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Abstract
Objective ‒ This study aims to identify superenhancer
(SE)–transcriptional factor (TF) regulatory network related
to eight common malignant tumors based on ChIP-seq
data modified by histone H3K27ac in the enhancer region
of the SRA database.
Methods ‒ H3K27ac ChIP-seq data of eight common
malignant tumor samples were downloaded from the
SRA database and subjected to comparison with the
human reference genome hg19. TFs regulated by SEs
were screened with HOMER software. Core regulatory cir-
cuitry (CRC) in malignant tumor samples was defined
through CRCmapper software and validated by RNA-seq
data in TCGA. The findings were substantiated in bladder
cancer cell experiments.
Results ‒ Different malignant tumors could be distin-
guished through the H3K27ac signal. After SE identifi-
cation in eight common malignant tumor samples, 35
SE-regulated genes were defined as malignant tumor-
specific. SE-regulated specific TFs effectively distinguished
the types of malignant tumors. Finally, we obtained 60
CRC TFs, and SMAD3 exhibited a strong H3K27ac signal
in eight commonmalignant tumor samples. In vitro experi-
mental data verified the presence of a SE–TF regulatory
network in bladder cancer, and SE–TF regulatory network
enhanced the malignant phenotype of bladder cancer
cells.
Conclusion ‒ The SE–TF regulatory network with SMAD3
as the core TF may participate in the carcinogenesis of
malignant tumors.

Keywords: malignant tumors, super enhancers, transcrip-
tion factors, ChIP-seq, RNA-seq, core regulatory circuitry,
superenhancer–transcription factor regulatory network

1 Introduction

The superenhancer (SE) regulates gene expression and is
characterized by high-density epigenetic modifications
associated with transcription factors (TFs), and cofactors
[1]. The abnormal gene transcription mediated by SEs is
essential for maintaining the characteristics of tumor
cells [2]. Tumor cells significantly promote the expression
of various oncogenes by assembling SE, thereby enhan-
cing their proliferation, invasion, and metastasis [3].
Therefore, the identification and analysis of core SEs
and TFs in malignant tumors are of great value in tumor
research [4].

Mechanisms of abnormal SE formation in malignant
tumors have been demonstrated to exhibit a profound influ-
ence onbothmolecular pathogenesis and clinicalmanagement
[5]. The transcriptional element, for example, bromodo-
main-containing protein 4 (BRD4) and cyclin-dependent
kinase 7 (CDK7), has been reportedly the treatment target
due to tumor-specific SEs [6]. Myeloid cell leukemia-1 gene
(MCL1) and B-cell leukemia/lymphoma-xl (BCL-xl) are cell
apoptosis regulators and express aberrantly in cancer,
which plays an important role in chemoresistance [7]. By
chromatin immunoprecipitation and sequencing (ChIP-seq)
processing, Oldridge et al. found changed polymorphism
within one SE element of LIM domain only 1 (LMO1) sig-
nificantly affected neuroblastoma susceptibility by different
binding of gamma-aminobutyrate (GATA) TF or regulation
of LMO1 expression, which resulted in oncogenic depen-
dency of neuroblastoma [8]. Lysine (K)-specific methyl-
transferase 2D (KMT2D) deficiency was reported to impair
SEs to form glycolytic vulnerability in lung cancer, promote
tumorigenesis in mice and upregulate protumorigenic pro-
gression, including glycolysis [9]. Oncogenic homeobox B8
(HOXB8) was driven by MYC-regulated SEs and enhanced
colorectal cancer invasiveness through BTB and CNC
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homology 1 (BACH1) [10]. Increased expression of PPP1R15A
and CDK7 is positively associated with undesirable clinical
prognosis in anaplastic thyroid carcinoma. CDK7 and
PPP1R15A are considered potential biomarkers and thera-
peutic targets for anaplastic thyroid carcinoma [11].

Although increasing reports have shown some SEs
and TFs are correlated with malignancy, the common
and specific SEs and TFs in various tumors, as well as
complex regulatory networks, have largely been
unknown. Furthermore, a majority of studies are only
involved in one type of malignant tumor. Histone H3
Lys27 acetylation (H3K27ac) CHIP-seq and RNA-seq are
recently hot tools for studying DNA, RNA, and protein
[12,13]. Our study aims to identify and analyze core SEs
and TFs in various malignant tumors such as liver cancer,
lung cancer, and breast cancer based on H3K27ac ChIP-seq
data in the sequence read archive (SRA) database as well
as RNA-seq data in The Tumor Genome Atlas (TCGA)
database.

2 Materials and methods

2.1 Data acquisition

The SRA database (https://www.ncbi.nlm.nih.gov/sra) is
a database used to store the original data of second-gen-
eration sequencing. The ChIP-seq data of the differential
histone modification regions of eight common malignant
tumor samples were all from the SRA database. The TCGA
project is a joint project initiated by the National Cancer
Institute (NCI) and the National Human Genome Research
Institute (NHGRI) in 2006, which included 39 types of
malignant tumors investigated from the very first glioblas-
toma multiforme to the present, involving 29 types of
malignant tumor organs, and more than 10,000 tumor
samples. The RNA-seq data used in the analysis were all
from the TCGA database.

Informed consent: Informed consent was not applicable
for this study.

Ethical approval: Ethics committee approval was not
applicable for this study.

2.2 Data preprocessing

Sample sequencing volume and quality were first evaluated
and the Cutadapt software (https://cutadapt.readthedocs.
io/en/stable/) was adopted to remove the joint and low-

quality bases, followed by data quality control using the
FastQC software (https://www.bioinformatics.babraham.
ac.uk/projects/fastqc/). Clean reads were aligned to the
human reference genome hg19 using the Bowtie2 software
(ftp://igenome:G3nom3s4u@ussd-ftp.illumina.com/
Homo_sapiens/UCSC/hg19/Homo_sapiens_UCSC_hg19.
tar.gz). Unique alignment data were extracted from the
obtained SAM files. The BAM files were deduplicated,
and the data of the same cell line were merged and sorted
using the Samtools [14]. With the input data as control,
MACS2 software (https://pypi.org/project/MACS2/) [15]
was applied to retrieve the significant H3K27ac peaks
(p < 1 × 10−9 was considered significant). Significant
H3K27ac peaks with a distance longer than 2.5 kb from
the TSS sites were extracted as the enhancer. The obtained
enhancers were extended upstream and downstream by
5 kb from the middle point of the corresponding peaks.
Next, the enhancer sequence was segmented into 100 bp
bin reads and aligned with the BED files converted from
the BAM files generated before. The average number of
peaks aligned to all the corresponding bins of an enhancer
was regarded as the H3K27ac signal of the enhancer. bam-
Coverage in the deepTools [16] was applied to convert the
processed BAM file of each sample into a corresponding
Bigwig file, and the Integrated Genomics Viewer (IGV)was
uploaded for visualization.

2.3 Histone H3K27ac modification analysis

The human reference genome hg19 was divided into
small fragments with a length of 2 kb, and the number
of reads of each sample mapped to each small fragment
was calculated and normalized by the sequencing depth
of the sample. The normalized H3K27ac signal files of the
small fragments were then integrated into a matrix file
according to tumor type and the correlation was calcu-
lated by an R algorithm.

2.4 Prediction of SEs in eight common
malignant tumor samples

The SEs and TEs in all samples were calculated using the
ROSE algorithm [6,17] combined with the significant
H3K27ac peak found by MACS2. The SEs found in different
cell lines of the same malignant tumor were merged
through the merge module of Bedtools software [18], and
then the frequency of occurrence of each merged SE in
different cell lines was calculated. In each malignant
tumor, the SEs appearing in at least two cell lines were
selected for subsequent analysis.
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2.5 Differential expression analysis of SEs
and TEs

The SEs that appeared in at least two cell lines were
annotated with HOMER software [19]. Subsequently, the
SE-regulated target genes in eachmalignant tumor sample
were extracted for functional enrichment analysis with
DAVID software [20,21]. These genes were merged using
the merge module of the Bedtools software, and the fre-
quency of all SEs presented in eight common malignant
tumors was calculated. The number of different SE-regu-
lated target genes in eight common malignant tumor sam-
ples was counted and the conservative SE-regulated target
gene and the malignant tumor-specific SE-regulated target
gene were defined in sequence. Afterward, a malignant
tumor conservative SE-regulated target gene and a malig-
nant tumor-specific SE-regulated target genewere selected
and displayed (H3K27ac signal) using IGV. Finally, expres-
sion profile data in the TCGA database was used for
verification.

2.6 Identification of conservative and
malignant tumor-specific TFs

Single significant H3K27ac peaks included in the SEs that
appeared more than twice in eight common malignant
tumors were first extracted. The nucleosome-free regions
(NFRs) were then extracted from the bed file converted
from the sorted BAM file with HOMER. The single signifi-
cant H3K27ac peaks were overlapped with the extracted
NFRs to identify the NFRs located on the SEs, and the
results were saved as NFR bed files. The bed files were
used as input to find the TFs regulated by SEs in corre-
sponding malignant tumor samples with HOMER, and the
p-value and motif graphs of the corresponding TFs were
generated. The frequency of occurrence of TFs binding to
SEs in eight common malignant tumor samples was
counted, and conservative and malignant tumor-specific
TFs were defined according to the significance of all the
TFs in each malignant tumor sample (the significance
was indicated by the p-value). The expression of all TFs
in each malignant tumor sample was calculated through
the expression profile in TCGA (the average value of
FPKM in all samples obtained) for verification of the con-
servative and malignant tumor-specific TFs. Finally, a con-
servative TF gene and a malignant tumor-specific TF were
selected and their expression in each malignant tumor
sample was calculated and shown by the Beeswarm package
(https://github.com/aroneklund/beeswarm).

2.7 Screening of the SE–TE regulatory
network in eight common malignant
tumors

Core regulatory circuitry (CRC), namely the SE–TE regu-
latory network, mainly refers to the regulatory loop com-
posed of SEs and core TFs in cells [22]. Generally, the
expression of a core TF gene was not only regulated by
the corresponding SEs but also regulated by binding
of the SEs with the TF itself. CRCmapper software [22]
was applied to define the core TF regulatory circuits in
each malignant tumor sample. The TFs with the highest
score in the SE–TF regulatory network in each malignant
tumor sample were counted and collated according to
the frequency of their appearance in each malignant
tumor sample. For further validation, the expression of
all TF coding genes was displayed according to the tumor
expression profile data in the TCGA database, and then a
CRC TF that appeared several times in malignant tumor
core TFs, as well as a specific TF that only appeared in
one specific malignant tumor sample, was selected to
separately display the H3K27ac signal of the SEs near
the two loci by IGV.

2.8 Cell culture and transfection

Human gastric malignant tumor cell line MKN45, human
renal malignant tumor cell line 786-M1A, human esopha-
geal squamous cell line KYSE140, human colorectal
malignant tumor cell line HCT116, human bladder malig-
nant tumor cell line T24, and human breast malignant
tumor cell line 76NF2V, small cell lung malignant tumor
cell line COR-L311, and human liver malignant tumor
cell line HepG2 were purchased from American Type
Culture Collection (ATCC; Manassas, VA, USA). MKN45,
786-M1A, T24, and COR-L311 cells were cultured with
the RPMI-1640 medium (Gibco BRL, Grand Island, NY,
USA) containing 10% fetal bovine serum (FBS; Gibco),
10 μg/mL streptomycin, and 100 U/mL penicillin, while
HCT116, 76NF2V, and HepG2 cells were cultured in
Dulbecco’s modified Eagle’s medium (DMEM; Sigma-
Aldrich Chemical Company, St Louis, MO, USA) containing
10% FBS (Gibco), 10 μg/mL streptomycin, and 100 U/mL
penicillin. KYSE140 cells were cultured with minimum
essential medium (MEM) supplemented with 10% FBS
(Gibco), 10 μg/mL streptomycin, and 100 U/mL penicillin.
The aforementioned cells were incubated in a 5% CO2

incubator (Thermo Fisher Scientific Inc., Waltham, MA,
USA) at 37°C.
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T24 cells in the logarithmic phase were trypsinized,
seeded into a 6-well plate at a density of 1 × 105 cells per
well, and cultured for 24 h. Upon reaching about 75% con-
fluence, the cells were transfected using the Lipofectamine
2000 reagent (Invitrogen Inc., Carlsbad, CA, USA) with
short hairpin RNA plasmids targeting NC (sh-NC),
SMAD3 (sh-SMAD3), ETS1 (sh-ETS1), and HOXB2 (sh-
HOXB2), and overexpression plasmids of NC (pcDNA3.1),
SMAD3 (pcDNA3.1-SMAD3), ETS1 (pcDNA3.1-ETS1), and
HOXB2 (pcDNA3.1-HOXB2), as well as sh-NC + pcDNA3.1,
sh-SMAD3 + pcDNA3.1, sh-SMAD3 + pcDNA3.1-ETS1,
sh-SMAD3 + pcDNA3.1-HOXB2, and sh-SMAD3 + pcDNA3.1-
ETS1 + pcDNA3.1-HOXB2 plasmids. After 48h of transfection,
subsequent experiments were carried out, and each experi-
ment was repeated 3 times. The concentration of plasmids
used was 50 ng/mL. shRNA or overexpression plasmids
were provided by Shanghai GenePharma Co., Ltd (Shanghai,
China).

2.9 Chromatin immunoprecipitation (ChIP)

ChIP kit (Thermo Fisher Scientific) was used for this
experiment. The treated cells were fixed with 1% formal-
dehyde and sonicated to trigger DNA strand breaks. The
complex was immunoprecipitated by incubation with
rabbit antibodies against IgG (1:100, ab6757, Abcam
Inc., Cambridge, UK), H3K27ac (1:50, ab4727, Abcam),
SMAD3 (1:50, ab208182, Abcam), ETS1 (1:50, ab124282,
Abcam), and HOXB2 (1:50, ab220390, Abcam). Next, the
complex was filtered from the DNA fragments through
protein G–Sepharose beads. Cross-linking of the DNA
complex was relieved and DNA strands were purified.
Reverse transcription-quantitative polymerase chain reac-
tion (RT-qPCR) was performed to quantify ChIP products.
The primer sequences are shown in Table S1.

2.10 RNA isolation and quantitation

Total RNA was extracted from cells using the TRIzol
reagent (16096020, Thermo Fisher Scientific). For mRNA
analysis, the extracted RNA was reversely transcribed
into cDNA using a reverse transcription kit (RR047A,
Takara, Tokyo, Japan). RT-qPCR was conducted using
an SYBR® Premix Ex TaqTM II kit (DRR081, Takara) on
an ABI 7500 instrument (Applied Biosystems, Foster City,
CA, USA), with three repeated wells for each sample.
GAPDH served as the internal reference, and the fold

changes were calculated using the method of 2−ΔΔCt.
The primer sequences are shown in Table S2.

2.11 Western blot analysis

Total protein was extracted from cells with the radio-immu-
noprecipitation assay (RIPA) lysis buffer (C0481, Sigma-Aldrich)
containing 1% protease inhibitor and 1% phosphorylase
inhibitor (Shanghai Beyotime Biotechnology Co., Ltd.,
Shanghai, China). The protein concentration was then deter-
mined with a bicinchoninic acid kit (23227, Thermo Fisher
Scientific). The protein was quantified in 5× loading buffer
(P0015, Beyotime), separated by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis, and transferred onto a
polyvinylidene fluoride membrane (Millipore, Billerica, MA,
USA). Next, the membrane was treated with 5% bovine
serum albumin (BSA) at room temperature for 1 h and incu-
bated overnight at 4°Cwith primary rabbit antibodies against
SMAD3 (1:1,000, ab208182, Abcam), ETS1 (1:2,000, ab124282,
Abcam), HOXB2 (1:5,000, ab220390, Abcam), and β-actin
(1:5,000, ab8227, Abcam). The following day, the membrane
was incubated with horseradish peroxidase-labeled sec-
ondary antibody goat anti-rabbit IgG (1: 20,000, ab205718,
Abcam) at room temperature for 1.5 h. Afterward, the mem-
brane was developed using the developing solution
(NCI4106, Pierce, Rockford, IL, USA), after which the pro-
tein bands were quantified by ImageJ 1.48 u software (Bio-
Rad, Inc., Hercules, CA, USA). The ratio of the gray value
of the target band to that of β-actin was representative of
the relative protein expression.

2.12 Transwell assay

Transwell chambers (8 μm pore size; Corning Incorporated,
Corning, NY, USA) in 24-well plates were used for in vitro
cell migration and invasion detection. In brief, 600 μL of
20% FBS-containing RPMI-1640 medium was preadded to
the 8 μmpore-size Matrigel-coated Transwell chambers and
the Matrigel-free Transwell chambers and equilibrated at
37°C for 1 h. T24 cells transfected for 48 h were resuspended
in RPMI-1640 medium containing 10% FBS, and 100 μL of
the cell suspension containing 1 × 109 cells/L was added to
the upper chamber, and cultured at 37°C with 5% CO2 for
24 h. The Transwell chamber was removed and the cells in
the inner layer of the Transwell chamber were wiped with
a cotton swab. After washing with PBS, cells were fixed 4%
methanol, and stained with 0.1% crystal violet before
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counting; theywere photographed under an invertedmicro-
scope (Olympus IX73, Olympus Optical Co., Ltd, Tokyo,
Japan) in five randomly selected fields of view, with three
replicates for each specimen. The differences between the
groups were analyzed and the histogram of migration and
invasion was plotted.

2.13 Cell count kit-8 (CCK-8) assay

T24 cell proliferation was evaluated using a CCK-8 kit
(K1018, Apexbio, USA). Cells (1 × 104 cells per well,
100 μL/well) were plated in a 96-well plate, and 10 μL
of CCK-8 solution was added at each time point (0, 24,
48, 72, and 96 h) to incubate the cells at 37°C for 2 h. Next,
the optical density (OD) value was measured at 450 nm
with a microplate reader, and the obtained data were
displayed in curve graphs.

2.14 Statistical analysis

All data were analyzed using SPSS 21.0 statistical soft-
ware (IBM Corp. Armonk, NY, USA). The measurement
data were described as mean ± standard deviation. Data
obeying normal distribution and homogeneity of variance
between two groups were compared by unpaired t-test.
Differences among multiple groups were statistically ana-
lyzed using one-way analysis of variance (ANOVA) or
repeated measures ANOVA, followed by Tukey’s post hoc
tests with corrections for multiple comparisons. A value of
p < 0.05 was statistically significant.

3 Results

3.1 Data information of cell lines in eight
common malignant tumor samples in the
SRA database

ChIP-seq data of differential histone modification regions
in eight common malignant tumor cell lines were down-
loaded from the SRA database. All cell lines did not
receive special treatment, and the data of different cell
lines for each malignant tumor were merged and 71 types
of cell lines were obtained. The data information of eight
common malignant tumor cell lines in the SRA database
is shown in Table S3.

3.2 Difference in the H3K27ac signal
intensity in the enhancer region of eight
common malignant tumor cell lines

Analysis of the histone H3K27ac modification changes in
the enhancer region of each malignant tumor cell line by
the MACS2 software indicated a large number of signifi-
cant peaks in each malignant tumor cell line (Figure 1a).
In addition, the Python script results showed the pre-
sence of a large number of enhancers in each malignant
tumor cell line, which was consistent with the significant
H3K27ac peak trend (Figure 1b). To ensure that the pre-
diction of the enhancers was accurate, we selected a
malignant tumor cell line for each malignant tumor (gas-
tric malignant tumor: MKN45; renal malignant tumor:
786-M1A; esophageal squamous cell carcinoma: KYSE140;
colorectal malignant tumor: HCT116; bladder malignant
tumor: T24; breast malignant tumor: 76NF2V; small cell
lung malignant tumor: COR-L311; hepatocellular carci-
noma: HepG2) and displayed the H3K27ac signals in the
predicted enhancer regions. A strong signal peak of
H3K27ac was observed in the middle of the enhancer in
eachmalignant tumor sample (Figure 1c). Furthermore, we
displayed the H3K27ac signals on the neutrophil cytosolic
factor 2 (NCF2) gene locus by IGV in the eight selected
malignant tumor cell lines, as representative; and we
found that H3K27ac signals were highly enriched in the
enhancer regions (Figure 1d).

3.3 The type of H3K27ac modification signal
is different for each malignant tumor

Correlation analysis of H3K27ac signals among malignant
tumor samples revealed the H3K27ac signals of the same
type of malignant tumor cell lines could be clustered
together, while the H3K27ac signals of different types of
malignant tumor cell lines failed to be clustered. This
finding indicated that the H3K27ac modification signal
type of each malignant tumor was different and different
malignant tumors could be thus distinguished by the
H3K27ac signal type (Figure 2).

3.4 Screening of the number of SEs in eight
common malignant tumor samples

SEs are a large cluster of transcriptionally active enhan-
cers that drive the expression of genes that control cell
identity [23]. To identify the SEs in all the eight common
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malignant tumors, we applied a method consisting of
three steps. The first step was to determine the active
enhancer sites, which are described in Figure 1. The
next step was to stitch the enhancers we obtained by their
distribution and distance between each other. Within the
genome range, if the distance between two enhancer
annotations were within 12.5 kb, then they were merged
into a single entity called the stitched enhancer. Finally,
the threshold between the SEs and the TEs was deter-
mined. We sorted the stitched enhancers and the remaining
single enhancers according to the intensity of the H3K27ac
signal level (from low to high) and drafted a graph of the
ranking result. On this graph of H3K27ac signal density vs
density ranking, we identified the tangent point by a tan-
gent line with a slope of 1, which was considered as
the threshold. That is, the points with higher density
(to the right and above the tangent point) were SEs, while
the rest were TEs (Figure 3a). The significant H3K27ac peak

found by the ROSE algorithm combined with the screening
results of MACS2 software was used to calculate the SEs
and TEs in all samples. The SEs found in different cell
lines of the same type of malignant tumor were merged
using the merge module of Bedtools software, and the
SEs that appeared in at least 2 cell lines in the eight
common malignant tumor samples were calculated. The
results indicated that eight common malignant tumor
samples had a large number of SEs, and colorectal malig-
nant tumor samples had the largest number (2500) (Figure 3b).
To further confirm that our prediction of SEs was correct,
we selected the PADI1 gene, which was reported to be
regulated by an adjacent estrogen receptor alpha-depen-
dent SE [24] and visualized by IGV. The results showed
that, except for the COR-L311, HepG2, and KYSE140 cell
lines, other cell lines all had strong PADI1 gene enhancer
region H3K27ac signal expression, suggesting SE expres-
sion (Figure 3c).
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Figure 1: H3K27ac signal intensity on the enhancers of the eight common malignant tumor cell lines. (a) The number of significant H3K27ac
signal peaks in eight common malignant tumor cell lines. (b) The number of enhancers in eight common malignant tumor cell lines.
(c) H3K27ac signal intensity on the enhancers of the eight common malignant tumor cell lines. (d) H3K27ac signal intensity in the NCF2 gene
region in the eight common malignant tumor cell lines.
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3.5 Analysis of conservative and malignant
tumor-specific target genes regulated by
SEs in eight common malignant tumor
samples

Functional enrichment analysis of the SE-regulated genes in
malignant tumor samples through DAVID software revealed
that these genes were significantly enriched in pathways
including cell junction organization, cell junction assembly,
and cell–cell junction organization (Figure 4a and b).
We collated all SE-regulated genes in eight common malig-
nant tumor samples and obtained 5,923 target genes
(Figure 4c and d). As shown in Table S4, there were 2154
SE-regulated genes (conservative target genes) occurring

more than 6 times in eight common malignant tumor sam-
ples, while 35 genes (specific target genes) occurring only
once.We selected themalignant tumor-specific SE-regulated
gene A2M and the conservative SE-regulated gene ABALON
as representatives and displayed the H3K27ac signal distri-
bution on the two loci by IGV in the eight common malig-
nant tumor cell lines. The results showed that H3K27ac
signal peaks on A2M were only observed in a few malignant
tumor cell lines (Figure 4e), while the peaks on ABALONwas
clearly observed in eight commonmalignant tumor cell lines
(Figure 4f). Analysis of the SE-regulated target gene expres-
sion data in the eight common malignant tumor samples
from the TCGA database revealed that the results were con-
sistent with the H3K27ac ChIP-seq results (Figure 4g).
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3.6 Identification of malignant tumor-
specific and conservative TFs regulated
by SEs in eight common malignant
tumor samples

The TFs regulated by SEs in each malignant tumor
sample were identified using HOMER software, and the
top 10 TFs with the smallest p-value were screened.
The results displayed that some TFs existed in multiple

malignant tumor samples, and some TFs only in specific
malignant tumor samples (Figure 5a). The differential
expression of all TFs in each malignant tumor sample is
shown in Figure 5b. The TF occurring more than 4 times
was defined as a conservative TF and that occurring only
once was defined as a specific TF. Based on TCGA RNA-
seq data of eight common malignant tumor samples, we
calculated the expression of all the identified TFs in each
malignant tumor type (Figure 5c). Finally, we selected a
conservative TF kruppel-like factor 5 (KLF5) and
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malignant tumor-specific TF POU class 2 homeobox 2
(POU2F2) and analyzed their expression in each type of
malignant tumor samples. The data exhibited that the
expression of KLF5 was almost similar in 4–5 malignant

tumor samples (Figure 5d), while that of POU2F2 was upre-
gulated only in small cell lung cancer samples (Figure 5e).
These results indicated that the specific TFs regulated by SEs
could distinguish the malignant tumor types effectively.
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Figure 5: Identification of SE-related malignant tumor-specific and -conservative TFs in eight common malignant tumor samples. (a) The
frequency and number of TFs regulated by SEs in eight common malignant tumor samples. (b) A heat map of all the identified TFs in each
malignant tumor sample. (c) The expression of all the identified TFs in TCGA RNA-seq data of each malignant tumor sample. The expression
was evaluated by taking the average value of FPKM of all samples in TCGA RNA-seq data. (d) The expression of the conservative TF KLF5 in
TCGA RNA-seq data of each malignant tumor sample. (e) The expression of the malignant tumor-specific TF POU2F2 in TCGA RNA-seq data of
each malignant tumor sample.
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3.7 Screening of the SE–TF regulatory
network in eight common malignant
tumor cell lines

The screening of the SE–TF regulatory network was
divided into three steps: the first step was to find all the
TFs regulated by the SEs; the second step was to find
the TFs that could bind to the SEs to regulate the expres-
sion of their own genes from the TFs regulated by
SEs, which is the so-called autoregulated; the third step
was to merge all autoregulated TFs. These TFs could reg-
ulate the expression of each other as well as themselves,
and they together formed a SE–TF regulatory network
(Figure 6a).

Prediction results of the core TFs in eight common
malignant tumor cell lines by CRCmapper software are
shown in Table S5. The core TFs with the highest scores
in each malignant tumor sample were merged, with a
total of 60 core TFs obtained (Figure 6b). To verify the
prediction, we analyzed TCGA RNA-seq data of eight
common malignant tumor samples and found consistent
results with those of CRCmapper software (Figure 6c). We
further validated the results by selecting TFs SMAD3 and
NR5A1 and employed IGV to analyze the H3K27ac signal
in the gene enhancer region. The results showed that
SMAD3 had strong H3K27ac signals in eight common
malignant tumor samples, while the NR5A1 only had
H3K27ac signals in liver cancer samples (Figure 6d and e).
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Figure 6: Screening of the SE–TF regulatory network in eight common malignant tumor cell lines. (a) Schematic diagram of SE–TF network.
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The above results indicated that the SE–TF regulatory net-
work with the TF SMAD3 as the core may be involved in the
occurrence and development of a variety of malignant
tumors.

3.8 Validation of the identified SE–TF
regulatory network in bladder cancer
cells

Next, we aimed to verify the H3K27ac signal of the TF
SMAD3 in tumor samples by culturing eight kinds of
malignant tumor cell lines. The results of ChIP-PCR showed
SMAD3 had a strong H3K27ac signal in eight common
malignant tumors (Figure 7a), suggesting that the SE–TF
regulatory network with SMAD3 as the core may be
involved in the occurrence and development of a variety
of malignant tumors.

Further, we took bladder cancer as an example for
verification. The core TFs of bladder cancer were SMAD3,
ETS1, andHOXB2. The results of RT-qPCR showed (Figure 7b)
these TFs were expressed at an average level in the
bladder cancer cell line T24. T24 cells were transfected
with shRNA and overexpression plasmids targeting
these TFs, the efficiency of which was confirmed by
RT-qPCR and western blot analysis (Figure 7c and d).
In order to achieve the best silencing efficiency, the
siRNA-pool was transfected into T24 cells where the
expression of TFs was determined by RT-qPCR and wes-
tern blot analysis. The results presented that silencing
the expression of any TFs would result in a decrease in
the expression of other TFs, and meanwhile, overex-
pression of any TFs would also lead to an increase of
other TFs (Figure 7e and f). In addition, silencing any TFs
and overexpressing other TFs simultaneously in T24 cells
could partially reverse the above results (Figure 7g and h).
These results indicated that SMAD3, ETS1, and HOXB2 in
bladder cancer interacted with each other to construct a
SE–TF regulatory network.

For further verification of the direct transcriptional
regulation between these TFs, we used ChIP-PCR to
detect the binding of each TF to the promoter regions of
the other two TFs. The results displayed that each TF
could bind to the promoter regions other than itself
(Figure 7i), indicating that all TFs were connected to
each other to form a network. The above results demon-
strated the presence of a SE–TF regulatory network in
bladder cancer.

3.9 SE–TF regulatory network enhances the
malignant phenotype of bladder cancer
cells

Finally, we attempted to elucidate the effect of the SE–TF
regulatory network on the function of T24 cells. The
results of Transwell and CCK-8 assays showed that over-
expression of TFs stimulated the migration, invasion of
T24 cells, accompanied by enhanced proliferation while
silencing of TFs resulted in opposite results (Figure 8a).
Furthermore, weakening of the malignant phenotype of
T24 cells caused by silencing of SMAD3 could be partially
reversed by overexpression of other one or two TFs
(Figure 8b). The aforementioned findings indicated the
promoting effect of the SE–TF regulatory network on
the malignant phenotype of bladder cancer cells.

4 Discussion

SEs and TFs are associated with many genes involved in
cancer pathogenesis [5,25]. Primary oncogene promoters
of tumor cells are controlled by SE, rendering selective
activation of transcription [26]. Mechanisms of abnormal
SE formation in malignant tumors have been demon-
strated to exhibit profound influence on both molecular
pathogenesis and clinical management [5]. Our study
is to identify and validate core SEs and TFs in eight
common malignant tumors based on H3K27ac ChIP-seq
in the SRA database as well as RNA-seq data in the TCGA
database, followed by verifications in bladder cancer cell
experiments.

First, we obtained H3K27ac and Input ChIP-seq
sequencing data of eight common malignant tumor cell
lines including gastric cancer through the SRA database
and downloaded FPKM data of all RNA-seq from the
TCGA database for verification. Similarly, other research
works also downloaded H3K27ac and Input ChIP-seq
sequencing data of tumor cell lines from the SRA data-
base [27–29]. Unique to our result, FPKM data of all
RNA-seq were downloaded from the TCGA database for
verification; ChIP-seq sequencing data were not specially
processed and from the same malignant tumor cell lines
before merging. This study targets eight common malig-
nant tumors, whereas the former reports only refer to a
kind of malignant tumor [3,30]. Then, MACS2 software
was used to find the H3K27ac peak in each malignant
tumor cell line. Taking the significant H3K27ac peak at
more than 2.5 kb from the TSS site as the enhancer, we
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Figure 7: The presence of SE–TF regulatory network consisting of SMAD3, ETS1, and HOXB2 in T24 cells. (a) H3K27ac intensity of SMAD3 in
eight common malignant tumor cell lines analyzed by ChIP-PCR. (b) Expression of core TFs of bladder cancer (SMAD3, ETS1, and HOXB2) in
T24 cells determined by RT-qPCR. (c) Silencing and overexpression efficiency of SMAD3, ETS1, and HOXB2 in T24 cells determined by
western blot analysis. (d) Overexpression efficiency of SMAD3, ETS1, and HOXB2 in T24 cells determined by RT-qPCR. (e) Expression of other
two TFs in T24 cells following silencing of any bladder cancer TFs determined by western blot analysis. (f) Expression of other two TFs in T24
cells following overexpression of any bladder cancer TFs determined by RT-qPCR. (g) Expression of other TFs in T24 cells following
intervention with two types of bladder cancer TFs determined by western blot analysis. (h) Expression of other TFs in T24 cells following
intervention with two types of bladder cancer TFs determined by RT-qPCR. (i) The binding of each TF to the promoter regions of the other two
TFs analyzed by ChIP-PCR. *p < 0.05. The experiment was conducted three times independently.
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found that abundant enhancers existed in each malig-
nant tumor cell line, which was consistent with the ten-
dency of the significant H3K27ac peak. The NCF2 gene
was selected and IGV was used to show the H3K27ac

signal on the enhancer of eight common malignant tumors.
Generally, Bowtie2 is used for comparison in the preli-
minary processing of ChIP-seq sequencing data, and the
only comparison data are obtained by Samtools to
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Figure 8: The SE–TF regulatory network consisting of SMAD3, ETS1, and HOXB2 promotes the malignant phenotype of bladder cancer cells.
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deduplicate [31–33]. Differently, this study merged data
from the same tumor cell line and identified the significant
H3K27ac peak through the MACS2 software. The significant
H3K27ac peak at more than 2.5 kb from the TSS site was
used as the enhancer. Then the significant H3K27ac peak
was compared with the identified enhancer, and finally, all
data analyzed were displayed as a whole. Next, we found
that H3K27ac signals of same malignant tumor cell line
could be clustered together by analyzing the correlation of
H3K27ac signals, indicating that H3K27ac pattern is different
and the H3K27ac signal can distinguish malignant tumors.
We used the ROSE algorithm to predict SEs. A single
enhancer entity within the range of 12.5 kb was merged
and SEs that occurred in at least two cell lines were calcu-
lated so that the range was diminished and the stability of
the prediction results was improved.

In addition, we examined all SE-regulated genes in
eight common malignant tumors. Thirty-five genes that
occurred more than six times in all malignant tumors
were defined as conservative SE-regulated genes, and
2,154 genes were specific for each malignant tumor sample.
The data analyzed in this study were only for SEs that
occurred in at least two cell lines, and the specific and con-
servative SEs were defined differently. The defined SEs were
verified by IGV, and the SE-regulated genes in all malignant
tumors were obtained from the TCGA database. Finally, the
expression data in eight common malignant tumors were
compared with the analysis results of H3K27ac ChIP-seq
data. Generally, the core TFs that bound to SEs in each
malignant tumor sample were found with HOMER software
[34–36]. Importantly, the TFs that appeared more than four
times in malignant tumors were defined as malignant
tumor-conservative TFs, while TFs that appeared only
once were defined as malignant tumor-specific TFs. Based
on TCGA RNA-seq data, we calculated the expression of all
TFs in each type of malignant tumor, which can be distin-
guished according to the defined specific and conservative
TFs. Conservative TF KLF5 and specific TF POU2F2 were
chosen to exhibit the expression of all malignant tumors
through a beeswarm package, which also could distinguish
malignant tumor-specific TFs from conservative TFs. Finally,
CRC TFs were predicted in eight common malignant tumor
cell lines through the CRCmapper software, which is the
same as other reports [37,38]. This study combined with
the expression profile data of patients in the TCGA database,
and also showed some of the identified CRC TFs near SE
H3K27ac signal through the IGV. Furthermore, the in vitro
experimental data demonstrated the presence of a SE–TF
regulatory network in bladder cancer, and the SE–TF

regulatory network enhanced the malignant phenotype
of bladder cancer cells.

In conclusion, we integrated the H3K27ac ChIP-seq of
eight common malignant tumor cell lines and RNA-seq
from cancer patients in the TCGA database and identified
core SEs and TFs. In all malignant tumor samples, there
were 35 SE-regulated genes that occurred more than
six times, while 2,154 SE-regulated genes occurred only
once, which were defined as conservative SE-regulated
genes and specific SE-regulated genes, respectively. We
found the core TFs bound to SEs in each malignant tumor
sample with HOMER. The TFs that appeared more than
four times in tumor samples were defined as malignant
tumor-conservative TFs including Fral, KLF5, and NFY,
while TFs that appeared only once were defined as specific
TFs such as POU2F2. Finally, eight commonmalignant tumor
cell lines including 76NF2V and 786-M1A were selected to
predict CRC TFs with CRCmapper software. A total of 60
CRC TFs were obtained, among which SMAD3 were present
in five types of commonmalignant tumors, while 46 CRC TFs
including NR5A1 were only present in one type of malignant
tumor. Taken together, our study provides new ideas for the
research of these malignant tumors and experimental valida-
tions in cancer cells. However, identified conservative and
specific SEs and TFs need to be verified by basic experiments,
which might indicate a promising method to improve malig-
nant tumor therapy.
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Appendix

Table S1: Primer sequences for ChIP-PCR

Gene Sequence

SMAD3 (human) Forward: 5ʹ-CTCCTGTCTTGCCCCACTTT-3ʹ
Reverse: 5ʹ-GGTTGGACTCGCAGCAAGTA-3ʹ

ETS1 (human) Forward: 5ʹ-GGTCGTGGGAGGGTTGTTAG-3ʹ
Reverse: 5ʹ-CCGTCTGATTCTCCACGCAT-3ʹ

HOXB2 (human) Forward: 5ʹ-AGCCTCTTTCGACTCCCTCT-3ʹ
Reverse: 5ʹ-CGCGGGGAAAGAGTTTAGGT-3ʹ

Table S2: Primer sequences for RT-qPCR

Gene Sequence

SMAD3 (human) Forward: 5ʹ-TGGACGCAGGTTCTCCAAAC-3ʹ
Reverse: 5ʹ-CCGGCTCGCAGTAGGTAAC-3ʹ

ETS1 (human) Forward: 5ʹ-GATAGTTGTGATCGCCTCACC-3ʹ
Reverse: 5ʹ-GTCCTCTGAGTCGAAGCTGTC-3ʹ

HOXB2 (human) Forward: 5ʹ-CGCCAGGATTCACCTTTCCTT-3ʹ
Reverse: 5ʹ-CCCTGTAGGCTAGGGGAGAG-3ʹ

GAPDH (human) Forward: 5ʹ-GGAGCGACATCCCTCCAAAAT-3ʹ
Reverse: 5ʹ-GGCTGTTGTCATACTTCTCATGG-3ʹ

Table S3: Data information of eight common malignant tumor cell lines in the SRA database

Malignant tumor type Number of cell lines Reference

Gastric cancer 6 Baek Su-Jin et al. 2016 Oncotarget
Renal cancer 4 Baek Su-Jin et al. 2016 Oncotarget
Esophageal squamous cell carcinoma 6 Jiang Yuan et al. 2018 Nature communications.
Colorectal cancer 24 Jiang Yan-Yi et al. 2016 Gut
Bladder cancer 3 Cohen Andrea J et al. 2017 Nature communications
Breast cancer 12 Pattison Jillian M et al. 2016 Molecular cancer research
Small cell lung cancer 14 Franco Hector L et al. 2018 Genome research
Liver cancer 2 Huang Yu-Han et al. 2018 Genes & development

Table S4: Information and classification of SE-regulated genes in eight malignant tumor cell lines

SE-regulated target gene type Gene

Conservative target genes ABALON, BCL9L, DLGAP1-AS2, LINC00963, EPHA2, MALAT1, MIR21, NEAT1, TNRC18, UBC, etc. (2154
genes in total)

Specific target genes A2M, AADACL2-AS1, ABCA1, ABCA13, ABCB1, ABCB11, BCC4, ABCG1, ABHD16B, ABHD17C, etc. (35
genes in total)

SEs and TFs in common malignant tumors  1581



Table S5: Core transcription factors in eight malignant tumor cell lines

Malignant tumor cell line Transcription factors with the highest score

Breast cancer 76NF2V SMAD3, RUNX1, KLF5, TCF7L2, SOX9, MAF, ELF3, ERG, KLF4, EHF, FOXC1, MYC, FOSL2,
IKZF2, TGIF1, DLX2, FOXD2

Renal cancer 786-M1A SMAD3, NR3C1, FOXL1, GLIS3, RUNX2, KLF7, NFIL3, ETV6, ETS1, HNF1B, GLI2, KLF4, RUNX1
Small cell lung cancer COR-L311 NFATC1, SOX9, GFI1B, ASCL2, POU2F3, KLF13, PRDM1, INSM1, HMX2, SOX13, MEF2D
Colorectal cancer HCT116 HIF1A, NR5A2, RREB1, JUNB, BHLHE40, HES1, MEF2D, MYC, NR4A1, SMAD3
Liver cancer HepG2 TBX2, MAX, E2F6, RREB1, SMAD3, EHF, SREBF1, ELF1, HES1, FOXA1, FOXQ1, HNF1A, NR5A1,

KLF16, FOXP1
Esophageal squamous cell carcinoma
KYSE14

SOX2, EOMES, HOXA7

Gastric cancer MKN45 ELF3, RREB1, BHLHE40, JUNB, EHF, HES1, HNF1B, MEF2A
Bladder cancer T24 SMAD3, ETS1, HOXB2
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