHOSTZ 4051.6 £ 110.5 1.0+£0.0 1.0+£0.0
+ GPU 993.9+21.5 4.1+0.2 41+0.2
+ Asynchronous execution 705.9 +£38.7 1.4+0.1 5.8+0.4
+ Loading database 655.7+11.9 1.1+£0.1 6.2+0.2
+ Group memory access 618.7 £45.0 1.1£0.1 6.6+0.5
+ Load balancing 551.5+34.4 1.1+0.1 7.4+04

We performed GHOSTZ-GPU with and without

optimizations. The acceleration in processing speed is shown as the ratio of the time used for GHOSTZ-GPU

with an optimization relative to the time used for GHOSTZ-GPU with previous optimization and GHOSTZ.

doi:10.1371/journal.pone.0157338.t005

GHOSTZ with 2 CPU sockets. The accelerated GPU-BLAST and CUDA-BLASTP with 1 GPU
are estimated to be equivalent to twice NCBI-BLAST with a single CPU socket or less [26, 27].
Therefore, GHOSTZ-GPU showed a greater increase in speed than GPU-based BLAST tools.
One of the reasons for acceleration of calculations with GPUs is the use of seed search in
GHOSTZ. BLAST searches consist of 3 main steps: a seed search, ungapped extension, and
gapped extension; the bottleneck in BLAST is the seed search. Therefore, the seed search is
mapped onto a GPU in these tools. On the other hand, a seed search in BLAST requires several
random memory accesses. Random memory access decreases computing speed on a GPU.
Accordingly, this step does not utilize sufficient computing resources of GPUs. A seed search
by means of other tools also requires random memory access. In contrast, in GHOSTZ, a seed
search does not take much computation time, and GHSOTZ is one of the fastest tools for
searches for protein sequence homology. Thus, GHOSTZ-GPU showed a significant increase
in speed. If we run a distance calculation, ungapped extension, and gapped extension in
GHOSTZ on GPUs, the remaining steps become new bottlenecks. For a CPU calculation in
GHOSTZ-GPU, the most time-consuming step is the seed search. Nonetheless, this step over-
laps with distance calculation and ungapped extension on GPUs. Therefore, the true computa-
tion time of the seed search was hidden by that of distance calculation and of ungapped
extension on GPUs. Nevertheless, the file I/O in a database accounts for a greater fraction of
the computing time for GHOSTZ-GPU. Therefore, GHOSTZ-GPU should be executed with a
large amount of queries concurrently to optimize the performance. On the other hand, a
greater amount of memory is required than that for execution of a small number of queries.
When we used 1,000,000 randomly selected short DNA reads from SRR407548 and the KEGG
GENES database, GHOSTZ-GPU required approximately 50 GB of CPU memory for the
homology search proper. Thus, the memory size of current typical computing systems may be
insufficient for GHOSTZ-GPU. For instance, a node in Titan, which is a supercomputer at the
Oak Ridge National Laboratory, has only 32 GB of memory. Therefore, big query data cannot
be analyzed by GHOSTZ-GPU at once on this computing system. On the other hand, com-
puter systems with larger memory, e.g., TSUBAME 2.5, are under development and the mem-
ory size is increasing. Therefore, GHOSTZ-GPU should soon be available in common
computing environments.

GHOSTZ-GPU is developed for homology search of metagenome short reads, but it would
be more valuable if it can be used for general protein sequence homology search. To check the
point, we compared the sensitivity of GHOSTZ-GPU, RAPSearch, DIAMOND to BLASTP
mode of NCBI-BLAST (2.2.28+) using proteins sequences as queries. We employed a method
used in a research by Boratyn et al. [20] to evaluate the performance of remote homologue
detection of sequence homology search tools. We used ASTRAL40 subset (version 2.06) [29] of
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the Structural Classification of Proteins (SCOP) [30] database in this evaluation. S1 Fig shows
the curves denoting the number of true positives vs. the number of false positives for each tool.
The performances of all metagenome homology search tools, GHOSTZ-GPU, RAPSearch and
DIAMOND, are clearly less than that of BLAST in general protein sequence homology search,
while the tools are much faster than BLAST and has enough search sensitivity for metagenome
short reads. The lower search sensitivity of those tools would mainly come from the longer
seed length than BLAST. The results indicate that the search sensitivity of GHOSTZ-GPU is
insufficient for remote homologue detection, and thus the use of GHOSTZ-GPU is limited in
homology search of general protein sequences.

In summary, we developed a GPU version of GHOSTZ, which is the fastest tool for searches
for protein sequence homology. Several calculations, distance calculation, ungapped extension,
and gapped extension, are bottlenecks in GHOSTZ. We mapped these processes onto GPUs and
optimized memory access in the GPU calculation. GHOSTZ-GPU with 12 CPU threads and 1
GPU retains sufficient search sensitivity for practical analyses and is 3.0-4.1 times faster than
GHOSTZ with 12 CPU threads. Moreover, GHOSTZ-GPU with 12 CPU threads and 3 GPUs
maintains sufficient search sensitivity for practical analyses and is 5.8-7.7 times faster than
GHOSTZ with 12 CPU threads. GHOSTZ-GPU on 12 CPU cores and 3 GPUs is estimated to
achieve an 1073- to 2010-fold increase in processing speed relative to BLASTX on 12 CPU cores
because GHOSTZ was estimated to be approximately 185- to 261-fold faster than BLASTX. If
we use GHOSTZ-GPU to analyze the data produced by HiSeq2500 and stored in the KEGG
GENES database and approximately 50-100 nodes on TSUBAME 2.5 in metagenomic analysis,
the required time is estimated to be only 1 day. On the basis of these estimates, we could perform
metagenomic analysis of all data produced by the latest DNA sequencer in real time. At present,
the sequencing technology continues to be improved, and the size of sequence data is on the rise.
GHOSTZ-GPU and computers with GPUs could be a suitable alternative.

Supporting Information

S1 Fig. Number of true positives vs number of false positives for different search methods
on the ASTRAL. The query set was created by sorting the SCOP domains in a lexicographic
order and selecting even numbered sequences without queries that are the sole member of the
superfamily in ASTRAL 40. In the evaluation, self-hits were ignored. If a hit of a search belongs
to the same SCOP superfamily of the query, it was considered as a true positive. And if a hit
belongs to the different SCOP fold of the query, it was considered as a false positive. The
gapped extension of GHOSTZ-GPU was performed on CPU because gapped extension of
GHOSTZ-GPU is designed for short sequence and the size of GPU memory is insufficient for
sequences in ASTRAL 40.

(PDF)
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