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Abstract: Atmospheric water harvesting by strong adsorbents is a feasible method of solving the
shortage of water resources, especially for arid regions. In this study, a machine learning (ML)-
assisted high-throughput computational screening is employed to calculate the capture of H2O from
N2 and O2 for 6013 computation-ready, experimental metal-organic frameworks (CoRE-MOFs) and
137,953 hypothetical MOFs (hMOFs). Through the univariate analysis of MOF structure-performance
relationships, Qst is shown to be a key descriptor. Moreover, three ML algorithms (random forest,
gradient boosted regression trees, and neighbor component analysis (NCA)) are applied to hunt
for the complicated interrelation between six descriptors and performance. After the optimizing
strategy of grid search and five-fold cross-validation is performed, three ML can effectively build the
predictive model for CoRE-MOFs, and the accuracy R2 of NCA can reach 0.97. In addition, based on
the relative importance of the descriptors by ML, it can be quantitatively concluded that the Qst is
dominant in governing the capture of H2O. Besides, the NCA model trained by 6013 CoRE-MOFs can
predict the selectivity of hMOFs with a R2 of 0.86, which is more universal than other models. Finally,
10 CoRE-MOFs and 10 hMOFs with high performance are identified. The computational screening
and prediction of ML could provide guidance and inspiration for the development of materials for
water harvesting in the atmosphere.

Keywords: metal-organic frameworks; water harvesting; molecular simulation; algorithm; absorption

1. Induction

As we all know, 71% of the earth’s surface is covered by water, and the remaining
29% is land. At first glance, we have a lot of water resources; in fact, the water we use is
mainly fresh water, and fresh water only accounts for 2.5% of all water resources on the
earth [1]. Among them, approximately 69% of the fresh water is enclosed in the ice layer of
Antarctica and Greenland, and the remaining 30% is stored in the ground, so the fresh water
(such as river water and fresh water lakes) that humans can directly use accounts for only
0.4% of all water resources [1]. As population growth and living standards improve, water
resources are becoming increasingly scarce, especially daily water for residents of arid
regions. Currently, one third of the world’s population live in regions with medium and
high water shortages. It is estimated that two thirds of the world will face water shortages
by 2050 [2]. Therefore, the lack of fresh water has become one of the major crises to be
resolved. At present, several technologies are being used to address this issue. Desalination
is one of the main ways to develop new fresh water resources, but the construction of
this infrastructure requires a lot of money and the production process is highly energy
intensive [3]. In addition, since the main arid and water-scarce areas are far inland, there
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are never sea water resources available in these places. It is therefore especially important
to develop a fresh water technology that can be used in arid areas.

The atmosphere of our planet contains a lot of water, which exists in the form of
droplets and vapor. It accounts for about 10% of all fresh water [4]. Therefore, if at-
mospheric water can be efficiently harvested and used, water shortages can be greatly
alleviated. At present, the two main methods for collecting water vapor from the air are va-
por condensation and adsorption–desorption technology [5]. Condensation conditions are
relatively harsh, usually requiring very high amounts of water vapor from the air (relative
humidity, RH = 100%) and a large amount of energy, which is unrealistic when the relative
humidity is less than 50% [4]. On the contrary, the adsorption–desorption technology can
adsorb the water vapor from the air at low temperature, then, using low-grade energy such
as natural sunlight or waste heat, it can desorb and condense it into liquid water. The entire
process does not require additional energy. Obviously, adsorption–desorption technology
is more convenient and energy-saving, and can be used in relatively low humidity regions.

The key to adsorption–desorption technology is to select a suitable adsorbent. Cur-
rently, the main adsorbents are polymers, zeolites, and silica gels. Unfortunately, these
adsorbents have some shortcomings that cannot be ignored, such as low adsorption capac-
ity and the fact that regeneration requires a lot of energy [6]. AMetal-organic frameworks
(MOFs), a porous crystalline material, is self-assembled from metal ions and organic lig-
ands [7]. Due to its characteristics of high porosity, large specific surface area and adjustable
structure, it is regarded as a candidate for traditional adsorption. Although MOFs have long
been used in the fields of gas adsorption [8], separation [9,10], storage [11,12], catalysis [13],
and heat pumps [14,15], the use of MOFs to harvest water vapor from the atmosphere has
only been proposed in recent years [1,16,17]. This is because structural stability of MOFs
may deteriorate after absorbing water. As more MOFs with good water stability join the
MOF family, the use of MOFs for atmospheric water harvesting has received widespread
attention. Furukawa et al. [16] studied and evaluated the water adsorption properties of
23 materials including six newly synthesized zirconium-based MOFs and determined that
MOF-841 can be used as a candidate for atmospheric water harvesting in arid regions. In
2017, Kim et al. [4] developed a heat pump system using the MOF as an adsorbent to collect
water from the atmosphere. The principle is that the heat pump absorbs water at night,
and uses low-grade energy such as natural sunlight to desorb and condense liquid water
during the day. The system harvested 2.8 L of water per kilogram of MOF (MOF-801) per
day at room temperature with relative humidity below 20%. Recently, Hanikel et al. [18]
summarized the progress of atmospheric water harvesting and the use of MOF-designed
water-collection equipment. Therefore, it is feasible to use MOFs to capture water vapor
from the atmosphere. We need to screen out some super-hydrophilic MOFs in a huge MOF
database. The water vapor in the atmosphere is extremely small compared to N2 and O2,
so we need super-hydrophilic and highly selective MOFs to efficiently capture water from
the atmosphere. It is very difficult to select suitable MOFs from so huge a database by
experimental verification.

The emergence of high-throughput computational screening (HTCS) provides a pos-
sibility for solving the problem. Qiao et al. [19] used HTCS to select MOFs suitable for
separating CO2/N2 and CO2/CH4 from 4764 computation-ready, experimental MOF
(CoRE-MOF) databases. In fact, HTCS includes Monte Carlo simulations (MC) and ma-
chine learning (ML) [20], and previous studies on HTCS have usually relied on molecular
simulation. In recent years, ML has been widely applied to various fields, including image
recognition [21], natural language processing [22], data classification and mining [23,24],
and material performance prediction [25]. In our previous work, Shi et al. [26] combined
MS and ML to screen MOFs with good performance that can be used for adsorption heat
pumps. In addition, according to two ML methods with good prediction effects, we deter-
mined that the heat of adsorption is the key descriptor that determines the performance of
the heat pump. In the work of Dureckova et al. [27], a gradient boosting regression tree
(GBRT) model was applied to predict the CO2 working capacity and CO2/H2 adsorption
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selectivity of carbon capture. It was found that the R2 values of predictive CO2 working
capacity and CO2/H2 selectivity were 0.944 and 0.872, respectively. Hypothetical MOFs
(hMOFs) can be automatically generated by different metals, linkers. and topologies in
computer software. Wilmer et al. [28] generated 137,953 hMOFs from a library of 102 build-
ing blocks and screened 300 hMOFs with a higher capacity for methane storage than known
CoRE-MOFs. Wu et al. [29] formed a new data set with 130,397 hMOFs and 37 feature
descriptors including Henry’s coefficient, atomic number density, and functional group
number density. They found that the hMOFs with optimal methane-storage capacities
exhibit φ of 0.65–0.88, VSA of ~2250 m2·cm–3, etc.

The combination of machine learning and molecular simulation of HTCS has greatly
increased the speed of discovering new materials [27,30], because ML suitable for specific
systems will reduce the number of simulated materials, especially for the updated database
of material. Recently, Pardakhti et al. [31] used the trained random forest (RF) of the ML
model to predict the methane adsorption of ~130,000 hMOFs. The results showed that the
speed of ML was several orders of magnitude faster than traditional MS. The combination
of MS and ML has developed into the current main method of screening materials. In
Shi et al.’s review [7], several ML methods were considered to possess better prediction
performance, such as back propagation neural network and random forest. Therefore, in
this work, we selected these methods, as well as gradient boosting regression tree and
neighbor component analysis, on the basis that they have good predictive performance for
water harvesting on MOFs.

In the present work, we apply MC and three ML models to study the performance of
water harvesting on MOFs. Based on the established structure-performance relationship,
all three types of machine learning achieve a relatively good predictive effect. Then we
obtained the main descriptors that played an important role in the performance of MOFs
for the capture of water, and finally obtained super hydrophilic MOFs. This may provide
guidance for experimental workers to synthesize available MOFs.

2. Models and Methods
2.1. Molecular Models

The crystal structures of the version 2017 of 6013 CoRE-MOFs were collected and
established by Chung et al. [32,33] removing the free and coordinated solvent molecules.
A large crystallographic dataset of 137,953 hMOFs was designed by Wilmer et al. [28] using
102 building blocks and six different topologies. Five structural descriptors including the
largest cavity diameter (LCD), pore-limiting diameter (PLD), volumetric surface area (VSA),
void fraction (φ), density (ρ), and an energy descriptor of heat of adsorption (Qst), were
used to quantitatively describe the structure of the MOF. The reasons for the selection of
these six descriptors are as follows: (1) they possessed the strong structure-performance
relationships between gas and MOFs, confirmed by many previous works [28,32,34,35]
of high-throughput calculation of MOFs, which means that these six MOF descriptors
have a greater possibility of achieving the accuracy prediction in ML models than the
thousands of other descriptors that could have been used; (2) these six descriptors could
be applied in accuracy prediction of ML, which coincide with many ML works [36–39];
(3) these descriptors are relatively easy to measure in the experiment, and they can be
used directly to guide the synthesis and application of MOF. The LCD and PLD in each
CoRE-MOF were estimated using Zeo++ [40]. The VSA and φ were determined using the
diameter of 0.364 nm and 0.258 nm of N2 and He as a probe under the RASPA package,
respectively [41]. The Qst was calculated by the NVT-Monte Carlo (MC) with the Widom
method in RASPA under infinite dilution conditions, where N, V, and T are the number of
particles, the volume of system, and the temperature of the system, respectively [41].

The partial atomic charges of MOFs were rapidly estimated and evaluated using
the new MEPO-Qeq [42] method trained to reproduce density function theory (DFT), the
extended electrostatic potential fitted charges using the Repeating Electrostatic Potential
Extracted Atomic (REPEAT) method [43]. The LJ potential parameters of all CoRE-MOFs
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were obtained from the universal force field (UFF) [44], as listed in Table S1. In our previous
work, it was shown that combining the force fields and MEPO-Qeq method can accurately
and quickly predict the adsorption and capture of gases in various MOFs [26,45]. The force
field parameters of N2 and O2 molecules were described by the transferable potentials for
phase equilibria (TraPPE) force field [46], as demonstrated in Table S2. The TIP4P-Ew [47]
model was used to simulate H2O molecules with LJ sites on the O and H atoms, along with
the partial charges on H atoms and a dummy atom. A three-site model was applied to
mimic a CO2 molecule, which has a C-O bond length of 0.116 nm and a bond angle ∠OCO
of 180◦ [48]. Similarly, an N2 molecule was modeled as a three-site model with the N-N
bond length of 0.110 nm.

2.2. Monte Carlo Simulations

To capture water from the air, the Henry’s constants of H2O, N2, and O2 were cal-
culated at 298 K using the Widom particle insertion method [49], and then the selectivity
S0[H2O/(N2+O2)] was calculated by the Henry’s constant of three gas molecules. In this study,
the MOF with the larger Henry’s constant of H2O (KH2O) and higher S0[H2O/(N2+O2)] is
regarded as excellent candidate. Notice that Henry’s constant of water is calculated based
on the interaction of a water molecule with the framework, which is mainly designed to sim-
ulate the extremely low water-molecule content in extreme environments such as deserts
(it can be regarded as only one molecule of water in the air). It is noteworthy that, although
grand canonical MC (GCMC) is an accurate estimation for the adsorption performance of
MOFs, it is difficult to accurately calculate the adsorption loading of H2O. This is because
although the structure of a water molecule is very simple, a molecular H-O-H hydrogen
bond angle and dipole moment can change continuously during the adsorption process,
which further complicates the adsorption [50]. Thus, the H2O adsorption isotherm in most
adsorbing has a jump in a narrow range of vapor pressure. This jump is very difficult
to calculate during the GCMC simulation. Currently, there was still not a suitable force
field or H2O model, which could be used to screen the adsorption loading of H2O in most
CoRE-MOFs by GCMC. After the GCMC simulation was repeatedly tested, only several
MOFs could be accurately predicted with a relatively good level of agreement with the
experimental isotherm [46,50–52] Therefore, for a large scale of screening of CoRE-MOFs,
the Ki was used to calculate the adsorption selectivity of H2O in this work. For further
explanation, see the supporting information (SI).

The simulation unit cell extended to at least 2.4 nm along each dimension, and periodic
boundary conditions were applied in the three dimensions. It was assumed that the
framework atoms of MOFs were rigid and fixed during the simulations. To calculate the
LJ interaction, the long-range corrected spherical cut-off radius was set to 1.2 nm. The
Ewald summation [53] method was used to estimate the electrostatic interaction between
the frameworks and gas molecules as well as between the gas molecules. The number
of MC cycles was 100,000; the first 50,000 cycles were performed to the simulation of the
equilibrium system, and the last 50,000 cycles were run for ensemble averages. After
testing, it was shown that the effect of increasing the MC cycle on the adsorption results
was negligible. All simulations were carried out under the RASPA package [41].

2.3. Machine Learning Method

To find out which of the machine-learning (ML) models is suitable for predicting the
relationship between the six descriptors (LCD, φ, VSA, PLD, ρ, Qst) and the selectivity
S0[H2O/(N2+O2)] of MOFs, further information was sought by ML models. The three kinds
of ML employed for the prediction of S0[H2O/(N2+O2)] were random forest (RF), gradient
boosting regression tree (GBRT), and neighbor component analysis (NCA), which were
run in Statistics and Machine Toolbox Learning under Matlab2019a software. Because the
magnitude of the selectivity data span was very large and cannot be predicted directly,
it needed to be pre-processed first; that is, the value of S0[H2O/(N2+O2)] was taken by the
logarithm (log10(S0[H2O/(N2+O2)])) to narrow the enormous difference in the various data.
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In this work, after the five-fold cross-validation evaluated all possible values of each
parameter, three ML algorithms programmatically selected the optimal parameter values
for the final calculation and prediction, in which the six descriptors were regarded as the
input variable and log10(S0[H2O/(N2+O2)]) as output variable of ML. The key parameters
were optimized by five-fold cross-validation and grid-search, as listed in Table S3. All data
were divided into five folds. For each cycle, four-fifths of the data were selected randomly
as a training set, and one-fifth of the data as a test set. The ML model was run five times
for each group value of key parameters by the five-fold cross-validation. The average
determinate coefficient (R2) of test sets in five-fold cross-validation was adopted to indicate
the performance of the model built by different parameter groups.

R2 = 1 − ∑n
i=1 (yi − fi)

2

∑n
i=1 (yi − f i)

2

where n, yi, fi, and
–
fi refer to the number of MOFs, simulated value, ML predicted value,

and average ML predicted value, respectively.
In view of the maximum average R2, the optimal parameters could be automatically

obtained by the strategy of parameter optimization. Except the optimized parameters, the
other parameters were the default values, as listed in Table S4. Secondly, the entire data
set of 6013 CoRE-MOFs was adopted to train the model with optimal parameter values.
Finally, the data of 10,000 hMOFs were tested.

Among them, NCA [54,55] is a supervised learning algorithm that learns the feature
weights using a diagonal adaptation. RF is made of multiple decision trees to achieve
comparatively higher robustness, and its output is the average of the prediction results of
multiple trees [31]. Similarly, GBRT is also an aggregation method by decision tree, which
creates the optimal split criterion by continuously minimizing the least squares-regression
error for the reduction of computing residual last time. More details of the three MLs are
listed in the SI.

3. Results and Discussion
3.1. Univariate Analysis

To explore the effect of the six MOF descriptors on water harvesting performance, we
used univariate analysis to understand the relationship between each descriptor (LCD,
φ, VSA, ρ, PLD, and Qst) and the selectivity S0[H2O/(N2+O2)]. In Figure 1, the scale of
S0[H2O/(N2+O2)] is very large, because the adsorption behavior of vapor water is very special;
it is different from most gases. It is a typical multilayer adsorption. The adsorption of vapor
water in MOFs can be divided into two stages. Firstly, based on the interaction between
vapor water and MOFs, the water molecules are gradually adsorbed in the pore wall of
MOFs. Second, with the increasing of water molecules entering into the framework, strong
hydrogen bonds are formed between water and water molecules, leading to remarkable
multilayer adsorption. Thus, it is extremely important in the adsorption process of vapor
water that the first layer of water is successfully adsorbed in MOFs. Therefore, the difference
in selectivity of H2O between hydrophilic and hydrophobic MOFs is extremely large,
leading to the data with very high value. In addition, the content of water vapor in the
atmosphere is very small, especially in desert areas. The V-shaped adsorption isotherm
and very high selectivity of water could be helpful to achieve the capture of H2O in these
extreme environments. Figure 1a shows the relationship of the S0[H2O/(N2+O2)] and LCD.
The selectivity is close to 0 in the range of LCD less than 0.27 nm, which may be because the
molecules of H2O with the dynamic diameter of 0.264 nm cannot enter the pores of the MOF.
As the LCD continues to increase, the S0[H2O/(N2+O2)] gradually decreases and eventually
stabilizes at less than 1 (approximately 0.01). The S0[H2O/(N2+O2)] is less than 1, indicating
that the MOF does not have the ability to selectively adsorb H2O vapor, but preferentially
adsorbs N2 and O2 in the atmosphere. This process reflects the change from shape selective
to inverse-shape selective adsorption. The relationship of the S0[H2O/(N2+O2)] and VSA is
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shown in Figure 1b. In the region where VSA is close to 0, it shows a higher selectivity.
When VSA continues to increase, the selectivity reaches its highest point, then gradually
decreases. This is because when the VSA is small, the pores of the MOF can accommodate
H2O molecules, and when the VSA is too large, the accessible surface of all molecules in the
MOF increases, so the contact probability of the N2 and O2 with their optimal adsorption
sites increases. Therefore, the selectivity will decrease; that is, the selective separation of
H2O vapor cannot be achieved. The super hydrophilic MOFs with high selectivity and
high Henry’s constants have a VSA of less than 1000 m2·cm−3, except that the VSA of
HUZSUR01 is 1422.66 m2·cm−3.
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Figure 1. The relationship of selectivity S0[H2O/(N2+O2)] versus (a) LCD, (b) VSA, (c) ρ, and (d) PLD.
The color code represents void fraction φ.

Figure 1c shows the relationship of the S0[H2O/(N2+O2)] and density ρ. Density and void
fraction are correlated descriptors. It is worth noting that as the selectivity increases, the
density and void fraction change in opposite directions. This is not difficult to understand.
The larger the porosity, the larger the pore volume of the MOF and the lower its density.
When the ρ is less than 1260 kg·m−3, the S0[H2O/(N2+O2)] increases as the density increases,
and then the selectivity decreases with the increase of the ρ. In Figure 1, the void fraction φ
is mapped in the subplots as color codes. The MOFs with high selectivity have a medium-
range of φ (0.20–0.62), except for MOF HEWFUL (φ = 0.16). This is because too large and
too small pores are not suitable for selective separation. The pore is too small to prevent the
molecule of H2O from entering, thus hindering the adsorption. Conversely, if the pore is
too large, the interaction between the adsorbed molecules and the MOF will be weakened,
which is not conducive to selective separation. The S0[H2O/(N2+O2)] versus PLD is shown
in Figure 1d. This trend is similar to the relationship of the S0[H2O/(N2+O2)] and LCD. The
highest S0[H2O/(N2+O2)] are observed at PLD with 0.4 nm, which is approximately equaled to
the kinetic diameter of N2 and O2 (0.364 nm and 0.346 nm, respectively). Although the PLD
of some MOFs is smaller than the dynamic diameter of H2O, it is still possible for water
molecules to enter these MOF channels. On the one hand, MOF pores are not regular, H2O
molecules may enter from other larger pores; on the other hand, the kinetic diameter of
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H2O is estimated by empirical estimation, which is usually larger than the actual size [56],
so the molecule of adsorbate may be adsorbed in the MOF.

Figure 2a shows that the selectivity increases with the heat of adsorption, which shows
a monotonic upward trend. The trend is almost linear, indicating that the isosteric heat
of adsorption and the selectivity are strongly correlated variables. When the range of
Qst is 270–480 kJ·mol−1, the MOF has its highest S0[H2O/(N2+O2)]. Since we simulated the
adsorption of a single H2O molecule in MOF at infinite dilution, so the heat of adsorption
can characterize the strength of the adsorption. Therefore, Qst may be a key descriptor for
determining S0[H2O/(N2+O2)]. This phenomenon also appeared in the CO2 [57] adsorption
and thiol capture [45] from the air in our previous works. Figure 2b plots the relationship
of the S0[H2O/(N2+O2)] and the Henry’s constants of water KH2O [58]. On a logarithmic
scale, the scatter plot of the S0[H2O/(N2+O2)] and the KH2O shows an upward trend. The
Henry’s constant is a parameter that measures the affinity between the optimal adsorption
site of the adsorbent and the adsorbate. The larger Henry’s constant indicates that the
interaction between adsorbent and adsorbate molecule is stronger, making adsorption-
based separation achievable. Thus, it is necessary that the MOF with large KH2O is required
to harvest H2O vapor from the air in arid areas (RH ≈ 20%). From Figures 1 and 2, the
Qst seems to be the most important descriptor, and its relationship with selectivity is the
most obvious. After linear, binomial, and trinomial fitting for S0[H2O/(N2+O2)]~Qst, the R2

of binomial fitting could achieve 0.97 and remain stable by using the trinomial fitting, as
is shown in Figure S2. The deviation of two points with highest S in the linear fitting
makes a relatively lower R2 than both the binomial and trinomial fitting. In fact, the R2

for linear fitting is only 0.93, and it has no accuracy prediction for data in the range of log
S > 47. In view of the fitting, we can simply estimate and understand the structure-property
relationships of MOFs for the atmospheric water harvesting. Therefore, Qst is very worthy
of attention during the screening process.
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3.2. Machine Learning

At present, ML has been widely used to predict the performance of materials. Through
univariate analysis, only the influence of a single descriptor can be obtained, and ML can
not only predict the relationship of structure-performance, but also obtain the common
impact of multiple descriptors on performance. In our study, the optimal parameters
were obtained by five-fold cross-validation and grid-search. The average R2 of test sets
in five-fold cross-validation was adopted to indicate the performance of the model built
by different parameter groups. The final model trained by all 6013 pieces of data and
optimal parameters. The results are showed in Figure 3a–c. The order of three ML
is NCA > GBRT > RF. Compared to GBRT, NCA performs better in the range of high
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log10(S0[H2O/(N2+O2)]), while compared to RF, NCA performs better in the range of both low
and high log10(S0[H2O/(N2+O2)]). The reason for this may be the different learning styles of
the model, such as feature learning.
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To further understand the relative importance of the six descriptors for the S0[H2O/(N2+O2)],
we calculated the weight of each descriptor by three MLs. The weight of the descriptors was
calculated while the model was being constructed. The value of relative importance was
computed by the normalization of the weight of the six descriptors, as shown in Figure 4 and
Table S5. Due to the different characteristics of models, ML shows the relative importance
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of the descriptors in different ways. However, they all have a point of comparison, which
is that the proportion of Qst is more than 50%, especially for GBRT almost only built by
a variable (Qst). The order of the six descriptors is Qst > φ > ρ > LCD ≈ VSA > PLD. Qst
seems to govern the MOF performance in this work, because the concentration of vapor
water in air is close to the condition of infinite dilution. The result shows that Qst holds an
absolute advantage importance relative to others, as in Section 3.1, which provides a guide
for designing the best MOFs of adsorption of water vapor in the experiment.
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Furthermore, the predictive ML model should be used to accelerate the new HTCS for
the other MOF database. Of course, both the simple binomial/trinomial fitting and ML
model could achieve this H2O-MOF system, because of the strong relativity of Qst, but ML
model would possess higher universality for the other gas-MOF system. Thus, we have
added the prediction of a new MOF database (137,953 hMOFs) [28] by ML model, which
was trained by 6013 CoRE-MOF datasets. First, Qst was calculated for all 137,953 hMOFs,
and then we selected 10,000 hMOFs with the highest Qst for the new prediction, because
Qst has the highest importance. As shown in Figure 5a–c, after the predicted results
were compared with simulated results by molecular simulation, R2 of the prediction in
NCA could reach 0.86. The reasons for the differences of performance between training
and predicting are that there exist some differences between the CoRE-MOF and hMOF
databases. For examples, there are more than 350 topologies in the CoRE-MOFs database,
while there are only six topologies in the hMOFs database, which leads to a diversity gap
in those databases; CoRE-MOFs contain much more open metal sites or non-skeleton ions
than hMOFs [28]. In this work, the establishment and evaluation of models are finished
by 6013 CoRE-MOFs. Ten thousand hMOFs are the extra data, which are different from
CoRE-MOFs in some aspects and do not participate in the establishment and evaluation of
models. The difference between NCA and GBRT/RF could be that GBRT overemphasizes
the importance of Qst (relative importance ≈ 97% in Figure 4); that is, the GBRT model is
almost only built by a variable (Qst) and RF may fail to grasp the importance of features
other than Qst. Therefore, GBRT and RF may be suitable for the prediction of CoRE-MOFs
but not hMOFs, which also means NCA is more universal. Nevertheless, the prediction
of NCA for 10,000 hMOFs still shows the sufficient predictive ability of the model, but
it is usually not as effective as the original dataset [59]. Moreover, it can be found that,
when a hMOF possesses high selectivity (log10S > 5.3), the model performs very well. Thus,
the ML model obtained by the CoRE-MOF database can pre-screen out low-performance
MOFs to greatly reduce the running time of molecular simulation. Based on the ML
algorithm, 80 hMOFs with high performance (log10S > 5.3) could be precisely screened
out, and then only the selected 80 hMOFs would have to have their simulated adsorption
behavior calculated, as opposed to 137,953 hMOFs, saving a considerable amount of time
and computing resource. Finally, the optimal hMOFs were listed in Table S6.
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4. Best CoRE-MOFs

According to the principle that both the Henry’s constants of H2O and the selectivity
of excellent MOFs are large, we selected 10 optimal CoRE-MOFs for harvesting water from
the air based on the order of the selectivity of MOFs from high to low, as listed in Table 1.
Among them, the best MOF is QUTHAP, whose KH2O and S0[H2O/(N2+O2)] are 2.78 × 10124

and 4.14 × 10128, respectively. The range of LCD, φ, VSA, PLD, ρ, and Qst of 10 MOFs is
0.035–0.988 nm, 0.16–0.62, 10.46–1422.66 m2·cm−3, 0.264–0.867 nm, 842.16–2912.23 kg·m−3,
and 261.01–479.91 kJ·mol−1, respectively. The range of Qst, VSA, and φ shows significant
agreement with the analysis of Section 3, while the others show less because the relation-
ships between them and selectivity are less obvious. Obviously, the Henry’s constants
and selectivity show a proportional trend, which is consistent with our univariate analysis.
Moreover, we give more excellent hydrophilic MOFs for the further test. The top 200
CoRE-MOFs and top 200 hMOFs were listed in the Excel file of SI.

Table 1. Top 10 CoRE-MOFs with optimal performance of water harvesting.

No. CSD Code a LCD (nm) φ
VSA

(m2·cm−3) PLD (nm) ρ (kg·m−3) Qst (kJ·mol−1) KH2O
(mol·kg−1·Pa−1) S0[H2O/(N2+O2)]

1 QUTHAP 0.569 0.44 654.97 0.441 1257.79 479.91 ± 8.31 2.78 × 10124 4.14 × 10128

2 CAJWIV 0.620 0.49 856.37 0.380 1078.91 307.79 ± 10.19 4.30 × 1077 6.85 × 1082

3 PIBLUJ 0.595 0.39 473.39 0.352 1304.13 261.19 ± 5.98 5.81 × 1041 2.35 × 1046

4 LIRVAK 0.355 0.22 17.88 0.301 1535.50 318.82 ± 7.42 7.16 × 1044 3.11 × 1045

5 HUZSUR01 0.988 0.62 1422.66 0.867 842.16 255.45 ± 8.23 3.18 × 1039 2.48 × 1043

6 HEWFUL 0.558 0.16 293.03 0.494 1665.78 271.03 ± 3.11 1.63 × 1036 1.31 × 1042

7 YUJWAD 0.388 0.26 16.62 0.264 1429.41 265.55 ± 9.25 6.35 × 1036 9.73 × 1041

8 YUJWAD01 0.398 0.28 42.73 0.270 1409.42 261.01 ± 9.77 1.73 × 1036 1.30 × 1041

9 - b 0.384 0.26 10.46 0.271 1414.41 254.38 ± 9.03 1.85 × 1034 4.26 × 1039

10 ECUFEP 0.532 0.22 491.72 0.447 2912.23 247.36 ± 7.13 2.53 × 1032 1.17 × 1039

a CSD code is the number of MOFs in the Cambridge Structural Database. b This MOF came from Tominaka
et al.’s work [60].

5. Conclusions

In summary, we simulated the adsorption behaviors of H2O, N2, and O2 on 6013 CoRE-MOFs
and 137,953 hMOFs by HTCS and ML. Then, after the relationships between selectivity and
six MOF descriptors (LCD, φ, VSA, ρ, PLD and Qst) were analyzed, respectively, Qst of H2O
was shown to possess a strong correlation with the MOF ability for the capture of H2O.
Furthermore, three ML algorithms were employed to predict the adsorption performance
for each CoRE-MOF, indicating that NCA with a five-fold cross-validation accuracy of
R2 = 0.97 is the best algorithm for the prediction of selectivity and that the rank of their
predictive ability is NCA > GBRT> RF. Continuously, the relative importance of the six
descriptors by MLs could demonstrate that the Qst took the absolute predominance for
designing MOFs with optimal selectivity of H2O/air. In addition, from the three models
applied to predict the selectivity of hMOFs, it was found that the predicted R2 of NCA can
reach 0.86; NCA is more universal for gas-MOFs systems than other models. Finally, the ten
MOFs with the best performance were screened out by the statistical methods. They were
potential candidates for the capture of H2O from air, especially for QUTHAP. The bottom-
up microscopic insights obtained from this study offer experimentalists the guidelines for
the development of MOFs with high performance for atmospheric water harvesting.
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Nomenclature

LCD largest cavity diameter, nm
PLD pore-limiting diameter, nm
VSA volumetric surface area, m2·cm−3

φ void fraction
ρ density, kg·m−3

Qst an energy descriptor of heat of adsorption, kJ·mol−1

KH2O Henry’s constant of H2O, mol·kg−1·Pa−1

S0[H2O/(N2+O2)] The initial selectivity of water molecules relative to nitrogen and oxygen adsorbed by MOFs.
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