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Simple Summary: Glioblastoma is the most common malignant primary brain tumor and has a poor
prognosis with inevitable recurrence or progression. The phenotypes of its progression patterns can
be diverse, which may potentially affect the treatment plan and clinical outcome. Our study aimed to
identify its progression pattern before surgery by using multimodal MRI. The results showed the
different progression phenotypes are clinically important, and by using quantitative MR radiomics,
together with neural network-based imaging analysis, we can predict glioblastoma progression
phenotypes preoperatively.

Abstract: The phenotypes of glioblastoma (GBM) progression after treatment are heterogeneous in
both imaging and clinical prognosis. This study aims to apply radiomics and neural network analysis
to preoperative multimodal MRI data to characterize tumor progression phenotypes. We retrospec-
tively reviewed 41 patients with newly diagnosed cerebral GBM from 2009–2016 who comprised
the machine learning training group, and prospectively included 18 patients from 2017–2018 for
data validation. Preoperative MRI examinations included structural MRI, diffusion tensor imaging,
and perfusion MRI. Tumor progression patterns were categorized as diffuse or localized. A super-
vised machine learning model and neural network-based models (VGG16 and ResNet50) were used
to establish the prediction model of the pattern of progression. The diffuse progression pattern
showed a significantly worse prognosis regarding overall survival (p = 0.032). A total of 153 of the
841 radiomic features were used to classify progression patterns using different machine learning
models with an overall accuracy of 81% (range: 77.5–82.5%, AUC = 0.83–0.89). Further application
of the pretrained ResNet50 and VGG 16 neural network models demonstrated an overall accuracy
of 93.1 and 96.1%. The progression patterns of GBM are an important prognostic factor and can
potentially be predicted by combining multimodal MR radiomics with machine learning.
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1. Introduction

Glioblastoma (GBM) is the most common primary malignant brain tumor in adults [1].
Despite multimodal treatment combining surgery, chemotherapy, and radiation therapy,
GBM will most often progress within 7–9 months after treatment, and its tumor progression
patterns can be diverse [2]. These various types of progression can have different clinical
outcomes; for example, a multifocal progression or ventricular spread showed a worse
overall survival [3]. However, conventional magnetic resonance imaging (MRI) can only
provide limited information that can be used to distinguish different progression patterns
before treatment.

Cancers 2021, 13, 2006. https://doi.org/10.3390/cancers13092006 https://www.mdpi.com/journal/cancers

https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://www.mdpi.com/article/10.3390/cancers13092006?type=check_update&version=1
https://doi.org/10.3390/cancers13092006
https://doi.org/10.3390/cancers13092006
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cancers13092006
https://www.mdpi.com/journal/cancers


Cancers 2021, 13, 2006 2 of 9

Standard MRI sequences for the evaluation of GBM include T2-weighted,
fluid-attenuated inversion recovery (FLAIR), pre-gadolinium T1-weighted, and post-
gadolinium T1-weighted [4]. However, a study showed that in areas of normal con-
ventional T1 and T2 MRI signals, there were still cancer cells (false negative rate = 16% and
4%, respectively) [5]. Moreover, semantic features that have limited measurable aspects,
such as lesion volume and signal intensity, can only provide limited information for analy-
sis. On the other hand, radiomics can be used to convert traditional imaging information
into high-dimensional quantitative “big data” [6], which can be applied in most imaging
modalities, including computed tomography (CT), and MRI. Radiomic analysis can gener-
ate more agnostic features, including first-order, second-order, or other higher dimensional
features. First-order features can be represented by a histogram analysis of the voxels in
the regions of interest (ROIs). Second-order texture analysis, firstly introduced by Haralick
in 1973 [7], can provide information about image homogeneity, contrast, linear structure,
and complexity. Higher order analysis includes filter grid or wavelet analysis of the images.
The application of filters (such as Laplacian of Gaussian bandpass) can extract specific
imaging structures depending on the width of the filter. Other higher order texture analy-
ses, such as model-based and transform-based methods, were also used to maximize the
imaging features [8].

These quantitative imaging features can be used as imaging biomarkers to understand
tumor progression and clinical outcomes. Using random survival forest analysis, MR ra-
diomics has shown a fair prediction accuracy [9]. More sophisticated methods, such as
cancer imaging phenomics, also show promising results for the predicting of progression-
free survival (PFS) and distal recurrence patterns [10]. In addition, combining radiomics
with neural network-based analysis is an emerging technique in imaging analysis and
has been shown to predict the location of GBM progression/recurrence from preoperative
multimodal MRI data with an accuracy of nearly 80% [11].

Therefore, a better understanding of the GBM progression pattern and its impact on
the clinical presentation is needed. This study aims to analyze preoperative multimodal
MRI radiomic data and establish a prediction model for GBM progression patterns by
using machine learning and neural network-based imaging analysis.

2. Materials and Methods
2.1. Patient Inclusion and Exclusion Criteria

This was a combined retrospective and prospective study. Patients included in this
study were organized into two groups. First, we included 41 patients retrospectively from
2010 to 2016 as an initial training group for the prediction model of the tumor progression
pattern. Another 18 patients were recruited prospectively from 2017 to 2019 for the vali-
dation of the model. All patients were identified and discussed at the multidisciplinary
neuro-oncology team meeting. Informed written consent was obtained from all patients.
This project was approved by the Chang Gung Medical Foundation Institutional Review
Board (IRB approval number: 201601862B0) and was conducted according to the World
Medical Association Declaration of Helsinki.

The inclusion criteria included adult patients with a newly diagnosed supratentorial
GBM suitable for maximal safe resection and temozolomide chemoradiotherapy. All pa-
tients underwent complete preoperative and immediate postoperative MRI (within 72 h)
evaluations and had at least two follow-up sessions in which definite tumor progression
was noted. Pseudo progression was carefully reviewed and was not included in our cohort.
The exclusion criteria were having a history of a previous major operation of the brain and
being unable to undergo MRI examination for reasons such as claustrophobia or having
non-MRI compatible implants.

2.2. MRI Acquisition and Imaging Processing

All patients received a standard diagnostic 1.5 or 3T MRI evaluation, including T1-
weighted imaging with contrast enhancement, T1-weighted imaging without contrast,
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T2-weighted imaging, FLAIR, diffusion tensor imaging (DTI), and diffusion-weighted
imaging (DWI) within one week before surgical intervention. All other subsequent MRI
evaluations included nonvolumetric T1-weighted imaging with contrast enhancement,
T2-weighted imaging, FLAIR, and DWI. After surgical resection, an immediate postsurgical
MRI was performed within 72 h. Approximately one month after the operation, in patients
suitable for concurrent chemoradiotherapy (CCRT), an additional MRI was performed for
radiotherapy planning. Follow-up MRI studies were then planned every three months after
treatment, with some modification according to the patients’ condition or clinical needs.

Preprocessing of the MRI data includes brain extraction, DTI analysis, imaging coregis-
tration, and ROI definition. The detailed MR imaging process is shown in Text S1. In short,
DTI images were processed using the FSL [12] function to generate output, including frac-
tional anisotropy (FA), tensor eigenvalues, mean diffusivity (MD), DTI isotropic (DTI-p)
maps, and anisotropic DTI (DTI-q). Apparent diffusion coefficients (ADCs) were generated
directly from the scanner. All MRI data were coregistered to preoperative T1-contrast
enhanced MRI data [13,14].

ROIs were defined by the contrast-enhanced lesions in the preoperative T1 contrast-
enhanced MRI data. These manually selected ROIs were performed using 3D slicer (version
4.8.2, http://www.slicer.org; accessed on 20 December 2017) [15]. The tumor progression
patterns, defined by the T1W contrast enhancement, were categorized according to the
following different definitions:

1. Diffuse versus localized patterns: the diffuse progress pattern is defined as continuous
progression ≥ 2 cm from the primary resection margin;

2. Distal progression is defined as a separate progression 2 cm beyond the margin;
3. Ventricular spread showed the progression of the tumor with contrast enhancement

along the ventricular wall.

2.3. Radiomic Analysis and Machine Learning

The 3D volumetric radiomic features were calculated using 3D slicer. The preoper-
ative T1W contrast-enhanced lesion was manually drawn as input volume to calculate
the radiomic features. Ninety-two radiomic features, including first-order, second-order,
and filtered wavelet analysis, were extracted from 9 different MR sequences. An additional
13 shape features were also used for analysis. Therefore, the total number of features
was 841. Detailed features are listed in Table S1. Feature selections were chosen by using
a t-test for the progression patterns. To establish the prediction model, supervised ma-
chine learning included supporting vector machine (SVM), K-nearest neighbor (KNN),
and decision tree models were used to evaluate the training group. The machine learning
was done by using MATLAB (The MathWorks, Inc., Natick, MA, USA, Version r2019a,
classification learner/Statistics, and machine learning toolbox). The input variables were
841 features from 41 cases, and the output variables were binary which indicated the
diffuse/localized progression pattern. In addition, 20% of the training group was set as
cross-validation. The resultant model from the training group was further applied to the
prospective external validation group to test the prediction accuracy of the model.

2.4. Neural Network Approach for Imaging Phenotype Prediction

A neural network approach was used to predict imaging phenotypes of GBM progres-
sion. A total of 2313 MR images were resliced from preoperative T1W contrast-enhanced
MRI scans into 448 × 448 pixels in the format of a portable network graphic (png) file.
These 2313 images were divided randomly into a training group (1850 slices, 80% of the
total data) and a validation group (463 slices, 20% of the total data). The two pretrained
models ResNet50 and VGG16 (pretrained on ImageNet, http://www.image-net.org/,
accessed on 10 October 2019) were used as base models. Additional layers, including the
global average pooling layer, dense layer (512 neurons, rectified linear unit (ReLU) ac-
tivation), and output layer (2 neurons, sigmoid activation), were added. Results were

http://www.slicer.org
http://www.image-net.org/
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further visualized by using gradient class activation mapping (Grad-CAM) with the Keras
visualization toolkit (https://raghakot.github.io/keras-vis/, accessed on 24 March 2021).

3. Results
3.1. Patient Characteristics

Forty-one patients were included as the initial training group, and another 18 patients
were prospectively included as the external validation group. The general characteristics
are shown in Table 1.

Table 1. General characteristics.

Characteristics Training Validation Group p-Value

Total number of patients 41 18 -
Males/females 33/8 12/6 0.32

Age (years) 57.4 ± 13.4 56.8 ± 11.9 0.87
Pre-OP tumor size (mL) 42.7 ± 24.4 36.19 ± 19.46 0.42

* GTR/STR 26/15 11/7 1.00
PFS (median, days) 182 169.5 0.11
OS (median, days) 463 362.5 * (8 died) 0.68

MGMT unmethylated 1 8 -
methylated 3 2 -

IDH-1 wild type 20 17 0.25
mutated 3 0 -

GTR, gross total resection; STR, subtotal resection; PFS, progression-free survival; OS, overall survival; MGMT, O6 -
methylguanine-DNA methyltransferase; IDH-1, isocitrate dehydrogenase 1. * The OS were calculated from 10 of
the 18 patients in validation group.

Among the 41 training group patients, 33 were male and 8 were female. The mean
age at initial diagnosis was 57.4 ± 13.4 years old. The preoperative tumor size, which was
defined by the contrast-enhanced lesion, was 42.7 ± 24.4 mL. Gross total resection (GTR)
was achieved in 26 out of 41 patients. The median PFS and overall survival (OS) were
182 and 463 days, respectively. Comparable patient characteristics were observed in the
validation group (Table 1). Note that of the 18 individuals in the validation group, only 8
died during the study follow-up.

3.2. The Clinical Impact of the GBM Progression Pattern

The progression patterns were classified as described in 2.2 MRI acquisition and
imaging processing. Twenty-eight out of 41 patients had diffuse progression patterns,
while 13 of them progressed locally. There were 5 distal progression patients; 12 exhibited
ventricular progression, and 29 showed progression in more than 2 vectors from the
resection margin.

The clinical impact of the progression patterns was analyzed in the 41 patients in the
training group and is shown in Table 2. The patients with diffuse progression had a longer
PFS period (median = 189.5 days versus 136 days, p = 0.02) but a shorter OS period (median
= 363 days versus 668 days, p = 0.032). Patients with ventricular progression had a shorter
OS period (median = 354 days versus 180 days, p = 0.05). Distal progression showed a
better OS period (median = 558 days versus 449.5 days, p = 0.01).

https://raghakot.github.io/keras-vis/
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Table 2. The clinical impact of the progression patterns.

Progression Pattern Number Overall Survival (Median, Days) Progression Free Survival (Median, Days)

Diffuse 39 363 p = 0.032 189.5 p = 0.02
Local 20 668 - 136 -

Ventricular spread 22 354 p = 0.05 190 p = 0.12
No ventricular spread 37 180 - 182 -

Uni-direction 20 490 p = 0.66 185 p = 0.98
Multidirection 39 449.5 - 173 -

Distal 10 558 p = 0.01 185 p = 0.19
No distal progression 49 449.5 - 173 -

3.3. Radiomic Analysis and the Prediction Model of GBM Progression

In our study, the diffuse/local progression pattern had the greatest impact on the
clinical outcome. Therefore, 153 of 843 features were selected prior to machine learning by
using a t-test for the prediction of the diffuse progression pattern. All radiomic features
were standardized. These features were used for the supervised machine learning model,
which included logistic regression, SVM, KNN, and decision tree components. The re-
sults are listed in Table 3. The overall accuracy of predicting diffuse/local progression
pattern was 81% (range: 77.5–82.5%, AUC = 0.83–0.89) in different models. In our results,
the logistic regression and the KNN models showed the best prediction accuracy.

Table 3. The outcome of the MR radiomics prediction model in training group.

Train Model Overall Accuracy Sensitivity Specificity AUC

Linear SVM 77.5% 84.6% 64.3% 0.89
Regression 82.5% 85.7% 75% 0.84

KNN 82.5% 85.7% 75% 0.88
Boosted trees 80.0% 82.8% 72.2% 0.83

SVM, supporting vector machine; KNN, K-nearest neighbor; AUC, area under the curve.

For further evaluation, different trained models were used to assess the 18 prospec-
tively included patients as external validation. The best overall accuracy was found
by using the ensemble tree model with an overall accuracy of 72.2%, positive predict
value = 68.8%, and negative predict value = 100%. The results of the external validation are
shown in Table 4.

Table 4. Outcome of the MR radiomics prediction model in the external validation group (n = 18).

Machine Learning Models Results Accuracy

True 1 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 Ground Truth
Logistic regression 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 55.6%

SVM 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 61.1%
Tree 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 72.2%

KNN 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 61.1%

True refers to the true pattern of progression during follow-up; 1: “diffuse” progression pattern; 0: “localized” progression pattern; SVM,
supporting vector machine; KNN, K-nearest neighbor.

3.4. The Neural Network Approach for the Identification of the MR Progression Phenotype

A total of 2313 T1 postcontrast MR images containing lesions were included for train-
ing. The modified pretrained ResNet-50 model showed an overall accuracy of 93.1%.
The sensitivity was 94.4%, and the specificity was 89.9% (Figure 1A). The modified pre-
trained VGG16 model for classification of the progression pattern had 95.8% overall accu-
racy, 96.9% sensitivity, and 94.2% specificity (Figure 1B). The VGG16 model classification
results are shown in Figure 2.
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4. Discussion

In this study, we established a prediction model for the classification of the tumor
progression phenotype from preoperative MRI data using a quantitative radiomics machine
learning model and convolutional neural network imaging analysis; moreover, we showed
the capability of this technique to identify tumors that may progress diffusely.

The progression pattern of GBM has been studied widely. In 1983, Burger et al. [16]
focused on the imaging and pathology presentation of GBM and found that most of the
tumor progression occurred in the surgical resection margin. An earlier study of 12 cases
also showed that 1/3 of patients had distal progression during the follow-up period [17].
To date, similar results can be seen in other studies: 88% of GBMs can progress near the
primary location, known as local progression, and approximately 12% of the tumors can
have distal progression [18]. Doner et al. [19], in 2013, classified the tumor progression
pattern in GBM patients who received surgical resection plus Gliadel wafer into local,
diffuse, multifocal, and distal types. In our study, 28 (68.3%) out of 41 patients in the
training group and 11 (61.1%) out of 18 individuals in the validation group had a diffuse
progression pattern during the follow-up period.

Different patterns of GBM progression have also been shown to be associated with
clinical outcomes. In our results, both PFS and OS were significantly different between the
diffuse and local progression patterns. PFS was better in the diffuse progression group,
and OS was worse in the diffuse progression group. These findings were compatible with
previous studies [20]. In Sheriff’s study, the authors found that the time to progression
was shorter with a local progression pattern than with a contralateral distal progression
pattern (median = 8 months versus 15 months) [21]. Bonis et al. [18] showed that PFS was
shorter in patients with local progression than in those with distal progression (9 months
versus 21 months, p = 0.05). In addition, our results showed a better prognosis in the distal
progression group, which is similar to previous studies [20]. Many studies focus on the
tumor subventricular zone, demonstrating a worse prognosis in those with ventricular
involvement [22]. However, we found patients with ventricular involvement had a longer
PFS. However, the mechanism for an extended PFS period remains unclear and is beyond
the scope of this study.

Since the diffuse progression pattern showed the most clinical impact, we aimed
to predict this progression model using radiomics and tested it using various machine
learning models. Our results showed a fair prediction accuracy of 82.5% in the train-
ing group and a 72.2% accuracy (tree model) in the validation group. A recent study
by Kazenrooni et al. [10] using the Cancer and Phenomics Toolkit (CaPTk) with the
SVM model also showed modest prediction accuracy on distal recurrence patterns (AUC
0.56–0.88). Two of the main issues in machine learning are acquiring an adequate sample
size for training and having enough qualitative input features. Our radiomics results pro-
vided a reasonable sample size of the features for the training model. Although our sample
size was limited, a total of 842 features coded in every ROI still provided a reasonable
training size that could be used to train the model.

In contrast to radiomic analysis, the convolutional neural network is an emerging
technique for imaging analysis. By using the pretrained neural network, our study achieved
93.1–96.6% accuracy in the classification of the tumor progression phenotype. Furthermore,
by using the visualization Grad-CAM, we were able to show the visualization result of
the neural network; however, further study is needed to obtain more substantiated deep
learning results. The neural network has been studied as a surrogate for various biomarkers.
Chang et al. [23] classified IDH-1 mutation, 1p/19q codeletion, and MGMT promoter
methylation status in malignant glioma using a convolutional neural network with overall
accuracies of 94%, 92%, and 83%, respectively. Li et al. [24] achieved an accuracy of 94.4%
when identifying an IDH-1 mutation status in low-grade glioma. Other studies have also
utilized deep learning algorithms for tumor response assessment [25,26].

There are several limitations in this study. First, the sample size (both training and
validation group) was relatively small for the classic machine learning, which may decrease
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the reliability of the machine learning result. Therefore, we used 2D sliced images in our
neural network model for a larger sample size (n = 2313). Second, we were not able to
consider the timing of the MRI scan in this study; therefore, there was the potential for a
temporal sampling error. GBM progression may change over time, and we defined the
progression pattern by using the first true progression image compared to the reference
image. This approach may have underestimated the progression in the local progress group
in our training cohort. Lastly, only 14 (23.7%) patients had the methylation status of the
MGMT promoter.

5. Conclusions

In conclusion, the progression patterns of GBM are an important prognostic factor,
especially the diffuse progression phenotype. Radiomics analysis from multimodal MRI
can provide a substantial amount of quantitative imaging biomarkers for imaging analysis.
Further application of the machine learning model and deep learning neural network can
potentially predict the tumor progression pattern from preoperative MRI data.
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