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ABSTRACT
Proteins are the most abundant component of the cell nucleus, where they perform a plethora of
functions, including the assembly of long DNA molecules into condensed chromatin, DNA
replication and repair, regulation of gene expression, synthesis of RNA molecules and their
modification. Proteins are important components of nuclear bodies and are involved in the
maintenance of the nuclear architecture, transport across the nuclear envelope and cell division.
Given their importance, the current poor knowledge of plant nuclear proteins and their dynamics
during the cell’s life and division is striking. Several factors hamper the analysis of the plant nuclear
proteome, but the most critical seems to be the contamination of nuclei by cytosolic material
during their isolation. With the availability of an efficient protocol for the purification of plant nuclei,
based on flow cytometric sorting, contamination by cytoplasmic remnants can be minimized.
Moreover, flow cytometry allows the separation of nuclei in different stages of the cell cycle (G1, S,
and G2). This strategy has led to the identification of large number of nuclear proteins from barley
(Hordeum vulgare), thus triggering the creation of a dedicated database called UNcleProt,
http://barley.gambrinus.ueb.cas.cz/.
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Introduction

The nucleus is a key feature of eukaryotic cells and is
characterized by the high complexity and dynamic
organization of its components. Inside the nucleus,
the nuclear genome is organized both in a hierarchical
manner and within discrete territories. In addition to
DNA, the cell nucleus contains nuclear bodies and
specialized sub-nuclear compartments (for a review
see refs.1,2). Nuclear compartmentalization reflects the
spatial arrangement of the genome and the DNA-
related processes that occur in this organelle. Next to
DNA and RNA, the most abundant class of molecules
present in the nucleus are nuclear proteins.3 They play
a major role in DNA assembly and its packing in the
small space of the nuclear volume. The complex net-
work of nuclear proteins performs diverse functions
that are essential for maintaining dynamically

changing genome organization and regulating of gene
expression. Proteins also form the main building
blocks of nuclear membrane pores,4 constitute lamina
or lamina-like structures that modulate the size and
shape of the nucleus,5 play an important role in chro-
matin organization and gene expression, and connect
the nuclear lamina to the cytoskeleton, which is neces-
sary for both nuclear positioning and migration.6

Though proteins represent an abundant and indis-
pensable part of the nucleus, knowledge of the plant
nuclear proteome remains limited. For that reason,
scientists associated with the International Plant
Nucleus Consortium7 have, since its establishment,
been focusing on the detailed characterization of spe-
cific nuclear proteins and overall nuclear protein com-
position to obtain more information about the
complex nuclear machinery.
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The first list of identified plant nuclear proteins was
published in 2003 in connection with the sequenced
genome of Arabidopsis thaliana.8,9 Since then, the
nuclear proteomes from different types of tissues have
been studied in several species (for a review, see ref.2),
including Arabidopsis,10-12 rice,13-19 hot pepper,20

chickpea,21-24 barrel clover,25 maize,26-27 black-stick
lily,28,29 soybean30 and, just recently, wheat.31,32 The
main aim of these studies was the analysis of nuclear
proteome changes in response to abiotic and biotic
stresses.

Petrovsk�a et al.33 used a new approach to purify the
cell nuclei of barley (Hordeum vulgare) and identified
803 proteins in G1-phase nuclei. In a subsequent
study, the team analyzed proteins from S- and G2-
phase nuclei, which led to a dramatic increase in the
total number of identified nuclear proteins of barley
(U�rinovsk�a et al., unpublished data). To organize this
large amount of data, a database system of barley
nuclear proteins became necessary.

Here, we report on the creation of a barley (H. vul-
gare L., cv. Morex) nuclear protein database (UNcle-
Prot, http://barley.gambrinus.ueb.cas.cz/) that
provides information about the barley nuclear pro-
teins that have been identified to date. The acronym
UNcleProt is based on a truncated anagram “uncle”
from the term “nuclear.” Besides containing the ana-
gram, the term UNcleProt has a self-explanatory fea-
ture: U stands for “Universal“ (3 phases of the cell
cycle are covered), “Ncle” for “Nuclear” and “Prot” for
proteins. UNcleProt is available freely. In addition to
survey sequences,34 a reference barley genome with
fully assembled and annotated chromosomes is being
completed, and the barley nuclear proteome database
will be its perfect complement. Together, the 2 resour-
ces will represent one of the most complete data
source on the barley nuclear proteome.

Results

The UNcleProt database includes 6 main pages:
Home, Browse, Query, Blast, Download and Remarks,
which are accessible via the navigation bar. The Home
page provides information on the database with a
short summary and 2 pictures: a Venn diagram show-
ing the number of proteins identified thus far in each
phase of the cell cycle (Fig. 1), the number of peptides
detected, and a graph showing the most abundant
gene ontology (GO) terms, available with Uniprot

protein annotations, for each cell cycle phase (Fig. 2).
A link to the first related article from our laboratory
by Petrovsk�a et al.33 is also provided. The Browse page
contains a table with all proteins identified in the
nuclei from different phases of the cell cycle (G1, S
and G2) and shows their accession numbers and
names, provides information on the cell cycle phase
during which the proteins occur and finally presents a
link to access the respective Protein and Peptide Infor-
mation page for each selected protein (described
below). The Query page (Fig. 3A) allows the user to
search the database for accession numbers or key-
words, and the result is displayed as a table similar to
the one generated by the Browse page (Fig. 3B). The
Blast page makes it possible to run a BLAST search35

using the blastp or blastx programs against each iden-
tified protein sequence. The Download page allows
the set of proteins identified for each cell cycle phase
to be retrieved either separately or all together. Finally,
the Remarks page provides technical information on
the mass spectrometry results.

In addition to the primary page layout, the Pro-
tein and Peptide Information page provides
detailed information on the identified proteins
(Fig. 4). The data are presented in 2 tables: the first
summarizes information available from the UniProt
database, such as the ID number with a hyperlink,
protein name, sequence length, keywords, database

Figure 1. A Venn diagram showing the number of barley nuclear
proteins identified in 3 different phases of cell cycle (unique and
shared identifications).
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cross-references such as GO and protein domain IDs,
and then a sequence coverage value based on the
identification by mass spectrometry (MS) and the
whole amino acid sequence, in which the coverage by
sequenced peptides is highlighted in red. Information
on the availability of a known 3D structure is accessi-
ble through links to the appropriate databases: the
Database of Comparative Protein Structure Models
(ModBase36) and the Database of Protein Disorder
and Mobility Annotations (MobiDB, created by Bio-
computingUP Lab, University of Padua, Italy). How-
ever, because a majority of the barley amino acid
sequences have not yet been used for structure
modeling, a model calculation in the ModBase usu-
ally takes approximately 2 d.

Most of the identified barley nuclear proteins are
annotated as uncharacterized or predicted [62%
(1505) and 24% (594), respectively] in the UniProt.
For such proteins, a table row called GenBank might
contain the 10 best hits obtained from the GenBank
nucleotide database (nt). At the end of the table, a
summary of the MS results with the corresponding
Mascot score and the number of peptides detected for
each cell cycle phase is presented. Importantly, a vast
majority of uncharacterized or predicted proteins
could be annotated by looking for orthologous
sequences using blastp35 or conserved domain37

searches and this information will gradually be added
and will appear in new releases of the database. Only
less than 5 % of the total number of proteins identified

Figure 2. Distribution of the 10 most abundant GO terms in all 3 categories: biological process, molecular function and cellular compo-
nent. GO terms were extracted from Uniprot annotations. The results are shown separately for each of the cell cycle phases.
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in each cell cycle phase have not yet been provided
with at least such an annotation.

To validate the subcellular localization of the
unknown, predicted or uncharacterized proteins
identified by MS, 2 subcellular and one subnuclear
localization programs have been used. These pre-
dictions are shown in the first table (“Protein
Information”). Based on the accuracy of 6 subcellu-
lar localization programs tested by Xiong et al.,38

we chose Plant-mPLoc (http://www.csbio.sjtu.edu.
cn/bioinf/plant-multi/39 and CELLO (http://cello.life.
nctu.edu.tw/40). Plant-mPLoc employs sequence-
based predictions (amino acid composition, functional
domains, sequential evolution features, GO terms).
CELLO relies on feature search methods employing
amino acid composition, dipeptide composition,

portioned amino acid composition and the physico-
chemical properties of amino acids. The prediction
accuracy for all identified barley nuclear proteins was
monitored using the subnuclear web server Nuc-Ploc
(http://www.csbio.sjtu.edu.cn/bioinf/Nuc-PLoc/41).
This tool specifically predicts nuclear localization with
an accuracy of nearly 100 %.38

The second table (“Peptide Information”) contains
data on all identified peptides related to a given protein,
such as the cell cycle phase of the source nuclei, mass
spectrometer used, sequence, measured mass/charge
ratio, measured mass and charge, deviation calculated
for the experimental and theoretical mass, retention
time (min) in the liquid chromatographic separation of
the respective digest, precursor ion intensity, peptide
score given by Mascot search engine, position in the

Figure 3. Query search and result pages: (A) a screenshot of the Query page, where searching is possible by either accession number or
keyword; (B) a screenshot of the Query page with a table containing database search results.
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Figure 4. Protein and Peptide Information page. This page presents information related to a particular protein, including the corre-
sponding MS data and amino acid sequences of the identified peptides.
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amino acid sequence, number of missed cleavage
(MCV) sites and chemical modifications, i.e., if there is
a modified amino acid present compared to a reference
sequence.

Discussion

The UNcleProt database described here is built on the
protein identification results that we have achieved
since introducing the flow cytometric sorting method
for barley nuclear proteomics.33 This approach results
in low contamination by cytosolic compounds, allows
the purification of nuclei from different phases of the
cell cycle and is applicable even to mitotic chromo-
somes.42,43 Barley is a suitable model for studying the
nuclear proteomes of crops because it is a diploid self-
pollinating species with a range of genetic and geno-
mic resources available. Moreover, protocols for
genetic transformation44 and a range of both mutant
lines and TILLING populations45 are available to facil-
itate functional analyses. Barley’s large genome (1C =
5,428 Mbp46) is reflected by its large nuclei and the
high yield of proteins obtained from flow-sorted
nuclei. Numerous and notable results have recently
been obtained, including a draft genome sequence of
barley.47,48 Finally, the reference genome sequence to
be published in 2016 (N. Stein, personal communica-
tion) will provide a perfect match to the barley nuclear
protein database.

This barley nuclear proteome database (UNcleProt)
contains 2,429 proteins identified via both MALDI-
MS (matrix assisted laser desorption ionization – mass
spectrometry) and ESI-MS (electrospray ionization –
mass spectrometry) from G1, S and G2 cell cycle phase
nuclei (Fig. 1) (U�rinovsk�a et al., unpublished results).
To complete this protein set, a total of 34,675 peptides
have been identified and assigned to the corresponding
protein sequences. To date, none of the existing
nuclear databases such as the yeast nuclear database,49

vertebrate nuclear database (http://npd.hgu.mrc.ac.uk/
user/50,51), rice nuclear database (http://gene64.dna.
affrc.go.jp/RPD/main.html16), or TAIR (www.arabi-
dopsis.org) incorporate the deposition of nuclear pro-
teins identified in different stages of the cell cycle.
Both protein level or localization changes and the
related regulatory aspects across the cell cycle are of a
big interest due to their connection with fundamental
processes of cell biology (such as cell division and
signal transduction) and the pathology of diseases.

To our best knowledge, cell cycle phase-related altera-
tions in plant nuclear proteomes have not yet been
explored in detail. For human cells, differential prote-
omics studies covering the cell cycle dependence of
nuclear proteins are typically targeted on a specific
subgroup or process.52,53 The dynamic proteomics
approach involving fluorescent tagging and micros-
copy demonstrated cell-cycle dependence in concen-
tration levels for 8 of the analyzed 124 nuclear
proteins from a human lung cancer cell library.54 In a
large scale comparative experiment with G1-, G2- and
S-phase nuclei, which provided the largest portion of
protein identifications archived in the UNcleProt
database, 266 nuclear proteins in total were found
enriched at least 2-fold in different cell cycle phases
based on a semiquantitative spectral counting
approach. For this group of proteins, Fig. 5 summa-
rizes GO terms describing associated biological pro-
cesses and shows a distribution of the observed cell
cycle phase-dependent changes. Many of the available
annotations for the identified barley nuclear proteins
lack any functional information in current versions of
protein sequence databases. Of the whole set, 1/4 are
only predicted proteins, and almost 2/3 are still
uncharacterized. Nevertheless, numerous uncharacter-
ized/predicted proteins could be annotated by blastp
search, conserved domain search or associated with
GO terms to tentatively describe the molecular func-
tion, biological process and cellular component. Not
surprisingly, most of the barley nuclear proteins have
DNA- or nucleic acid-binding functions and are
involved in DNA-related processes. A high proportion
of multiple cellular localizations was predicted by the
programs CELLO and Plant-mPLoc. Nuc-PLoc sug-
gested frequent nucleolar localization among the iden-
tified proteins (Fig. 6). These predictions, however,
must be considered with caution and will require
experimental evidence.

The UNcleProt database will be extended in the
future by including tandem mass spectra (MS/MS
spectra) for all sequenced peptides with their fragmen-
tation patterns. Such a spectral library is expected to
become useful as a reference for protein/peptide iden-
tification in other laboratories. The database is
intended as an open system and will be continuously
updated by adding newly discovered barley nuclear
proteins. Links to all relevant publications and
research output concerning the barley nuclear prote-
ome will also be added.
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Figure 6. Predicted subcellular localization. The subcellular localization of nuclear proteins identified in 3 phases of the cell cycle as pre-
dicted by CELLO, Plant-mPLoc and Nuc-PLoc.

Figure 5. Extracted GO terms related to biological functions for proteins enriched in particular phases of the cell cycle. The radius of
each circle denotes the total count belonging to the respective term and the pie chart inside shows its distribution across the cell cycle.
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Materials and methods

The 6-rowed diploidmalting cultivar of barley (Hordeum
vulgare L.) cv Morex was used as an experimental plant
material. All steps for the separation of barley nuclei and
subsequent proteomic analyses were performed accord-
ing to Petrovsk�a et al.33 Briefly, approx. 3 cm-long roots
of barley were fixed in formaldehyde at 5�C for 10 min
and washed twice in the Tris buffer. Root tips were
homogenized in 1ml of LB01-P lysis buffer (15mMTris,
2 mM Na2EDTA, 0.5 mM EGTA, 80 mM KCl, 20 mM
NaCl, 0.1% v/v Triton X-100, 0.2 mM spermine, 0.5 mM
spermidine, 14mM2-mercaptoethanol). Crude homoge-
nate was filtered through a 20-mm nylon mesh, stained
with 2 mg/ml 40,6-diamidino-2-phenylindole (DAPI)
and subjected to flow cytometric sorting (FACSAria
SORP, BD Biosciences, San Jose, Calif., USA). Nuclei at
various phases of cell cycle (G1, S, G2) were sorted into
tubes containing 1 ml of LB01-P buffer supplemented
with 100mMPMSF and pelleted (300 g, 4�C, 30min).

Crude protein was extracted from the pelleted nuclei
(5 million) together with a DNA digestion by DNase I
in the treatment buffer.33 The sample was centrifuged
(25,000 g, 15 min) and proteins present in the superna-
tant were recovered by adding 4 volumes of cold acetone
(¡20�C) with incubation at¡20�C for at least 24 h. The
acetone precipitate was collected by centrifugation
(25,000 g, 15 min) and finally dissolved in 50 ml of
Laemmli’s sample buffer containing 2-mercaptoethanol,
sonicated for 10 min and heated at 100�C for 10 min.
The pellet obtained after the DNase I digestion was dis-
solved directly in Laemmli’s buffer at 100�C.33

Nuclear proteins were separated by SDS-PAGE in
4% stacking and 10% resolving gels and in-gel digested
by a modified thermostable trypsin. The obtained pep-
tides were purified and analyzed by liquid chromatog-
raphy coupled with tandem mass spectrometry.33

RawMS andMS/MS data were processed by the soft-
ware supplied with the instruments.33 Database
searches were performed using Mascot Server 2.4
search engine (Matrix Science, London, UK) against a
custom-made barley protein sequence database
(105,041 sequences) downloaded from the UniProt
depository and supplemented with sequences of com-
mon contaminants and reversed sequences of the barley
proteins for the determination of false discovery rate
(FDR). The identified protein sequences were queried
against Arabidopsis thaliana, Oryza sativa and Zea
mays subsets of the UniProtKB/Swiss-Prot database

using the BLASTP algorithm (http://blast.ncbi.nlm.nih.
gov/Blast.cgi)35 with BLOSUM62 matrix and follow-
ing required thresholds: E-value of 1E-10; sequence
identity of 70 %. For all assigned orthologs, protein
names were downloaded from the UniProtKB/Swiss-
Prot database. Domain searches were performed
against CDD database55 utilizing CD search tool in a
batch mode (http://www.ncbi.nlm.nih.gov/Structure/
cdd/wrpsb.cgi). GO Retriever application provided by
the AgBase database56 was employed to predict GO
terms for the respective identified proteins.

UNcleProt database is built on a MySQL v.5.5.46
(http://www.mysql.com) database, and the web inter-
face uses PHP v.5.4.45 (http://www.php.net), which
makes the database easy to navigate. UNcleProt is
hosted on a Debian 7 server with 16 CPUs and 94 Gb
(gigabit) of memory, located in the Institute of Experi-
mental Botany, Centre of the Region Han�a for Bio-
technological and Agricultural Research, Olomouc.
The database size is currently approximately 230 Mo
(mega octet) and is expected to grow as new experi-
mental data are added, with new database releases
appearing accordingly. The input data to be processed
and included are usually tab-delimited text files and
any addition to the database can be possible by con-
tacting the administrator (N. Blavet). Data download-
ing is easy, as described in the Results section.

The UNcleProt database is freely available at http://
barley.gambrinus.ueb.cas.cz/. The website uses cookies
to maintain information during the sessions and is
compatible with all up-to-date major web browsers
(tested on Firefox 46, Internet Explorer 11, Safari 5.34,
Opera 37, Chrome 51).

Conclusions

UNcleProt is the first dedicated database containing
plant nuclear proteins identified in nuclei during dif-
ferent stages of the cell cycle. This dataset will contrib-
ute to the understanding of plant nuclear proteins and
their functions. It may become an important resource
for plant cell biologists and contribute to the effort to
understand the nuclear architecture and its relation-
ship to genome function. Among other advantages for
researchers, the database will facilitate the functional
analyses of yet uncharacterized nuclear proteins.
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