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Abstract
Introduction: Integrating additional factors into the International Federation of 
Gynecology and Obstetrics (FIGO) staging system is needed for accurate patient clas-
sification and survival prediction. In this study, we tested machine learning as a novel 
tool for incorporating additional prognostic parameters into the conventional FIGO 
staging system for stratifying patients with epithelial ovarian carcinomas and evaluat-
ing their survival.
Material and methods: Cancer-specific survival data for epithelial ovarian carcino-
mas were extracted from the Surveillance, Epidemiology, and End Results (SEER) 
program. Two datasets were constructed based upon the year of diagnosis. Dataset 
1 (39  514 cases) was limited to primary tumor (T), regional lymph nodes (N) and 
distant metastasis (M). Dataset 2 (25 291 cases) included additional parameters of 
age at diagnosis (A) and histologic type and grade (H). The Ensemble Algorithm for 
Clustering Cancer Data (EACCD) was applied to generate prognostic groups with 
depiction in dendrograms. C-indices provided dendrogram cutoffs and comparisons 
of prediction accuracy.
Results: Dataset 1 was stratified into nine epithelial ovarian carcinoma prognostic 
groups, contrasting with 10 groups from FIGO methodology. The EACCD group-
ing had a slightly higher accuracy in survival prediction than FIGO staging (C-
index = 0.7391 vs 0.7371, increase in C-index = 0.0020, 95% confidence interval [CI] 
0.0012–0.0027, p = 1.8 × 10−7). Nevertheless, there remained a strong inter-system 
association between EACCD and FIGO (rank correlation = 0.9480, p = 6.1 × 10−15). 
Analysis of Dataset 2 demonstrated that A and H could be smoothly integrated with 
the T, N and M criteria. Survival data were stratified into nine prognostic groups 
with an even higher prediction accuracy (C-index = 0.7605) than when using only T, 
N and M.
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1  |  INTRODUC TION

Epithelial ovarian carcinomas (EOC) are clinically defined by ana-
tomic locations, growth patterns and histologic or cytologic 
characteristics.1-3 Their pathogenesis reflects complex interac-
tions of hereditary, environmental, iatrogenic, physiological and 
anatomical factors as well as genetic mutations or epigenetics.4-10 
Molecular, genetic or proteomic analyses have begun to define 
molecular signatures in relation to classical morphologic and clini-
cal features.5,6,8,11-13 As increased numbers of EOC are subjected to 
more sophisticated analyses, tissue or circulating biomarkers may be 
expected to personalize clinical delineation, treatment planning and 
prognostication.5,10-14 At present, prognosis of EOC relies heavily 
upon analyses of primary tumor (T), regional lymph node (N) and dis-
tant metastasis (M) systems in addition to microscopic features.15,16 
Three limitations are well recognized: (1) absence of an age param-
eter which may reflect a changing endocrine background relevant to 
the pathobiology of many EOC;1,7,17 (2) failure to include histologic 
grade which aligns with both age-incidence patterns and outcomes 
of the numerically predominant serous types of EOC;11,17-19 and (3) 
inability to generalize the prognostic impact of advances in molecu-
lar genetics or proteomics relevant to EOC.10,13,14,20

In principle, a more accurate prognostic system for EOC should 
be able to integrate new biological findings into the protocol of 
International Federation of Gynaecology and Obstetrics (FIGO) 
while maintaining both well-defined patient stratification and high 
accuracy of survival prediction. The objective of this study is to test 
a multifactorial expansion of the FIGO staging system for EOC using 
machine learning. This is based upon our prior experience with the 
application of machine learning to this type of optimization prob-
lem21-25 and involves the addition of age at diagnosis, and histopatho-
logic subtype as parameters. A previously used version of Ensemble 
Algorithm for Clustering Cancer Data (EACCD)24 was applied.

2  |  MATERIAL AND METHODS

2.1  |  Data source and cause-specific death 
classification

Disease-specific survival data with a primary diagnosis of inva-
sive ovarian cancer during 2000- 2012 were obtained from 18 

databases of the Surveillance, Epidemiology, and End Results 
Program (SEER) of the National Cancer Institute.26 This restriction 
on year of diagnosis ensured a minimum 5-year follow-up, since 
current release of SEER includes case reports up to the end of CY 
2017. SEER cause-specific death classification variable27 was used 
to capture all deaths related to ovarian cancer. Survival time was 
measured in months.

2.2  |  Defining factors

This study investigated five factors: T, N, M, age (A) and histo-
logic type and grade (H). Due to a SEER change in cancer staging 
from “Extent of Disease” before 2004 to a “Collaborative Stage” 
scheme after 2004, minor alterations in the SEER definitions for T, 
N and M levels were adjusted. For EOC diagnosed in 2000–2003, 
T, N and M were based on the 3rd Edition of the American Joint 
Committee on Cancer (AJCC) TNM.28 For EOC diagnosed between 
2004 and 2012, the T, N and M variables were defined according 
to the Derived AJCC-6  T, N, M variables.28 To match the defini-
tions of levels defined in the latest FIGO system,16 this study used 
eight levels for T (T1a, T1b, T1c, T2a, T2b, T3a, T3b, and T3c), two 
levels for N (N0 and N1) and two levels for M (M0 and M1). We did 
not use sublevels for M1 as their classification requires informa-
tion that is not available in the SEER database. Table S1 lists the 
definition of levels of T, N and M. Factor A (Table S1) was divided 
into two levels: A0 (<65) and A1 (≥65), based on the median age of 
EOC diagnoses.29,30

Histologic types of ovarian cancer specified in the SEER Program 
Coding are designated by the WHO International Classification of 
Diseases for Oncology, 3rd edition31, and the relevant morphologic 
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criteria for diagnosis have been amply described.1,3,18,32,33 
Microscopic patterns of EOC recognized in SEER include serous 
cystadenocarcinoma (ICD-O-3, code 8441), papillary serous cys-
tadenocarcinoma (code 8460) and serous surface papillary carci-
noma (code 8461). While these serous EOC are recognized as a 
distinct histotype,1,9,11 they were subdivided by grade18,31 on the 
basis of many earlier reports indicating a significant survival im-
pact.1,3,17-19 We accordingly distinguished five histologic EOC types 
for analyses: Hls, Hhs, Hm, Hcc and He. Definitions are provided in  
Table S1.

The diagnostic grades transcribed in SEER are in accordance 
with AJCC and FIGO guidelines:34 G1, well differentiated; G2, mod-
erately differentiated; G3, poorly differentiated; G4, undifferenti-
ated. For the present study, we tested each grade individually or in 
collapsed sets of low grade (G1) and high grade (G2, G3, G4). This 
“two-tiered” division followed expert recommendations for diagnos-
tic practice.3,7,18

2.3  |  Data management

Two datasets were analyzed. Dataset 1 contained 39  514 cases 
which had been staged for extent of tumor as defined above using 
T, N and M criteria. (The staging of ovarian cancer recorded in SEER 
is in accordance with standards developed by FIGO or equivalent 
standards of AJCC.34,35) Dataset 2 was derived from Dataset 1 by 
treating age (A) and histologic type and grade (H) as additional fac-
tors. Dataset 2 contained 25 291 cases.

We first made sure that a primary diagnosis of invasive ovar-
ian cancer was made during 2000-2012. We then excluded cases 
with a missing or unknown value for any of the following variables: 
survival time, SEER cause-specific death classification variable,27 T, 
N and M. Further selection of cases was made in terms of combi-
nations of factors. A combination of prognostic factors is a subset 
of the data that corresponds to one level of each selected factor. 
A combination describes certain characteristics of its patients. For 
example, T1, N0, M0 produce a combination (denoted by T1N0M0) 
which represents a subset of patients whose primary tumor is 
T1, regional lymph nodes N0, and distant metastasis M0. As in 
T1N0 M0, we use the notations of levels of factors to denote com-
binations in this report.

Because of the statistical techniques employed, we required 
that each combination contain a sufficient number of patients to 
optimize robustness of the statistical techniques. We retained only 
those combinations in T, N and M that had a minimum of 25 cases. 
The resulting Dataset 1 contained 29 combinations of T, N and M 
(39 514 cases; Table 1). (The median follow-up time of patients in 
Dataset 1 is 116 months.) We excluded from Dataset 1, any patient 
with missing or unknown levels on A or H. We then formed com-
binations in terms of T, N, M, A and H and kept only combinations 
each containing at least 25 patients. The final dataset is Dataset 2, 
which contained 25 291 cases (Table 1) in 106 combinations of T, 

N, M, A and H. (The median follow-up time of patients in Dataset 
2 was 117  months.) The details of data processing are shown in 
Figure 1.

2.4  |  Ensemble algorithm for clustering cancer data 
(EACCD)

The EACCD is a machine-learning algorithm designed to partition sur-
vival data.21-25,36-42 It consists of three main steps: (1) defining initial 
dissimilarities between survival functions of any two combinations; 
(2) obtaining learned dissimilarities using initial dissimilarities and an 
ensemble learning process; and (3) applying hierarchical clustering 
analysis to cluster combinations by the learned dissimilarities and a 
linkage method. The output of the EACCD is a tree-structured den-
drogram, which represents the relation among survival of patients in 
different combinations. There are several approaches for each step. 
With the minimax linkage replacing the complete linkage,41 the ver-
sion of EACCD described in the article by Yang et al24 was used in 
this paper.

TA B L E  1  Clinical and demographic characteristics of Dataset 1 
(n = 39 514) and Dataset 2 (n = 25 291)

Dataset 1 Dataset 2

n % n %

Primary tumor

T1a 9248 23.4 5825 23.0

T1b 770 1.9 447 1.8

T1c 5682 14.4 3742 14.8

T2a 1684 4.3 947 3.7

T2b 2478 6.3 1422 5.6

T3a 1412 3.6 755 3.0

T3b 2331 5.9 1397 5.5

T3c 15 909 40.3 10 756 42.5

Regional Lymph Nodes

N0 31 737 80.3 20 487 81.0

N1 7777 19.7 4804 19.0

Distant Metastasis

M0 34 701 87.8 22 927 90.7

M1 4813 12.2 2364 9.3

Age

A0 16 972 67.1

A1 8319 32.9

Histologic Type and Grade

Hcc 2535 10.0

He 5457 21.6

Hhs 14 031 55.5

Hls 603 2.4

Hm 2665 10.5



1514  |    GRIMLEY et al.

2.5  |  Prognostic systems

The dendrogram, obtained from the EACCD, can be cut horizontally 
to generate individual prognostic groups that serve the same role 
as staging groups in the FIGO. We cut the dendrogram according to 
the C-index,43 which estimates the probability that a subject who 
died at an earlier time had a shorter predicted survival time than 
did a subject who died at a later time. A model with a high C-index 
is preferred, since such a model is expected to have a high accuracy 
in survival prediction. Moreover, a model with a high C-index can 
be complex and inconvenient to use. Examples include models con-
taining many groups that may not be handled efficiently in practice 
or having overlapping survival curves that may make it difficult to 
explain. To resolve the tradeoff between model simplicity and pre-
diction accuracy, we chose the number of groups (n*) such that (1) n* 
was as small as possible, (2) its corresponding C-index was as large 
as possible and (3) the resultant survival curves were well separated 
without overlapping.

Often an appropriate number n* can be found by examining the 
C-index curve (the C-index vs the number of prognostic groups). 
The C-index curve, in general, has a “knee” point. The curve in-
creases on the left side of the knee point and levels off on the 
right side of the knee point. The number n* can be chosen around 
the knee point, which balances both simplicity and accuracy of the 
system.

Survival curves using the Kaplan-Meier estimates44 were plot-
ted to evaluate visually survival differences among the prognos-
tic groups. The final prognostic system includes the dendrogram, 
group assignment, C-index and survival curves for the prognostic 
groups.

2.6  |  Ethical approval

No ethical approval was required for this study, since the data used 
are publicly available and de-identified.

3  |  RESULTS

3.1  |  EACCD prognostic system for T, N, M

Applying the EACCD to Dataset 1 yielded the dendrogram in 
Figure 2A. The C-index curve is shown in Figure 2B and was used to 
find n*. The knee point of the curve corresponds to nine groups and 
a C-index value of 0.7391. Cutting the dendrogram into nine groups 
(in rectangles) is shown in Figure 2C and the survival curves of these 
nine groups are plotted in Figure 2D. The survival curves are com-
pletely separated and do not overlap. Therefore, n* = 9, based on T, N 
and M. For convenience, the definition for all nine groups is restated 
in the 4th column of Table S2.

The dendrogram in Figure 2C, the groups in Table S2 (4th col-
umn) and the survival curves in Figure 2D define a single prognostic 
system for ovarian carcinomas that incorporates T, N and M. This 
system contains nine groups: groups 1-9, whose risk increases as the 
group number increases.

For comparison, the FIGO staging system divides Dataset 1 into 
10 stages (Figure  3 and the 5th column of Table  S2). Calculation 
shows that the staging system has a C-index of 0.7371, which is 
close to but slightly lower than the C-index 0.7391 from the above 
EACCD prognostic system (increase in C-index = 0.0020, 95% confi-
dence interval [CI] 0.0012–0.0027, p = 1.8 × 10−7).45 Therefore, with 

F I G U R E  1  Flow diagram for selecting 
patients with ovarian cancer. SEER, 
Surveillance, Epidemiology, and End 
Results program; T, primary tumor; 
N, regional lymph nodes; M, distant 
metastasis; A, age at diagnosis; H, 
histologic type and grade
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the involvement of T, N and M alone, FIGO and EACCD have a similar 
accuracy in survival prediction.

3.2  |  EACCD prognostic system for T, N, M, A, H

Before building the prognostic system for T, N, M, A and H on 
the basis of Dataset 2, we assessed the performance in survival 

prediction of the models for the following three sets of factors: {T, 
N, M, A}, {T, N, M, H} and {T, N, M, A, H}, as compared with the 
model based on {T, N, M}. Figure 4A plots C-index curves, based on 
Dataset 2, for all these four scenarios. Since the curves on {T, N, M, 
A} and {T, N, M, H} are higher than the curve on {T, N, M} (for more 
than two groups), adding A or H to {T, N, M} increases the C-index 
and thus improves the prediction accuracy. The curve of {T, N, M, A, 
H} is the highest among all four curves, implying that adding both A 
and H to {T, N, M} leads to the biggest improvement on the predic-
tion accuracy of {T, N, M}.

Exploring around the knee point of the red curve on {T, N, M, A, 
H} in Figure 4A reveals n* = 9. Figure 4B shows the dendrogram and 
its cutting (shown in rectangles) according to n* = 9 groups. A detailed 
definition for all nine groups is listed in Table S3. Figure 4C shows the 
survival curves for the nine prognostic groups. The dendrogram in 
Figure 4B, the groups in Table S3 and the survival curves of the groups 
in Figure 4C define an EACCD prognostic system for T, N, M, A and H.

4  |  DISCUSSION

As stated in the TNM classification,46 “There are many bases or axes 
of tumor classification, for example, the anatomical site, and the 
clinical and pathological extent of disease,..., the age of the patient, 
and the histological type and grade of the tumor. All of these have an 

F I G U R E  2  Ensemble Algorithm for Clustering Cancer Data (EACCD) prognostic groups on the basis of Dataset 1 involving T, N and M. (A) 
Dendrogram from running EACCD. Given beneath each combination is the 5-year cancer-specific survival rate in percentage. (B) C-index curve 
based on the dendrogram in panel (A). (C) Cutting the dendrogram in panel (A) according to n* = 9 suggested in panel (B) creates nine prognostic 
groups, shown in rectangles. Listed on the bottom of the dendrogram are group numbers. (D) Ovarian cancer-specific survival of nine prognostic 
groups in panel (C). The 5-year cancer specific survival rates are listed on the right 

F I G U R E  3  Cancer-specific survival of FIGO stages defined in 
the 5th column in Table S2. The 5-year cancer-specific survival 
rates for the 10 stages are listed on the right Tables  
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influence on the outcome of the disease. Classification by anatomi-
cal extent of disease is the one with which the TNM system primarily 
deals.” This paper describes an effort to refine the FIGO system by 
integration of additional prognostic factors as exemplified by age at 
diagnosis and histopathologic subtype. The EACCD approach, as in-
troduced in this paper, takes into account both prediction and strati-
fication and is analogous to the FIGO scheme in generating stages.

Creating systems to stage cancer patients can be regarded as 
one type of unsupervised learning. Except for EACCD, however, 
the literature does not show any other machine-learning algorithm 
that has been applied to create the staging systems for ovarian can-
cer. Moreover, statistics-based nomograms47,48 have the potential 
to address the issue of staging. The drawback is that nomograms 
are good for survival prediction but are not as effective at patient 

stratification, in the sense that the resulting stages or groups tend to 
have a lower C-index than the original Cox model.

The EACCD prognostic system using {T, N, M} based on Dataset 
1 can be compared with the FIGO staging system in terms of both 
stratification and prediction. We indicated earlier that the two sys-
tems had a similar accuracy in survival prediction (C-index 0.7391 
for EACCD, C-index 0.7371 for FIGO). Below we compare the two 
systems by examining how they stratify patients in Dataset 1.

In fact, there is a strong inter-system association between FIGO 
staging and EACCD grouping. Table  2 presents the distribution 
of patients of each of 10 FIGO stages over the nine groups of the 
EACCD system on {T, N, M}. The upper right and lower left corners 
of the table are filled with 0. In general, the higher the stage group 
the patient has been assigned to by the FIGO system, the higher the 

F I G U R E  4  Ensemble Algorithm for Clustering Cancer Data (EACCD) prognostic groups on the basis of Dataset 2 involving T, N, M, A 
and H. (A) C-index curves for {T, N, M}, {T, N, M, A}, {T, N, M, H} and {T, N, M, A, H}. (B) Dendrogram and its cutting (shown in rectangles) 
according to n* = 9 suggested by the C-index curve for {T, N, M, A, H} in panel (A). Given beneath each combination is the 5-year cancer-
specific survival rate in percentage. Listed on the bottom are the group numbers. (C) Ovarian cancer-specific survival of nine prognostic 
groups in panel (B). The 5-year cancer-specific survival rates are listed on the right 

TA B L E  2  Contingency table between Ensemble Algorithm for Clustering Cancer Data (EACCD) grouping and International Federation of 
Gynecology and Obstetrics (FIGO) staging on the basis of T, N, M

FIGO\EACCD 1 2 3 4 5 6 7 8 9 Total

IA 8886 0 0 0 0 0 0 0 0 8886

IB 708 0 0 0 0 0 0 0 0 708

IC 0 5185 0 0 0 0 0 0 0 5185

IIA 0 0 1290 0 0 0 0 0 0 1290

IIB 0 0 1931 0 0 0 0 0 0 1931

IIIA1 0 62 570 244 312 0 0 0 0 1188

IIIA2 0 0 0 1034 146 0 0 0 0 1180

IIIB 0 0 0 0 1917 0 0 0 0 1917

IIIC 0 0 0 0 0 4237 8179 0 0 12 416

IV 0 0 0 0 0 0 0 2265 2548 4813

Total 9594 5247 3791 1278 2375 4237 8179 2265 2548 39 514
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risk group the patient is assigned to by the EACCD, and vice versa. 
In fact, the assignment to ordered stages and the assignment to or-
dered prognostic groups have a large Spearman's rank correlation 
coefficient of 0.9480 with a p value of 6.1 × 10−15. In summary, in 
predicting survival, the EACCD prognostic system and FIGO staging 
system using {T, N, M} have a comparable performance. In stratify-
ing patients, the two systems were strongly positively associated. 
Therefore, the EACCD prognostic system presents an insightful val-
idation of the FIGO staging system.

We can divide prognostic groups from the EACCD prognostic 
system into the low-risk category (group 1–4) and high-risk cate-
gory (group 5–9) to inspect the effect of each individual factor's 
levels. Figure 5 summarizes the distribution of patients associated 
with a given discriminant factor level for the low-risk and high-risk 
categories. The 1st panel of Figure 5 shows that T1a/b/c and T2a/b 
are (almost) exclusively distributed in low-risk categories. The dis-
tribution of patients with T3a/b in the low- and high-risk catego-
ries is about the same. Patients with T3c are almost exclusively 
distributed in the high-risk category. Therefore, the risk varies in 
the order T1a/b/c ≈ T2a/b < T3a/b < T3c. The 2nd, 3rd and 4th 

panels show approximately that patients with N0 or M0 or A0 sta-
tus tend to fall into groups with more favorable survival, whereas 
those with N1 or M1 or A1 fall into groups with worse survival. 
Pathologic grade of EOC is conventionally based upon growth pat-
tern, cytology or nuclear features. The EACCD approach permitted 
the impact of each histopathologic parameter to be isolated and in-
dividually evaluated, as shown in the 5th panel. It is seen that a vast 
majority of patients with Hm, He, Hls and Hcc are distributed in the 
low-risk category, whereas a vast majority of patients with Hhs are 
distributed in the high-risk category. Therefore, Hm, He, Hls and 
Hcc are more favorable than Hhs in terms of survival. This find-
ing is in accordance with the current clinicopathologic paradigm 
of ovarian cancer classification.3,6 In particular, it supports previ-
ous findings in Seidman et al,3 Grimley et al17 and Malpica et al.18 
showing that, in general, low-grade serous carcinoma has better 
outcome than high-grade serous carcinoma. In summary, patients 
with any of the following levels tend to be considered low-risk: T1a, 
T1b, T1c, T2a, T2b, Hm, He, Hls and Hcc, and those with any of the 
following levels tend to be considered high risk: T3c, N1, M1 and 
Hhs. Patients with any of the following levels fall into the boundary 

F I G U R E  5  Distributions of patients 
over risk categories. In each panel, one 
factor is concerned, and for each level of 
the factor, the distribution of patients in 
low- and high-risk groups is presented in 
two ways: plot on the left and tabulation 
on the right 
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between the two categories: T3a, T3b, N0, M0, A0 and A1. Though 
these observations are known in the literature, it is the first time 
that these factor levels have been integrated together and spelled 
out explicitly in ordered risk categories of the prognostic system 
TNMAH created in this paper.

Cancer-specific survival data were used in this study. Although 
the SEER cause-specific death classification is determined by tak-
ing into account other elements (eg tumor sequence, site of the 
original cancer diagnosis, and comorbidities), death certificate er-
rors can be problematic when estimating cause-specific survival. 
Another limitation is that the EACCD requires a relatively large 
amount of data. This requirement ensures the robust estimates of 
survivals and robust estimates of the Gehan test statistic-based 
effect sizes that were used in this study.24 In addition, about half 
of patients were removed in this study due to TX/NX/MX, which 
resulted in a huge reduction of the available data. A potentially 
better way to deal with TX/NX/MX might be by using all the data 
to generate prognostic systems that involve TX, NX and MX. This 
report includes combinations with at least 25 cases. This may ex-
clude some “rare” but interesting combinations. Improved esti-
mates of survival can be achieved with a larger cutoff. The impact 
of this requirement on the size of combinations will be minimized 
as more data become available. Finally, due to the current restric-
tion of SEER data, we created our EACCD systems in light of levels 
of T, N, M that adapt to the previous versions of the AJCC sys-
tem. The definitions of these levels have been slightly changed in 
the new FIGO system. As a result, we could not use the sublevels 
of M1, since the relevant information is not available in the SEER 
database.

5  |  CONCLUSION

We demonstrated that the EACCD prognostic system on T, N and 
M using the SEER ovarian carcinoma data, classifies patients in the 
way strongly positively correlated with the FIGO staging system and 
has a prediction accuracy in survival similar to FIGO. This provides 
a vigorous validation of the FIGO staging system. Using SEER, we 
created one computational prognostic system based on T, N, M, A 
and H, which expanded (with additional factors) and improved (with 
increased prediction accuracy) the FIGO staging system of ovarian 
cancers. Factors of age and histology were selected due to their 
established roles in the determination of EOC outcome.3,4,7,29,30 
Studies29,49,50 have shown disparities by race in characteristics and 
outcomes among ovarian cancer patients. Therefore, it would be 
advantageous to integrate the factor race into any staging system 
by EACCD. With sufficient case data, other variables/factors, such 
as gene signatures, proteome or treatment effects, could be readily 
integrated by the EACCD to generate prognostic systems for refine-
ments in patient stratification and patient outcome prediction that 
are needed for patient care, such as monitoring of large-scale thera-
peutic trials.
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