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Abstract: Periodontal infections are noncommunicable chronic inflammatory diseases of multifacto-
rial origin that can induce destruction of both soft and hard tissues of the periodontium. The standard
remedial modalities for periodontal regeneration include nonsurgical followed by surgical therapy
with the adjunctive use of various biomaterials to achieve restoration of the lost tissues. Lately, there
has been substantial development in the field of biomaterial, which includes the sole or combined use
of osseous grafts, barrier membranes, growth factors and autogenic substitutes to achieve tissue and
bone regeneration. Of these, bone replacement grafts have been widely explored for their osteogenic
potential with varied outcomes. Osseous grafts are derived from either human, bovine or synthetic
sources. Though the biologic response from autogenic biomaterials may be better, the use of bone
replacement synthetic substitutes could be practical for clinical practice. This comprehensive review
focuses initially on bone graft replacement substitutes, namely ceramic-based (calcium phosphate
derivatives, bioactive glass) and autologous platelet concentrates, which assist in alveolar bone
regeneration. Further literature compilations emphasize the innovations of biomaterials used as
bone substitutes, barrier membranes and complex scaffold fabrication techniques that can mimic the
histologically vital tissues required for the regeneration of periodontal apparatus.

Keywords: periodontal regeneration; bone grafts; calcium phosphate grafts; autologous platelet
concentrates; nanohydroxyapatite bone graft substitutes; guided tissue regeneration substitutes;
scaffold designs

1. Introduction

The holy grail of periodontal therapy is the regeneration of the attachment appara-
tus lost due to periodontitis. This noncommunicable chronic inflammatory disease of
multifactorial origin is known to cause damage to soft tissue and induce destruction of
the periodontium [1]. The loss of alveolar bone remains the hallmark of periodontal dis-
ease progression, which is a therapeutic challenge for clinicians across the world. This
pathogenic mechanism is facilitated by the biologically active substances within the sub-
gingival plaque that induce a local inflammatory response in the supporting structures of
the periodontium [2]. In addition, the host immune cells propagate various proinflamma-
tory cytokines, i.e., PGE2, IL1 and RANKL, which stimulate the resorptive activity of the
osteoclast favoring bone loss [3]. Furthermore, the neutrophils and macrophages indulge
in the secretion of matrix metalloproteinases (MMPs), which degrade collagen and other
components of the extracellular matrix, leading to destruction of connective tissue. These
immunopathologic events manifest as periodontitis, which does not necessarily result
in tooth loss. The severity of tissue damage and the rate of progression of disease are
governed by various factors such as genetics, environmental and systemic, rendering it a
multifactorial, chronic inflammatory disease.

The successful outcome of periodontal regeneration in combination with various
therapeutic modalities (scaling, root planing, curettage, flap surgery) are evident in the
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literature [4]. However, these approaches also present limitations without the use of
adjunctive materials that could provoke tissue regeneration in periodontally compromised
areas. The recent years have visualized and explored considerable progress in the field of
biomaterials for tissue engineering, which includes the use of barrier membranes, osseous
grafts, growth factors and the combination of these procedures [5].

Bone grafts can be broadly classified as autografts, allografts, xenografts and alloplasts
(synthetic). Among them, bone replacement synthetic grafting procedures are more prag-
matic even though autologous bone grafts provide a better biological response. There are
a few disadvantages, such as additional surgical time and donor site morbidity, that are
overthrown by artificial bone substitutes. Osseous grafts are derived from either human,
bovine or synthetic sources. The human or animal sources may have issues related to ethics
or disease transmission. Hence, there is a demand for artificial/synthetic bone substitutes,
with biological stability, biocompatibility and negative immune response having similar or
better efficiency, which could be procured less expensive than allogeneic and xenogeneic
substitutes [6,7].

The synthetically developed bone substitutes used in clinical practice are broadly
classified as polymers, metals and ceramics. However, these bone substitutes exhibit few
drawbacks related to poor mechanical properties, low biocompatibility and poor adhesion
to human tissues [8]. In order to overcome these limitations, calcium-phosphate-based
ceramics were developed due to its remarkable properties, the most crucial being its
similar composition to bone minerals and its origin being in abundance in human bones.
These materials stimulate cellular activities, resulting in the formation of a unique CaP
interface. Additionally, CaP materials have a three-dimensional design, which permits
their adherence to endogenous bone morphogenetic proteins within the human system.
This property can induce osteoinductive properties [5]. Considering these distinctive
features, calcium phosphate ceramics were widely used and probed extensively for their
regenerative potential [9–11].

2. Calcium Phosphate Biomaterials

Hydroxyapatite (HA) is the most commonly used calcium phosphate bone graft mate-
rial across the world. Its structure and composition are comparable to native bone [12]. Van
Meekeren was the first to introduce synthetic bone graft with calcium sulfate in 1892. Since
then, the term ‘bioceramics’ was documented and used as bone substitute agents in hu-
mans [13]. Hydroxyapatite bone substitutes are referred to as bioactive materials due to the
osteoconductive characteristics that permit apposition and migration of osteoblasts [8,14].
The biocompatibility of synthetic hydroxyapatite embedded in the human periodontium
was studied using TEM, and the authors found the osteoblasts on the HA surface triggered
initial osteoid formation, which, in time, mineralized to complete dense bone. In 6 months,
small apatite crystals were observed placed in the center, surrounded by larger crystals
of synthetic HA [15]. Several studies have been conducted on hydroxyapatite bone grafts
alone or combined with other bone substitutes and have gained significant clinical bone
gain in all fields of dentistry for regeneration of supporting alveolar bone [16]. A recent
systematic review based on applications of nanohydroxyapatite in dentistry concluded
that it could be a favorable material for various dental treatments, while in implantology, it
outperformed other materials used as coatings for titanium implants. Nano-HA improved
bone regenerating properties compared to autologous bone grafts in tissue engineering.
In combination with different scaffolds, notable results in periodontal treatment were
seen [17].

2.1. Tricalcium Phosphate (TCP)

TCP is a resorbable form of bone substitute broadly classified into two phases,
i.e., α and β, which are chemically similar but tend to perform differently based on
their functional environment [5]. Considering its biocompatibility and osteoconductive
features, β-TCP was used to treat intrabony defects and regenerative procedures, which



Polymers 2022, 14, 3038 3 of 19

revealed complete resorption of the osseous graft within a time interval of 6 months to
one year [18]. β-TCP used alone or in combination with allografts, and xenografts have
offered promising outcomes with reference to percentage gain in alveolar bone or with
the development of mature bone in defect sites [19]. On the contrary, there were authors
who achieved conflicting results in the percentage of bone fill to different regenerative
procedures using β-TCP [20].

Biphasic calcium phosphate ceramics: These are a combination of two different CaP
phases; a more stable phase (HA), which is more common, and a more soluble phase
(β-TCP) in different proportions. Degradation of bone grafts is an important factor in bone
formation. In order to increase biodegradation, biphasic calcium phosphate was developed
for osseous defects. It is a bioceramic available in different formulations such as powders,
granules and blocks for regenerating bony defects and is widely used across the world [21].
Wang et al. 2011 surgically created dehiscence defects in the alveolar bone of 12 beagle dogs.
The defects were treated with BCP (40 HA/60 β-TCP) or with OFD. The results indicated
that BCP augments periodontal regeneration in the above-mentioned defects [22]. Biphasic
calcium phosphates have been shown to be bioresorbable with osteoconductive properties
when the physiochemical characteristics are controlled [23]. The effect of BCP was explored
on the differentiation and survival rate of osteoclasts in chronic periodontitis patients. The
authors remarked that BCP limits osteoclastogenesis through promotion of the proteolytic
cascade of apoptosis and displays favorable effects in combating alveolar bone resorption
in chronic periodontitis [24].

2.2. Plaster of Paris/Calcium Sulfates

The literature records the use of calcium sulfates predominantly in the orthopedic
specialty. However, in two different papers, Dreesmann and Peltier reported that calcium
sulfates can be used effectively to fill and treat osseous defects [25,26]. Calcium sulfates
possess beneficial characteristics such as bioabsorbability [27], osteoconductive properties,
low immune reactivity [28] and enhancement of the migratory ability of fibroblasts [29].
The combination of β-TCP and calcium sulfates is commercially available as Fortoss®,
which can be used solely without the use of a barrier membrane, with lesser surgical
time and cost. All these features make it preferable for adjunctive use as regenerative
material. Thus, clinical reports describe it as an alternative to nonresorbable membranes
(e-PTFE), which are known to be time consuming [30]. A mixture of calcium sulfate and
demineralized freeze-dried bone allograft (DFDBA) improved clinical results for class II
mandibular furcation defects compared to the use of calcium sulfate as a single entity [31].
Micro- and nanoformulated crystalline forms of calcium sulfate were attempted for use
as a possible treatment for intrabony defects. The authors concluded that nanocrystalline
calcium sulfate presented significantly enhanced periodontal regeneration compared to the
microcrystalline form [32].

2.3. Bioactive Glass

Several biomaterials have been introduced over the years. In the late 1960s, Hench and
coworkers developed a group of surface-reactive glass ceramics, including bioactive glass,
which gained popularity in periodontal and implant surgeries [33]. The key element of
bioactive glass is its biocompatibility and capacity to act rapidly as a biomimetic mineralizer
and match the natural human skeleton’s mineralizing traits [34]. This bioactive material
consists of minerals that occur naturally in the body (silica (SiO2 (46.1 wt.%)), sodium oxide
(Na2O (24.4 wt.%)), calcium oxide (CaO (26.9 wt.%)) and phosphorus pentoxide (P2O5
(2.6 wt.%))), and the molecular proportions of calcium and phosphorus oxides are similar to
natural bone. A recent comprehensive review on bioactive glass applications deduced that
the most common bioactive glass compositions (in particular, 45S5, S53P4 and borate-based
glass 19-93B3) are versatile replacement materials, and their availability in different designs
enhances their use in the treatment of human defects among clinicians [35].
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Schepers and Ducheyne coined the term ‘osseostimulation’ to describe the process
of bone formation in bioactive glass [36]. De novo bone formation using bioactive glass
was studied using a periodontitis-induced model in monkeys. The authors affirmed that
the new bone formed within the intrabony defects was situated at a site distant from the
defect [37]. In another clinical study, the authors observed an active build-up of an osteoid
matrix directly on the bone graft particles, which was suggestive of bone formation [38].

3. Autologous Materials as Regenerative Substitutes for Periodontal Regeneration

Researchers have developed many regenerative procedures over the decades to treat
periodontitis [39]. However, the recent treatment modalities used either alone or in combi-
nation have limitations in producing true regeneration, especially in advanced periodontal
defects [40]. This challenge has led to a trail to find the most suitable material that could regen-
erate the lost periodontium with greater chances of new attachment and fewer complexities.

Clinical trials conducted in the field of regenerative medicine use allografts, xenografts,
alloplasts and/or their combinations in view of the evidence related to their regenerative
potential. Nevertheless, these mentioned bone graft resources have a major drawback of
foreign body reaction or negative immune response, which impairs their use in periodontal
defects [41]. Considering these limitations, clinicians prefer an autogenic biomaterial that
could aid in tissue regeneration with minimal reaction when introduced into the human
body. One such fibrin matrix, documented initially by Choukroun, had a blend of growth
factors and cytokines, i.e., platelet-rich fibrin (PRF) [42]. This second-generation PRF clot
prepared from a patient’s own blood after centrifugation develops into a three-dimensional
strong fibrin scaffold that contains platelets, leukocytes and growth factors (platelet-derived
growth factor (PDGF), vascular endothelial growth factor (VEGF), transforming growth
factor-beta (TGF-β), insulin growth factor 1 and 2 (IGF-1/ IGF-2) and epidermal growth
factor (EGF)), which are critical for tissue healing [43,44]. These biological proteins stim-
ulate the periodontal ligament cells to differentiate into osteoblasts, which leads to bone
regeneration [45]. This sequence of events is illustrated in Figure 1.

Initially, Serroni et al. conducted a clinical trial to study the additional benefit of
leukocyte-platelet-rich fibrin (L-PRF) to autogenous bone graft compared to autogenous
bone graft and open-flap debridement alone. The results of the study showed a better
outcome with L-PRF for degree II furcation management [46]. In another randomized
trial, Rexhepi et al. demonstrated that an inorganic bovine bone graft in combination with
L-PRF was noninferior to a combination with a collagen membrane (CM) when managing
unfavorable infrabony defects (IBDs) [47].

Different variants of PRF appeared in due course through variations in centrifugation
protocols. This was originally prompted to investigate the intensified release of growth
factors. One such development was advanced platelet-rich fibrin (A-PRF) introduced by
Choukroun (2014), obtained by low centrifugal speed (1500 rpm, 14 min), which stirred
the leukocytes to the bottom of the test tube for a more even distribution of neutrophils
and unbound fibrin matrix. The neutrophils present in PRF have soft and hard tissue
regenerative capabilities to direct monocytes to phagocytosis and produce proteases such
as MMP9 for the wound healing process [48]. Additionally, the application of PRF for
periodontal infrabony treatment exhibited a reduction in pocket probing depth and relative
attachment levels [49]. Another study conducted by Lei et al. (2020) using a combination of
A-PRF and concentrated growth factor (CGF) for periodontal defects displayed a continual
and steady release of total growth factors over a 14-day period. The authors remarked
that the combination of concentrates showed similar effectiveness in periodontal bone
regeneration, with a potential benefit of improving GTR outcomes when used in intrabony
defects [50].
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Further development in PRF was the elimination of silica in glass tubes required for the
formation of platelet aggregation and fibrin. Few health risks caused due to the presence of
silica in these glass tubes were discussed [51]. Hence, attempts to develop PRF in titanium
test tubes led to the advancement of platelet concentrates to T-PRF. The titanium present
in the test tubes is passivated into an oxide layer within itself, which activates platelets
and forms a thicker fibrin clot. The platelet aggregation in titanium test tubes was similar
to that of the glass test tubes with the superiority of a firmer network structure [52] and a
longer resorption rate [53]. On the comparative evaluation of T-PRF and L-PRF as better
alternatives for the treatment of intrabony defects, T-PRF was suggested to be a better
option. However, soft tissue healing was similar in both [54].

Regarding the stability of the PRF membrane, its ability to release cytokines was
explored, and results showed a 28-day release rate within a biological environment [55].
However, there are no precise evaluations on the actual residence time of this fibrin mem-
brane placed with a bone graft during the surgical procedure and the degradation effect
of enzymes that could impact its efficacy as an autologous barrier. This desired clinical
application indicates the need for further development of protocols aiming to modulate
stability without loss of controlled release of cytokines from the blood at the site of surgery.
Furthermore, another form of purified protein that is easy to isolate from blood plasma
precipitation is serum albumin. It has been used in tissue engineering as a result of its
compatible structure for cell proliferation and fewer dimensional and degradative changes
over time [56]. A preliminary study on the addition of albumin to platelet concentrate
indicated that the production of the Alb CGF membrane may represent an important step
toward the development of autologous moldable and stable biomaterials for use as soft
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tissue barriers and potential for different applications in periodontal regeneration [57].
Recent work by Fujioka-Kobayashi et al. (2020) reported that Alb-PRF has positive re-
generative properties when used as a low-substitution platelet concentrate with extended
resorption properties. The authors also commented that the method of application could
either be either an injectable form or with a scaffold by preforming in customized trays
to create the desired shape that enhances the long-lasting growth factor release curve
capable of stimulating tissue regeneration over extended periods of time [58]. Another
concern regarding PRF is its availability in dense gel or solid form, which questions its
manipulative potential. Therefore, injectable PRF (i-PRF) was developed [59]. This variant
possesses a three-dimensional fibrin clot network embedding platelets, leukocytes, type I
collagen, osteocalcin and growth factors acting as a dynamic gel with additional release of
growth factors for up to 10 days [60]. A study on rats using an experimental periodontitis
i-PRF model resulted in outcomes comparable to scaling and root planing, i.e., reduction
in bone loss, modulation of the inflammatory process and cytokine release during the
disease process [61]. Table 1 provides a detailed summary of the application of bone grafts
with/without PRF.

Table 1. Detailed summary of the application of bone grafts with/without PRF.

Author Biomaterial Model Used Observation
Period Outcomes

Ozawa et al. (2018) [62]
Collagen sponge (ACS)
hydroxyapatite/collagen
composite (HAP/Col)

Rats (male) 12 weeks

Results suggested that
application of HAP/Col
increased outgrowth of new
bone much more prominently
than collagen group

Leventis et al. (2018) [63]

β-TCP +
poly(lactic-co-glycolic)
acid (PGLA) + Biolinker®

(N-methyl-2-pyrrolidone
solution)

Landrace (female)
pigs 12 weeks

Experimental sites showed less
mean horizontal dimensional
reduction of alveolar bridge
but not statistically significant,
with more new bone in
experimental group

Kizildağ et al. (2018) [64]
Leukocyte-platelet-rich
fibrin (L-PRF) +
(OFD)/OFD alone

16 humans with
32 sites

baseline and
6 months

(L-PRF) + (OFD) group
showed significant PD
reduction and CAL gain than
OFD alone group

Okada et al. (2019) [65] Group 1: β-TCP
Group 2: β-TCP + PGLA Beagle (male) dogs 12 weeks

β-TCP + PGLA seems to be
more effective than
conventional β-TCP for ridge
preservation

Sapata et al. (2019) [66]

Deproteinized bovine
bone mineral (DBBM)
DBBM with 10%
collagen–collagen matrix
(CM)

65 patients 4 months
DBBM demonstrated a
noninferiority status
compared to DBBM-CM group

Bodhare et al. (2019) [67]
Control: OFD + BioGide
Test: OFD + BioGide +
PRF

40 human sites 6 months

BioGide when used in
combination with PRF is
found to be more effective in
gain in CAL, reduction in PD
and achieving greater bone fill
as compared to treatment with
BG alone

Atchuta A et al. (2020) [68]

Group I: open-flap
debridement; Group II:
DFDBA alone; Group III:
DFDBA + PRF

39 human sites Baseline, 3 months
and 6 months

DFDBA + PRF group yielded
better reduction of PPD and
Relative attachment level
(RAL) at 6 months interval
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Table 1. Cont.

Author Biomaterial Model Used Observation
Period Outcomes

Kai-Ning Liu et al. (2020) [69]

Control group, GTR and
Bio-Oss®

Test group, GTR, Bio-Oss®

and PRF

14 patients 6, 12 and 24 months

GTR and Bio-Oss® with PRF is
more effective in treatment of
periodontal intrabony defects
than GTR and Bio-Oss®

without PRF (CAL, PD) at all
time intervals

Thakkar B et al. (2020) [70]
Group I: PRF and GTR
Group II: PRF + bovine
bone graft + GTR

32 human sites Baseline, 3 months
and 6 months

Group II showed statistically
significant changes in
reduction in pocket depth and
defect depth resolution

Bahammam MA et al. (2020) [71]

Group I: PRF + OFD
Group II: nano-HA bone
graft + OFD.
Group III: OFD + PRF +
nano-HA bone graft.
Group IV: OFD alone

60 human patients Baseline and
6 months

Most significant increase in
bone density and fill was
observed for IBD depth in
group III

Apine AA et al. (2020) [72]
Group I: NovaBone® putty.
Group II: autologous
platelet-rich fibrin

30 intrabony defects
were treated in
11 patients

Baseline, 3, 6 and
9 months

Improvement of clinical and
radiographic parameters at
sites treated with NovaBone®

putty was better compared to
that of sites treated with PRF,
but differences were
statistically not significant

Paolantonio M et al. (2020) [73]

Test group: L-PRF
associated with
autogenous bone graft
(ABG)
Control group: EMD +
ABG

44 patients Baseline and
12 months

L-PRF + ABG produces
noninferior results for CAL
gain, PPD reduction, GR
increase and DBL gain in
comparison with EMD + ABG
when treating noncontained
IBDs.

Jae-Hong Lee et al. (2021) [74]

Test group: demineralized
porcine bone matrix
(DPBM) with EMD
Control group: DPBM
alone

34 patients Baseline, 2 years
and 4 years

clinical, radiographic and
patient-reported outcomes
were significantly improved
when DPBM no additional
clinical and radiographic
benefits were observed with
adjunctive use of EMD

Bhatnagar S et al. (2021) [75]

Control sites: OFD alone
Test sites: Calcium
Phosphate ceramic
GUIDOR® easy-graft
Crystal, Sunstar Group,
Etoy, Switzerland) and
OFD.

15 patients;
30 intrabony
periodontal defects

Baseline, 3 and
6 months

Significant increase in Defect
Fill and Percentage of Defect
fill in both groups with better
bone fill in test sites

Pavani MP et al. (2021) [76]

Group A: open-flap
debridement (OFD)
Group B: OFD with β TCP
with PRF
Group C: β TCP

30 human sites 6 months

Bone fill achieved in β TCP
with PRF was more compared
to β TCP alone and OFD at 6
months follow-up

Razi MA et al. (2021) [77]

Group I: PRF with
demineralized bone
matrix
Group II: PRF alone
Group III: open-flap
debridement (OFD)

30 patients 9 months
PRF group had significant
reduction in PD, RAL and
Gingival recession (GR)

4. Recent Advances in Biomaterials for Periodontal Regeneration

Technological advances of the past decade have fueled innovations in biomaterial
design and architecture for periodontal tissue engineering. Application of nanotechnology,
with a particle size of less than 100 nm, closely mimics the native structure and architecture
of tissues with improved biological properties and bioactivity, leading to a significant
increase in regenerative capability [78–81].

The advent of bioprinting has led to biomaterials of a customized three-dimensional
structure specific to the defect requirements, which can enhance the form and function of
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biomaterial. Newer fabrication techniques have enabled biomaterials of different structures
and characteristics to be arranged as composite entities that can mimic different kinds of
tissues for regeneration of histologically complex anatomies such as periodontal attachment
apparatus. Moreover, the incorporation of such materials into a single construct has given
rise to composite biomaterials that can release drugs and growth factors, where the release
can be controlled in space and time. This section summarizes the novel applications and
advancements in ceramics, polymers, metals and composite biomaterial constructions used
for periodontal regeneration. (Figure 2).
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4.1. Innovative Biomaterials Used as Bone Substitutes
4.1.1. Egg-Shell-Derived Nanohydroxyapatite

Egg shells contain 90% calcium and can be used to extract hydroxyapatite for bone
regeneration [82]. This biomaterial can be easily procured and is inexpensive with limited
drawbacks of patient morbidity and inadequate volume of autografts, possibility of disease
transmission in allografts, immune reaction from xenografts, etc. [83]. Recent studies
evaluating the efficacy of egg-shell-derived nanohydroxyapatite for bone regeneration
in animal models successfully demonstrated its potential to serve as a biomaterial for
bone regeneration [84,85]. Furthermore, clinical studies that applied egg-shell-derived
nanohydroxyapatite in treating apicectomies, mandibular third-molar defects and socket
preservation showed promising results in remodeling and regeneration of bone, which was
comparable to synthetic hydroxyapatite [86–88].

4.1.2. Metal-Ion-Doped Nanohydroxyapatite

Recently, in an attempt to improve the mechanical and biological properties of hy-
droxyapatite, few studies investigated the effect of replacing the calcium, phosphate or
hydroxyl ions of apatite crystal with different trace metal ions. Comprehensive findings of
these experiments revealed:

• Strontium-doped hydroxyapatite showed increased osteoblast proliferation and
differentiation [89,90].

• Zinc-doped hydroxyapatite induced differentiation of mesenchymal stem cells to
osteoblasts, migration and proliferation of endothelial cells and antimicrobial activity
against Staphylococcus aureus [91,92].

• Silver-doped hydroxyapatite demonstrated enhanced antibacterial activity and os-
teoblast adhesion when silver was used in low concentrations; higher concentrations
of silver had a negative effect on osteoblast cell proliferation [93–95].
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• Silicon-doped hydroxyapatite showed significantly greater bone in-growth and bone
implant coverage than undoped hydroxyapatite [96].

All these observations indicated that ion-doped hydroxyapatite crystals have enhanced
biological properties and can be a promising alternative to pure hydroxyapatite-based
bone substitutes.

4.2. Magnesium Bone Substitutes

Magnesium is a highly bioresorbable metal with excellent biocompatibility. The magnesium–
strontium alloy exhibited favorable characteristics when used as a bone substitute, considering its
mechanical properties that resembled natural cortical bone. This alloy had good cytocompatibility
and antibacterial and physical properties compared to existing bone graft materials indicating its
potential for use as a bone defect filler in stress-bearing areas [97].

4.3. Carbon Nanomaterials

Carbon nanotubes are elongated cylindrical nanostructures with a hexagonal honey-
comb lattice. Their structure and scale simulate the collagen fibers present in the connective
tissue [98]. These nanotubes are porous with a greater surface area when compared to
their volume, which facilitates adhesion of cells, adsorption of proteins and delivery of
growth factors and drugs [99,100]. Moreover, their superior physical properties enable
them to serve as scaffolds for bone regeneration [101]. Multiwalled carbon nanotubes en-
hanced cementoblast differentiation and mineralization in vitro [102]. Nevertheless, carbon
nanotubes, when used as a grafting material in class 2 furcation defects of dogs, showed
significantly lesser bone formation when compared to a control group where no grafting
material was placed [103]. Further studies are needed to explore the possible applications
of carbon nanotubes in periodontal regeneration.

4.4. Titanium Bone Substitutes

Titanium is a highly biocompatible metal with extensive applications in biomedical
devices. Porous titanium granules offer several advantages as a bone defect filling material,
such as superior physical properties for better osseoconduction, high porosity facilitating
absorption of blood [104] and high surface area, leading to activation of blood coagulation
on contact and subsequent platelet aggregation and adsorption of plasma proteins onto the
surface [105]. In an animal study, porous titanium granules led to greater bone fill when
compared to deproteinized bovine bone mineral in grade 2 furcation defects [106]. However,
there was no significant difference in bone gain in furcation defects in human study [107].

5. Innovations in Biomaterials Used for Guided Tissue Regeneration

Guided tissue regeneration (GTR) membranes are used for selectively excluding
the epithelium and the connective tissue from the periodontal defects, which allows the
periodontal ligament cells to proliferate and repopulate the root surface.

5.1. Electrospinning

Electrospinning is a technique to produce nanoscale diameter fibers from a polymeric
solution. The polymeric solution is loaded into a syringe pump and will be ejected from a
blunt tip needle (spinneret), producing a droplet at the tip of the needle. On application
of a high-voltage current, the shape of the droplet changes to a cone shape (Taylor cone);
an electrified jet of polymer is ejected out, which solidifies into fine threads that are
then collected on the grounded collecting plate [108–110]. This technique can be used to
fabricate both unwoven fibers and spatially aligned fibers. A separate core with an outer
shell structure can be fabricated using coaxial spinning; this multilayered structure can be
used for manufacturing functionally graded and drug-loaded membranes. The nanofibers
can also be customized by adding drugs, growth factors or ceramics to the initial polymeric
solution to create a composite matrix [111,112].
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Electrospun poly (d, l-lactic acid)/poly (d, l-lactic-co-glycolic acid) membranes showed
superior physical properties, optimum degradation rate and excellent cell occlusion prop-
erties, both in vitro and in vivo [113]. Recently, a composite membrane of electrospun
polycaprolactone reinforced with 2% bioactive glass showed superior physical and mechan-
ical properties with enhanced cell adhesion [114]. Electrospun polylactic acid/cellulose
acetate (PLA/CA) or poly(caprolactone) membrane incorporated with silver nanoparticles
showed enhanced antibacterial activity; the addition of nanohydroxyapatite improved
the cell viability [115]. Another recent study showed that electrospun poly (L-lactic acid)
(PLA)/gelatin membranes incorporated with magnesium oxide nanoparticles showed
enhanced mechanical and antibacterial properties, induced osteogenic differentiation of
bone marrow mesenchymal stem cells and showed superior outcomes in periodontal
regeneration in a rat model [116]. Electrospun zein/gelatin/nanohydroxyapatite mem-
branes showed increased adhesion, proliferation and osteogenic differentiation of human
periodontal ligament stem cells [117].

5.1.1. Antibacterial GTR Membranes

Recently, GTR membranes with added antimicrobial functions have been fabricated
and evaluated for periodontal regeneration. Expanded polytetrafluoroethylene (e-PTFE),
collagen and glycolide fiber membranes loaded with tetracycline or amoxicillin showed
less adhesion and penetration of S. mutans and A. actinomycetemcomitans [118,119]. Elec-
trospun zein/ethyl cellulose membrane loaded with indomethacin showed sustained
drug release [120]. Doxycycline-loaded poly-e-caprolactone membranes showed sustained
release of the drug and significant inhibitory effect on A. actinomycetemcomitans and P. gingi-
valis [121]. Amoxicillin-loaded, electrospun polylactic acid nanofiber membranes showed
antibacterial activity against Streptococcus sanguinis and Porphyromonas gingivalis, control
of inflammation and promoted periodontal ligament cell migration in rat periodontal
defects [122].

5.1.2. Functionally Graded, Multilayered GTR Membranes

Functionally graded membranes have multiple layers; each layer is fabricated to be
closely associated with a specific type of tissue in order to control and dictate its behavior,
facilitating guided tissue regeneration. Recently, a novel trilayered chitosan membrane with
varying concentrations of bioactive glass among the layers was prepared and evaluated. The
lower layer, which was designed to interface with the bone, was porous, hydrophilic and
had the highest concentration of bioactive glass; this layer showed osteoblast and fibroblast
cell adhesion and proliferation. The upper layer, designed to interface with the connective
tissue and the epithelium, was nonporous, hydrophobic and had no bioactive glass and
showed no cell adhesion and proliferation [123]. Similarly, a dual-layered membrane
containing fish collagen and poly-vinyl alcohol (PVA) showed bone marrow mesenchymal
stem cell adhesion and differentiation into osteoblasts on the collagen layer, whereas
the PVA layer did not facilitate stem cell adhesion [124]. Another trilayered membrane
containing chitosan, polycaprolactone and gelatin showed superior mechanical stability,
enhanced blood clotting, biocompatibility and cell exclusion properties, indicating its
potential in guided tissue regeneration [125].

6. Innovations in Biomaterial Construction and Design for Tissue Engineering

The periodontal attachment apparatus is an anatomically and histologically complex
zone containing different types of tissues integrated together for the purpose of supporting
the teeth in the jaws: the periodontal ligament (a fibrous tissue) connects the bone to the
cementum of the tooth root; the entire complex is covered by epithelium and connective
tissue of the gingiva. To be able to regenerate the periodontal complex in its entirety, there
is a need to customize biomaterials that contain different parts or zones that would mimic
and regenerate each type of tissue. The construction of such complex scaffolds has become
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a reality due to the application of novel biomaterials, innovative engineering solutions and
fabrication techniques that can combine different biomaterials.

6.1. Trilayered Nanocomposite Hydrogel Scaffold

An in vitro study conducted in 2017 evaluated a nanocomposite hydrogel scaffold
with three distinct layers; each layer was designed to regenerate a specific type of tissue in
the periodontium. The cementum layer was made of chitin-poly (lactic-co-glycolic acid)
(PLGA) hydrogel scaffold with nano-bioactive glass ceramic and cementum protein-1; this
layer faces the root surface. The alveolar bone layer that faces the bone surface was made of
a chitin-PLGA hydrogel scaffold with nano-bioactive glass ceramic and platelet-rich plasma
(PRP). The middle layer attempting to regenerate the periodontal ligament fibers was made
of the same chitin-PLGA hydrogel scaffold but contained fibroblast growth factor (FGF).
The three layers were assembled together to form a biocompatible composite scaffold, which
induced differentiation of human dental follicle stem cells into osteoblasts, cementoblasts
and fibroblasts (Figure 3). The implantation of the scaffold in a rabbit periodontal defect
caused complete regeneration of the periodontium; histological and immunohistochemical
analysis confirmed the formation of new periodontal ligament, cementum and bone [126].
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6.1.1. Sandwich Tissue-Engineered Complex

A sandwich complex with three layers was fabricated into which gingival fibroblasts
were seeded on both sides of a collagen membrane and cultured for 3 days to create a tissue-
engineered membrane. This membrane formed the central layer of the sandwich. The outer
layers were formed by a layer of the intestinal mucosa (porcine jejunum) seeded on one
side by gingival fibroblasts; they were cultured and placed in a mineralization induction
medium to form a mineralized membrane. These mineralized membranes formed the outer
layers on both sides of the tissue-engineered membrane to form the sandwich construct.
The mineralized membranes attempted to regenerate the hard tissues (bone and cementum),
and the tissue-engineered membrane attempted to regenerate the periodontal ligament. The
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implantation of these sandwich constructs led to complete regeneration of the periodontal
defects in beagle dogs’ experiment; histological analysis confirmed the formation of new
bone, cementum and periodontal ligament within 10 days [127].

6.1.2. 3D-Printed Multiphase Scaffold

Three-dimensional (3D) printing technology was used to assemble a poly-caprolactone-
hydroxyapatite scaffold in three distinct phases: Phases A, B and C were designed with
100 µ, 600 µ and 300 µmicrochannels incorporated with PLGA microspheres encapsulating
amelogenin (to regenerate cementum/dentin), connective tissue growth factor (CTGF) (for
periodontal regeneration) and bone morphogenetic protein-2 (BMP-2), (for bone regen-
eration). This multiphase scaffold was then seeded with dental pulp stem cells (DPSCs)
and cultured in vitro before implanting them subcutaneously in immunodeficient mice.
After 4 weeks of implantation, histological analysis showed mineralized tissue formation
on Phases A and C; Phase B contained collagen fibers inserted into mineralized tissues and
fibroblast-like cells along with blood vessels. The PLGA microspheres were used to deliver
biological growth factors for stem cell differentiation; the release of the growth factors was
controlled in time over 6 weeks [128].

6.2. Temporal Control of Drug Release

A chitosan scaffold containing alginate microparticles loaded with insulin-like growth
factor-1 (IGF-1) and PLGA nanoparticles loaded with bone morphogenetic protein-6 (BMP-
6) was fabricated to study the temporal sequence of drug release. The results exhibited
initial rapid release of the alginate microparticles, and since PLGA nanoparticles have a
longer degradation rate, they release BMP-6 in a sustained manner. Hence, this system was
used to control the temporal sequence of drug release in a phased manner. Results showed
enhanced proliferation and differentiation of cementoblasts and increased extracellular ma-
trix (ECM) synthesis in vitro [129]. A 2015 study developed a nanosphere in a microsphere
strategy to control the release of growth factors. A heparin-gelatin nanosphere is synthe-
sized and loaded with BMP-2; the heparin binds to BMP-2 and protects it from degradation
and sustains its release. This nanosphere is then encapsulated into a microsphere. Since the
microsphere is made from nanofibers, it mimics the natural structure of ECM and increases
cell adhesion and proliferation. This system ensured sustained and controlled release of
BMP-2 from the nanosphere and caused significant new bone formation in a rat calvarial
defect model, which was confirmed by histological analysis [130].

6.3. An Injectable, Immunomodulatory Biomaterial

Hu et al. (2018) developed a novel immunomodulatory biomaterial containing
interleukin-4 (IL-4) for switching proinflammatory M1 macrophages to proresolving M2
macrophages in a diabetic rat model. Heparin-modified gelatin nanofibers were self-
assembled into a microsphere into which IL-4 was loaded. Heparin binds to IL-4, protecting
it from degradation and sustaining its release. When injected into a rat fenestration defect
model, it caused switching of macrophages to proresolving M2 phenotype and resolved
the inflammation; there was enhanced osteogenic differentiation and new bone formation.
This study presented a strategy of host-modulation of periodontal regeneration using
biomaterial-controlled release of anti-inflammatory cytokines [131].

6.4. Smart Biomaterial with Shape Memory

A temperature-sensitive, shape-memory biomaterial was synthesized using cross-
linked poly-caprolactone with hydroxyapatite nanoparticles loaded with BMP-2 (Figure 4).
This large porous scaffold was deformed into a compressed shape and introduced into
a bone defect through a minimally invasive surgical approach; when exposed to body
temperature (37 ◦C), the scaffold regained its original shape to accurately fit into the
defect. This shape memory was confirmed using micro-CBCT in a rat mandibular defect
model. The scaffold also was shown to be biocompatible and induced significant new bone
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formation. This study presents an innovative strategy that has great potential in tackling
periodontal defects of complex shapes and sizes [132].
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7. Current Frontiers and Future Horizon

Our current understanding of the wound healing and resolution of inflammation
in periodontal tissues is inadequate to successfully manage and treat periodontitis. A
complete and thorough understanding of the etiopathogenesis of the disease along with
the healing mechanisms are key for engineering biomaterials for periodontal regeneration.

One of the most important problems in managing periodontitis is regenerating the
lost tissues in horizontal/supra-alveolar bone defects. In spite of advances in biomaterial
engineering, there is a lack of solutions in sight for regenerating tissues in horizontal bone
defects that are non-contained and lack spatial control of biomaterials. Newer biomaterial
engineering approaches need to emerge to successfully exclude the epithelium and connec-
tive tissue from the horizontal bone defect and to spatially orient the biomaterials in the
defect area.

An important tenet for the success of periodontal therapy is regenerating all three
types of tissues (cementum, periodontal ligament and bone) in the periodontal defect. Even
though composite multilayered biomaterial constructions have successfully demonstrated
the formation of all three types of tissues in vitro and in experimental periodontal defect
models in animals, their efficacy needs to be evaluated in humans. Currently, platelet con-
centrates show promise in delivering autologous growth factors directly to the periodontal
defect. However, the scientific literature reveals numerous protocols for different types of
platelet concentrates. Periodontal regeneration is a rapidly evolving, dynamic field with an
enormous potential for research.
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With advances in biomaterial science and growing interest in tissue engineering strate-
gies, the future displays possibilities for complete rehabilitation and regeneration of the
periodontium. Taken together, the combination of bone graft substitutes and stimulatory
effects of bioactive materials (growth factors, bone morphogenetic proteins) provide a
better outcome in terms of tissue and bone regeneration. The success of tissue-engineered
bone regeneration is influenced by various factors that include the use of appropriate
scaffolds/constructs for harvesting cells at the defect site, suitable cell type, adequate
vascularization, signaling molecules for osteogenic differentiation, etc. Hence, a multidisci-
plinary approach will be required to develop newer graft materials that possess enhanced
properties to obtain more desirable results.

Advancements in scaffold fabrication technologies such as 3D printing, multiphase
scaffold, smart biomaterials, etc., have been developed with attempts to regenerate different
tissues of the periodontium. Several in vitro studies using these constructs incorporated
with nanohydroxyapatite, immunomodulatory biomaterial, gingival fibroblasts, growth
factors, etc., have yielded beneficial results. However, clinical trials are required to assess
the safety and efficacy of these biomimetic materials for periodontal tissue engineering and
bone regeneration purposes in humans.
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