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Multiple imputation and analysis for
high-dimensional incomplete proteomics
data
Xiaoyan Yin,a,b,e*† Daniel Levy,a,c Christine Willinger,a,c

Aram Adouriand and Martin G. Larsona,b,f

Multivariable analysis of proteomics data using standard statistical models is hindered by the presence of incom-
plete data. We faced this issue in a nested case–control study of 135 incident cases of myocardial infarction and
135 pair-matched controls from the Framingham Heart Study Offspring cohort. Plasma protein markers
(K= 861) were measured on the case–control pairs (N= 135), and the majority of proteins had missing expression
values for a subset of samples. In the setting of many more variables than observations (K≫N), we explored and
documented the feasibility of multiple imputation approaches along with subsequent analysis of the imputed
data sets. Initially, we selected proteins with complete expression data (K= 261) and randomly masked some
values as the basis of simulation to tune the imputation and analysis process. We randomly shuffled proteins into
several bins, performed multiple imputation within each bin, and followed up with stepwise selection using con-
ditional logistic regression within each bin. This process was repeated hundreds of times. We determined the op-
timal method of multiple imputation, number of proteins per bin, and number of random shuffles using several
performance statistics. We then applied this method to 544 proteins with incomplete expression data (≤40%
missing values), from which we identified a panel of seven proteins that were jointly associated with myocardial
infarction. © 2015 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.
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1. Introduction

1.1. Study design and objectives

As part of the ‘Systems Approach to Biomarker Research (SABRe) in Cardiovascular Disease (CVD)
initiative’ (http://www.nih.gov/news/health/mar2009/nhlbi-12.htm—accessed December 22, 2014), a
nested case–control study was designed with pairs of myocardial infarction cases and controls
(N pairs = 135), which were matched using several baseline characteristics. Technical details of the study
design and plasma protein detection method have been reported previously [1]. Of the unique protein
biomarkers measured (K=861), only 261 were measured in every sample, and no single sample had
complete data on all proteins. The experimental aim of the study was to identify proteins that were jointly
associated with myocardial infarction. We faced a serious challenge regarding multiple marker analysis:
If we ignored biomarkers with missing values, we would waste potentially important information;
however, if we removed subjects with any missing values, we would lose all observations. To use the
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available data effectively, we decided to multiply impute missing values. Imputation and subsequent
analysis were complicated by the presence of many more variables than observations (K≫N).

We discuss those challenges and our decisions within the following context. To accommodate
the pair-matched design, we used conditional logistic regression for statistical analysis. In each
model, we maintained a ratio at least 5:1 for pairs/markers. To identify ‘important’ proteins—that
is, proteins associated with myocardial infarction—we used stepwise selection. In all analyses, we
strictly adhered to Rubin’s rule for multiple imputation [2,3]. We developed an approach in which
we randomly shuffled the protein markers into several bins, imputed data, and used stepwise se-
lection for the proteins in each bin. Before applying multiple imputation methods to our incom-
plete data, we conducted extensive simulations to answer three questions: (1) Which bin size is
suitable for these data? (2) Does imputation quality (defined in Section 2.3.2) differ between joint
modeling and fully conditional specification (i.e. MCMC vs FCS)? (3) To select a stable panel of
proteins associated with myocardial infarction, how many shuffles do we need?

In general, through this work, we developed an approach that applies for high-dimensional data
missing completely at random or at random. We demonstrated which parameters in imputation and
stepwise selection affect the variability in final model.
1.2. Multiple imputation

Multiple imputation is widely used to cope with missing data [2,4–8]. It fills in missing values to
generate multiple complete data sets that preserve the main characteristics of the original data.
Plausible values for missing data are drawn randomly from the underlying joint distribution of
the variables, and each complete data set is analyzed using standard methods. Across data sets,
one combines parameter estimates and their variances, accounting for between- and within-
imputation variability, to generate overall estimates and standard errors. This process of estimation,
reflecting our uncertainty in missing values, is called ‘Rubin’s rules’.

There are two general methods to multiply impute multivariate data having an arbitrary pattern
of missing values: (1) the joint modeling approach, which uses Markov chain Monte Carlo
(MCMC) simulation [5], and (2) the chained equation method—also called fully conditional spec-
ification (FCS)—which sequentially imputes one variable at a time [9–11]. The MCMC approach
consists of two steps: imputation (I-step) and posterior (P-step). At the I-step, simulated values are
generated to replace missing values for each observation independently, conditioning on the current
estimate of the mean vector and covariance matrix; at the P-step, the complete data set is used to
calculate a posterior distribution (i.e. a mean vector and covariance matrix) for input into the next
I-step. These two steps iterate until reaching a stationary distribution, from which values are drawn
to replace the missing values in one data set. FCS is also iterative, but missing values are replaced
sequentially one variable at a time: At each round of iteration for a given variable, one specifies
its conditional distribution with respect to all other variables in the imputation model. Imputed
values are drawn from the estimated conditional distribution on the observed value for the variable
being considered and on the imputed data for the remaining variables.
1.3. Number of variables per imputation model (binning)

Before performing multiple imputation, we had to determine how many variables to include in one
imputation model. Collins et al. [12] suggested that including as many variables as possible would
increase estimation efficiency and reduce bias. Graham 2009 [6] suggested using a maximum of
100 variables in multiple imputation, even with a sample size as large as 1000, and fewer variables if
the sample size is smaller.

Like us, Emerson et al. [13] had too many variables for a single imputation model (N=677 samples vs
K=42 variables). They divided variables into bins of nine or fewer (arbitrary choice) and imputed data
within each bin. We also needed to shuffle variables into bins. Our initial experience was that including
too many variables in a bin often produced a singular covariance matrix for MCMC, and the expectation
maximization (EM) algorithm in bootstrap resampling for priors often failed to converge. The reason for
the latter result is that the number of parameters to be estimated by the EM algorithm increases rapidly
because K means and K(K�1) / 2 covariance elements must be estimated. By simulations, we were able
to tune both bin size and number of shuffles.
© 2015 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 1315–1326
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1.4. Stepwise selection with imputed data

Stepwise selection of proteins with imputed data is likewise challenging. If we run stepwise selec-
tion on each imputed data set, the variables selected will likely differ among m imputed data sets,
so the parameter estimates cannot be combined following Rubin’s inference rules. To follow
Rubin’s rules, we must run stepwise selection simultaneously on m imputed data sets and decide
whether to include/remove a variable using parameter estimates and standard errors combined
across m imputed data sets. This method is computationally intensive, but it is the natural way
to obtain unbiased estimates with correct precision. Following Wood et al. [3], we call this method
the ‘RR’ (abbreviated from Rubin’s rules) approach.

With more candidate variables than subjects, another issue is the number of variables in one
analysis model. In logistic regression, maintaining five to ten events per variable (EPV) is recom-
mended [14]. We had 135 events, which allowed for 27 biomarkers to be evaluated in one model.
Performing stepwise selection within the same bins as those used in imputation, a relatively small
bin size conformed with EPV guidelines.

1.5. Number of shuffles and criteria for importance

Results of imputation and stepwise selection depend on which variables are contained within each
bin. During imputation, imputed values are generated using variables in the same bin; during var-
iable selection, p values for individual variables are affected by which of the other variables ap-
pear in the analysis model. By repeatedly shuffling variables into bins, we impute and test each
variable in the presence of most other variables. Here, we compare selection results for different
numbers of random shuffles of biomarkers into bins.

2. Methods

2.1. Plasma protein data collection and analysis

Our sample was comprised of 135 pairs of myocardial infarction cases and controls identified from
the Framingham Heart Study Offspring cohort [15]. As a nested case–control design, the cases and
controls were matched for age, sex, smoking status, and statin use at baseline exam cycles 5, 6, 7,
or 8. Details about the study design have been described previously [1]. In total, 861 protein
markers were measured, including 261 with complete expression data, 283 incomplete markers
with ≤40% missing values, and 317 markers with >40% missing values. We dropped proteins
with >40% missing values for two reasons: (1) We may be not able to collect these markers
in practice and (2) high missingness leads to poor imputation quality and unstable inference
(we revisit this issue in the Section 4).

We assumed that the incomplete data were missing completely at random. Plasma samples
were measured in sets of eight, including three matched pairs and two pooled reference aliquots.
For any protein with missing data in the reference samples, all six experimental samples also had
missing values. This accounted for the vast majority (>90%) of missing data in cases and con-
trols. Furthermore, means and standard deviations of protein expression values were fairly con-
stant across a wide spread of missing percentages (Supplementary Figure 1). We rank
normalized [16] marker data to avoid problems caused by non-normality. All imputation models
and analysis models included known CVD risk factors: body mass index (BMI), current diabetes
status, plasma high density lipoprotein (HDL) cholesterol, hypertension treatment, systolic blood
pressure, and total plasma cholesterol. We used matching factors as auxiliary variables in impu-
tation models.

2.2. General methods and notation

The overall strategy was as follows: (1) randomly shuffle biomarkers into bins; (2) within each
bin, perform imputation m times; and (3) perform stepwise selection on m data sets from each
bin. In phase 2, we took markers with high inclusion frequency and pooled them in a single
bin for imputation and stepwise selection to establish a final multiple-protein model.

As a natural analysis method for a matched case–control design, we used conditional logistic
regression with case status as the response variable, matched pair identifier as the stratification
factor, and protein biomarkers as the main predictors, adjusting for clinical risk factors.
© 2015 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 1315–1326
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Let i index individuals and h index case–control pairs (pair ID). The model then takes the fol-
lowing form:

log
πhi

1� πhi

� �
¼ αh þ x’hi β þ y’hi;

where πhi is the probability of being a case for the ith individual in matched pair h with covariates
yhi and proteins xhi and αh is a pair-specific intercept which is to be conditioned out. Clinical co-
variates were forced in.

Let l be the number of non-overlapping bins into which B proteins are shuffled, let n be the
number of shuffles, and let m be the number of imputed data sets. We shuffled proteins into l bins
completely at random, and the B proteins in each bin (together with auxiliary variables) went into
one imputation model, generating m imputed data sets. Stepwise selection of proteins was
performed using the m imputed data sets for that bin. Every step was based on p values inferred
from m imputed data sets. For example, at step 1, each protein was evaluated using every data set:
Each protein’s m parameter estimates were combined using RR to generate a single p value that
determined whether the protein entered the model.

From l bins, we obtained l panels of proteins to form the bin-specific panels. Pooling these l
panels of proteins, we obtained one shuffle-specific panel, so that from n shuffles we obtained n
shuffle-specific panels. We assumed that more important biomarkers have higher inclusion
frequency in shuffle-specific panels.
2.3. Simulations

Through simulations, we explored the roles of key factors and tuned the imputation process. We
began with the observed complete data for 261 proteins and proceeded in four steps: (1)
introduce missing values via simulation; (2) perform multiple imputation with varying bin sizes,
using FCS and MCMC with or without priors to evaluate their effects on imputation quality;
(3) determine the number of shuffles needed to obtain a stable panel of biomarkers; and (4)
compare the results with those obtained from complete data. The simulation process is
summarized in Figure 1.
Figure 1. Flow chart of simulation process. Using 261 biomarkers with complete data, we introduced missing
values and studied parameters for successful imputation. The imputation parameters included the number of
variables per bin, FCS versus MCMC, use of prior information in MCMC, and the number of shuffles. From
evaluating these parameters, we determined that 25 was the ‘best’ bin size and that MCMC with prior informa-
tion worked better than MCMC without prior information or FCS. Using these settings, we imputed data and

studied the parameters for stepwise selection.
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2.3.1. Introducing missingness in complete biomarker data. The simulated missingness should reflect
the distribution of missing values across all biomarkers with missing values clustered in case–
control pairs. Therefore, we masked some data completely at random, by pairs, to mimic the
distribution in the set of 544 biomarkers that we would ultimately analyze. The histogram of the
numbers of non-missing values in pairs for observed and simulated data is displayed in Supplementary
Figure 2.
2.3.2. Imputation quality measures. As pointed out in the imputation literature, proper imputation
should generate accurate and plausible values and preserve the variability and correlation matrix of
the original data [17–19]. We used three measures for gauging imputation quality: distance ratio (DR;
a Mahalanobis distance statistic), mean absolute difference in correlation coefficients (MADC), and fre-
quency of extreme values.

We defined a modified Mahalanobis distance, DR, which measures the cumulative distance between
the imputed data and complete data. Smaller mean DR indicates better imputation quality. Details are in
Appendix A.

The MADC indicates how well the original correlations among variables are preserved in imputed
data sets. We calculated correlation coefficient matrices for the complete data (R) and for each imputed
data set (R’

q for data set q). The MADC is the average of the absolute element-wise differences between
the two correlation matrices, where p is the number of variables:

MADCq ¼ mean R� R’
q

��� ��� ¼ 2
p p� 1ð Þ

X
f or a<b

X
r a; bð Þ � r’q a; bð Þ
��� ���

Smaller MADC indicates a better-preserved correlation matrix.
In imputation, implausible (extreme) values may occur and too many extreme values indicate poorly

imputed data. We used the frequency of extreme values as a complementary measure for imputation
quality (refer to Supplementary Materials).
2.3.3. Imputation method. We used procedure MI of SAS software version 9.3 (Copyright, SAS Insti-
tute Inc., Cary, NC, USA) to generate imputed data sets. We used random seeds in single-chain MCMC
and regression imputation in FCS with 20 iterations for burn-in.

We evaluated the effects of the number of variables per bin (bin size) and the number of independent
allocations of variables to bins (shuffles) on imputation quality. We also investigated whether using
informative priors (i.e. mean vector and covariance matrices from masked data) for multivariate distri-
butions in MCMC affects imputation quality, and we compared MCMC with FCS.
1319
2.3.4. Imputation tuning: bin size, FCS, and MCMC with or without informative priors. We tried bin
sizes of 40 and 50, but MCMC often failed with or without informative priors. Therefore, we tested
smaller bin sizes: B=10, 15, 20, 25, or 30. The 261 masked biomarkers were randomly shuffled into
roughly equally sized bins. The biomarkers in each bin entered one imputation model together with aux-
iliary variables. To study imputation quality, we computed mean DR and MADC for ten imputed data
sets from each imputation model per bin size per shuffle. In addition, we randomly shuffled the bio-
markers ten times given each bin size, so that for each bin size, there were ten values of mean DR
and ten values of MADC.

Figures 2 and 3 display imputation quality in terms of mean DR and MADC, respectively, for com-
binations of bin sizes, informative priors, and FCS versus MCMC methods. We found that imputation
quality improved with increasing bin size. In the absence of an informative prior, with a bin size of
25 or 30, more than half of the imputations did not converge. However, using a prior led to smaller mean
DR and MADC, even with small bin sizes. Compared with a bin size of 30, a bin size of 25 provided
similar imputation quality with more successful imputations in the presences of an informative prior.
All other aspects being equal, FCS had poorer quality than MCMC, that is, greater mean DR and greater
MADC. Using the frequency of extreme values, we drew the same conclusion (Supplementary Table 1).
We decided to impute with a bin size of 25 using MCMC with an informative prior.
© 2015 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 1315–1326



Figure 2. Imputation quality metric: mean distance ratio (DR) by bin size and imputation method. Results are
based on simulated data. For each combination of bin size and prior information, ten shuffles were performed
and ten datasets were imputed within each bin. Bin-specific datasets were merged within each shuffle. Mean
DR was calculated across the ten datasets within each shuffle. (Smaller DR indicates less distance between the
imputed data and original data.) Mean DR decreased with increasing bin size. MCMC with prior information
generated data with smaller DR than either FCS or MCMC without priors. Failure to finish imputation was com-

mon with bin sizes of 25 and 30 when no prior was used in MCMC.
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2.3.5. Assessing stepwise selection following imputation. We first used the complete data to assess how
many shuffles were needed to produce a stable panel in stepwise selection. The frequency that a marker
was selected (p<0.05 to enter and stay) in bin-specific models was defined as the inclusion frequency.
We created three ‘gold standards’ by running 7200 shuffles of 261 markers with a bin size of 25, one for
each inclusion frequency threshold: 40, 50, and 60%. We used Cohen’s kappa statistic to quantify agree-
ment between the gold standard and the panel selected under various numbers of shuffles (20 to 220 by
40). Details are in Appendix B. We found that 140 shuffles were sufficient to obtain stable selection
results with 261 complete biomarkers (Figure 4).

To evaluate the process with our masked data, we imputed 20 data sets using a bin size of 25 and the
MCMC approach with an informative prior. We performed stepwise selection based on the RR method
within each bin on the 20 stacked data sets. For this, we revised a SAS macro from Chen (https://www.
biostat.wisc.edu/sites/default/files/tr_217.pdf, accessed July 30, 2012) to perform stepwise selection in
conditional logistic models. At all inclusion frequency thresholds, agreement increased until ~140 shuffles,
Figure 3. Imputation quality metric: mean absolute difference in correlations (MADC) by bin size and imputa-
tion method. MADC decreased with increasing bin size. MCMC with prior information generated data with
smaller differences in correlation matrices than either FCS or MCMC without priors. The mean and standard de-

viation of the absolute correlation coefficients in complete data are 0.13 and 0.10.

© 2015 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 1315–1326
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Figure 4. Kappa statistics for model selection results based on complete data of 261 biomarkers by number of
shuffles into bins of size 25. Kappa quantifies the agreement between selection results based on specific numbers
of shuffles versus a gold standard obtained from 7200 shuffles. We ran stepwise selection within bins holding
~25 biomarkers. Given n shuffles, we called a biomarker ‘important’ if it was selected at least 40, 50, or 60%

among n times. From these results, we concluded that 140 shuffles were sufficient for a stable panel.

X. YIN ET AL.
above which kappa values were ≥0.8. As expected, kappa values for imputed data were smaller than for
complete data (Figure 5).

Table 1 shows the numbers of biomarkers selected per bin and per shuffle using complete data and
imputed data. The median number of selected biomarkers per bin was 2, whereas the median number
Table I. Number of biomarkers selected in conditional logistic models per bin and per shuffle.

Statistic Observed complete data Imputed dataa

Per bin Per shuffle Per bin Per shuffle

Min 0 13 0 11
Q1 1 18 1 16
Median 2 19 2 18
Q3 3 21 2 20
Max 10 28 9 26

aThe imputed data are based on 135 case–control pairs, 261 biomarkers (≤40% missingness), a bin size of 25, and
imputation using MCMC with priors.

Figure 5. Kappa statistics based on imputed data for the 261 biomarkers after introducing missing values. Kappa
values compare the presence/absence of biomarkers in the gold standard model (complete data, filled symbols)
versus the imputed data (20 imputations, open symbols). For each combination of number of shuffles (n) and
selection threshold (t), kappa from the complete data is the average from ten replications. Kappa values were cal-
culated by comparing selection results with a gold standard (as in Figure 4). Kappa values are generally smaller
than those based on the complete data. It appears that kappa does not improve with more than 140 shuffles.

© 2015 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 1315–1326
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per shuffle was 18 to 19. Typically, one or two fewer biomarkers were selected with imputed data than
with complete data.

2.3.6. Conclusions from simulation study. From these simulation studies, we drew three primary
conclusions. First, bigger bin sizes improved imputation quality, but the imputation model failed to
converge with very large bins. A bin size of 25 was the optimal choice given our sample size. Second,
the MCMC approach with informative priors produced higher quality imputation results than other
approaches. Third, with 261 biomarkers (135 case–control pairs, ≤40% missing data per biomarker),
we needed at least 140 shuffles to obtain a stable panel of selected biomarkers.

3. Application to actual data

Characteristics of the study sample have been published [1]. Briefly, 135 pairs of myocardial infarction
cases and controls were matched for age, sex, smoking, and statin use: 65±9years old, 34% women,
24% current smokers, and 19% statin users. More cases than controls were diabetic (28 vs 7%) or on
hypertension treatment (47 vs 37%). Other characteristics (cholesterol, BMI, and blood pressure) were
similar between cases and controls.

We used 544 biomarkers (261 biomarkers with complete data and 283 with ≤40% missing values).
Biomarkers were shuffled randomly into 22 bins of target size ~25. Biomarkers in each bin—together
with case status, matching factors, and clinical covariates—were used to impute missing values by the
MCMC approach (observed mean and covariance matrices were used for priors). For each bin, 20
imputed data sets were generated and stepwise conditional logistic regression was implemented using
the RR approach.

Whereas our initial tuning used 261 biomarkers, we now analyzed 544 protein markers, which should
presumably require a larger number of shuffles. We used a single surrogate complete data set and found
that we needed 260 shuffles to yield stable selection results. Details are in the Supplementary Materials.
Therefore, we repeated the process above for 260 shuffles. Protein markers chosen with at least 40%
frequency are listed in Supplementary Table 2. The number of biomarkers chosen at frequency
thresholds of 40, 50, and 60% were 33, 26, and 24, respectively.

Using one bin with 26 biomarkers chosen with frequency ≥50%, we performed a final round of mul-
tiple imputation plus stepwise selection. To ensure stable regression parameter estimates, we generated
50 imputed data sets. Imputation was followed by stepwise selection with criterion p<0.05 to enter and
stay in the model. From this process, seven proteins were jointly associated with myocardial infarction
status: glycoprotein 5 (gene: GP5), cluster of differentiation 5 molecule (CD5) antigen-like (CD5L),
alpha-amylase 1 (AMY1A), myoglobin (MB), collagen α-1 (XVIII) chain (COL18A1), protein kinase
C inhibitor protein 1 (YWHAZ), and multimerin-2 (MMRN2) (Table 2). With the exception of MB, an
established diagnostic marker of myocardial infarction [20,21], these data present a novel set of proteins
as potential biomarkers of myocardial infarction. GP5 is part of a group of surface glycoproteins that
Table II. Final panel of biomarkers jointly predicting myocardial infarction status in a multiple-marker con-
ditional logistic model.

Marker
(gene
name)

Missing
values

Inclusiona

frequency
Single
marker
p value

Final model using RR approachb

Odds ratio 95% CI P value

GP5 11% 100% 0.0010 0.40 (0.18, 0.88) 0.023
CD5L 0% 99% 0.0012 0.50 (0.29, 0.86) 0.013
AMY1A 40% 98% 0.019 0.40 (0.20, 0.81) 0.012
MB 9% 97% 0.0053 0.38 (0.17, 0.83) 0.017
COL18A1 0% 90% 0.036 2.43 (1.25, 4.70) 0.009
YWHAZ 8% 85% 0.0056 0.34 (0.16, 0.75) 0.008
MMRN2 0% 79% 0.038 2.10 (1.19, 3.70) 0.011

aInclusion frequency was calculated from 260 shuffles of 544 markers (stage 1) and rounded to the nearest integer
percentage.
bThe final model (stage 2) was based on 135 case–control pairs and 50 imputed datasets with the 26 most frequently
included markers. The model was adjusted for BMI, diabetes status, HDL cholesterol, hypertension treatment, systolic
blood pressure, and total cholesterol.

© 2015 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 1315–1326
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mediate the adhesion of platelets to injured vascular walls, and knockout models of GP5 in mice have
implicated this protein in thrombin-induced platelet activation [22]. CD5L is involved in the innate
immune response. Roles for CD5 in the development of atherosclerotic lesions and in the inflammatory
response underlying metabolic syndrome have been described [23,24]. AMY1A is a salivary enzyme that
contributes to carbohydrate metabolism and has been associated with metabolic syndrome, obesity, and
diabetes [25,26]. COL18A1, a structural extracellular matrix protein, can be cleaved to produce
endostatin that is an endogenous anti-angiogenic protein that may have a protective effect on the pro-
gression of atherosclerosis [27–29]. YWHAZ is a cell signaling protein that has been shown to contribute
to cardiac hypertrophy and fibrosis in diabetic mice and may function in the development of cardiovas-
cular complications of diabetes in humans [30,31]. MMRN2 is another extracellular matrix glycoprotein
that has been shown to impair angiogenesis and may function as a key negative regulator of vasculari-
zation during normal vascular development [32,33].

4. Discussion

We developed an approach for identifying important predictors of binary outcome status when
missing values exist in hundreds of candidate predictor variables and when sample size is small
relative to the number of variables. In this context, we sought to identify a parsimonious multiple
marker model. Because data appeared to be missing completely at random, we could not recover
extra information regarding single predictor associations with the outcome. The individual protein
p values based on imputed data and based on partially observed data are similar in scale overall
(Supplementary Figure 5a) or across missing percentage groups (Supplementary Figure 5b). Rather,
the purpose of imputation was to make multimarker analyses tractable. Given our assumption that
data were missing completely at random, this process would not work for data with non-random
missingness.

We performed simulation based on a complete data subset and randomly masked values for some
predictors. We shuffled variables into bins and performed imputation immediately followed by
stepwise selection, strictly adhering to RR. We examined choices of bin size, number of random
shuffles of biomarkers to bins, FCS versus MCMC imputation methods (with or without prior infor-
mation on multivariate distributions), and different inclusion frequency thresholds for selecting
important predictors. We applied our simulation findings to real data with 544 biomarkers
(mean missingness =9% and maximum missingness= 40% per marker) on 135 myocardial infarction
case–control pairs.

We found that MCMC with informative priors provided the best imputation quality. Typically, FCS
and MCMC generate similar analysis results for arbitrarily missing data [34,35]; however, this might not
hold true when the number of variables is large relative to sample size. As mentioned by Carpenter and
Kenward [10], with a large number of variables, providing a stabilized covariance matrix is necessary,
and this was only feasible for our data with MCMC. We encountered convergence failures as we tuned
imputation and model selection parameters. Likely, others will too, depending on sample size, amount of
missing data, imputation method, and modeling approach. We used failure to converge as a red flag to
signal dysfunctional settings. Therefore, we chose parameters so that the process was free of
convergence issues. Specifically, we used prior information for the missing data and bin size 25 (during
imputation and model fitting). Other researchers may explore using/ignoring prior information and may
try several bin sizes.

We limited our investigation to 544 biomarkers with ≤40% missing data. When we tried to relax this
threshold to 50% (580 markers), the imputation model often failed to converge. Even when imputation
was successful, the quality deteriorated (MADC increased ~20%, Supplementary Figure 4). We
attempted to maximize bin size while maintaining at least five ‘cases’ per variable. Larger bin sizes
caused convergence problems during the imputation step. We kept the same bins in imputation and
analysis to adhere to RR.

We performed many tests in each round of stepwise selection, and we used p<0.05 as the criterion
for entering and staying in a (bin- and shuffle-specific) model. As a result, the probability approaches
1.0 of at least one type I error. Simulations under known conditions could be conducted to examine
false-positive and true-positive rates of protein selection; however, those are beyond the scope of this
investigation. We note that with more than 500 candidate predictors, the ‘best’ multiple marker model
is likely not unique: Slight changes in imputation parameters or analysis may produce different models.
Nevertheless, our process of studying imputation and analysis under various conditions (here, the
© 2015 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 1315–1326
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imputationmethod, the number ofmarkers per bin, the number of shuffles, and imputation quality measures)
can be straightforwardly applied to a range of statistical models and outcomes.

Appendix A: Mahalanobis distance ratio

Mahalanobis distance measures the dissimilarity between two vectors and is often used to detect
outlying multivariate data points [36]. In the simulations, we knew the true value of each missing data
point; therefore, we used Mahalanobis distance to measure distance from a vector to another with known
mean and covariance matrix.

For subject j, the Mahalanobis distance is Dj= (Xj�Yj)S
� 1(Xj�Yj)

T where Xj is the vector of bio-
markers from the imputed data, Yj is the vector of observed complete data for the same subject, and S
is the covariance matrix obtained from the observed complete data. The closer the imputed values are
to the original values, the better the imputation quality and the smaller the value of D. However, we
cannot directly use the D statistic, because the missing pattern varies across individuals: Some subjects
have missing values in marker A, some in marker B, and so on. Thus, Xj is a mixture of observed values
and imputed values. If marker k is observed for subject j, the corresponding element (Xjk�Yjk) is 0;
otherwise, it is the difference between the imputed and the original values. D tends to increase with
the number of missing biomarkers for each subject. To overcome this issue, we created the distance
statistic Duj=UjS

� 1Uj
T, where U has the same dimensions as X and Y, and its element takes a value

of 0 if the corresponding x= y and equals 1 otherwise. The ratio D/Du, which we call distance ratio
(DR), is a weighted average of the sum of the squared difference accounting both for covariance between
the corresponding elements of Y and for the pattern of missing values in X and Y for each subject.

Appendix B: Kappa statistic

We performed n random shuffles with n=20, 60, 100, 140, 180, and 220, respectively. The inclusion
frequency of each marker being selected was calculated as (no. of times chosen) divided by n. We also
tested n=7200, an arbitrarily large number, to obtain the ‘gold standard’ for selection frequency of each
marker. We explored how the results varied depending on the importance threshold (t) for inclusion fre-
quency, which is defined as the proportion of times that a biomarker appears in a shuffle-specific panel,
with t=40, 50, and 60%.

For n shuffles, we obtained a list of ‘important’ biomarkers at each threshold t. We used Cohen’s
kappa statistic to quantify agreement between chosen biomarkers from various n and the gold standard.
Larger values of kappa denote more stable selection results. Kappa=1 means that the selected variables
agree perfectly with the gold standard. For each n and t, the process was repeated ten times.

The following is an example of a kappa calculation for n=140:
Chosen
by gold
standard

t = 40%, kappa = 0.92 t = 50%, kappa = 0.97 t = 60%, kappa = 0.95

No Yes Total No Yes Total No Yes Total

No 239 2 242 244 1 245 249 1 250
Yes 1 19 20 0 16 16 0 11 11
Total 240 21 261 244 17 261 249 12 261
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