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ABSTRACT

The melting of tetramolecular DNA or RNA quadru-
plexes is kinetically irreversible. However, rather than
being a hindrance, this kinetic inertia allows us
to study association and dissociation processes
independently. From a kinetic point of view, the
association reaction is fourth order in monomer
and the dissociation first order in quadruplex. The
association rate constant k,,,, expressed in M3s!
decreases with increasing temperature, reflecting a
negative activation energy (E,,) for the sequences
presented here. Association is favored by an increase
in monocation concentration. The first-order dissoci-
ation process is temperature dependent, with a very
positive activation energy E.y, but nearly ionic
strength independent. General rules may be drawn
up for various DNA and RNA sequence motifs, invol-
ving 3-6 consecutive guanines and 0-5 protruding
bases. RNA quadruplexes are more stable than their
DNA counterparts as a result of both faster associ-
ation and slower dissociation. In most cases, no dis-
sociation is found for G-tracts of 5 guanines or more in
sodium, 4 guanines or more in potassium. The data
collected here allow us to predict the amount of time
required for 50% (or 90%) quadruplex formation as a
function of strand sequence and concentration, tem-
perature and ionic strength.

INTRODUCTION

The inclination of GMP or guanine-rich poly- and oligo-
nucleotides to self-assemble into G-quadruplexes has been
recognized for over 40 years (1-3). A G-quartet is a planar
association of four guanines held together by eight hydrogen
bonds (Figure 1A, left); G-quadruplexes result from the hydro-
phobic stacking of several quartets (Figure 1A, right) (4).
A cation (typically Na*" or K*) is located between two quartets

forms cation—dipole interactions with eight guanines, reducing
the repulsion of the 2 X 4 central oxygen atoms, enhancing
hydrogen bond strength and stabilizing quartet stacking.

G-quartets may have applications in areas ranging from
supramolecular chemistry to medicinal chemistry [for a recent
review see (5)]. Several reports suggest that DNA may be used
as a building block for novel nano-sized objects (6). Quad-
ruplex DNA is an excellent module for the design of devices
for nano-technology, because of its extreme rigidity and self-
recognition properties. G-quadruplexes are also likely to form
higher-order structures such as synapsable DNA (7,8) or
G-wires (9,10). We and others have described DNA nano-
devices based on quadruplex—duplex interconversion (11,12)
or biosensors (13). The self-assembly of G-rich sequences can
constitute liquid crystals (14) and may serve as the scaffold for
artificial ion channels or receptors (15,16). Quadruplex-prone
segments may also be found in biologically significant
regions such as telomeres (17-21) or oncogene promoter
regions (22), and a number of proteins or small molecules
bind to G-quadruplexes (23-25).

In the tetramolecular quadruplex configuration (also called
G4-DNA), all strands are parallel, and all guanines are in the
anti conformation. These tetramolecular quadruplexes offer an
interesting paradox: on the one hand, their conformation is
very well known, and a number of high or very high [0.61 A;
(26)] resolution X-ray or NMR structures are available. This
structural wealth might be explained in part by the extra-
ordinary stiffness of this motif, as demonstrated by molecular
dynamic simulations (27,28). On the other hand, one cannot
but notice the paucity of thermodynamic and even more kin-
etic data [with one notable exception (29)] on these structures.
This is rather unfortunate, as these quadruplexes may play
important roles. First, several tetramolecular quadruplexes
strongly interact with the HIV gp120 protein, and act as spe-
cific inhibitors of infection in vitro (30). Second, the con-
formation of the stem of these quadruplexes is very close to
the central core of intramolecular parallel quadruplexes found
for human telomeric repeats (20,31) or other motifs. These
quadruplexes may be seen as simpler models of biologically
relevant tetrads, and several groups have used such motifs
to obtain high resolution data on drug—DNA interactions
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Figure 1. Quadruplex melting and cooling profiles. (A) Scheme of a G-quartet (left) and a tetramolecular quadruplex (right). (B) d-(TG4T)4 (20 uM) in 0.11 M Na™.
Melting profile: at this strand concentration, once melted, the tetramolecular quadruplex does not refold. Absorbance at 295 nm is recorded every 6 min with a thermal
gradient of ~0.18°C/min in a 10 mM sodium cacodylate buffer (pH 7.0) supplemented with 0.1 M NaCl. Arrows indicate directions of temperature changes (heating
or cooling). (C) r-(UG4U), (10 uM) in 0.11 M Na. Absorbance at 295 nm is recorded every 6 min with a thermal gradient of ~0.18°C/min in a 10 mM sodium
cacodylate buffer (pH 7.0) supplemented with 0.1 M NaCl. Arrows indicate directions of temperature changes (heating or cooling). (D) Fraction unfolded as a
function of temperature for the DNA d-(TG4T),, RNA and 2'-O-methyl r-(UG4U), samples, deduced from the heating profiles shown in Figure 1B (DNA) or 1C
(RNA). (E) Arrhenius plot of In(k,g) versus 1/T for the DNA d-(TG4T)4, RNA and 2'-O-methyl r-(UG4U)4 samples. Calculated lifetimes of the complexes are shown
on the right y-scale.

(32-34). All in vitro experiments would benefit from precise is present at high concentrations, favors tetramolecular parallel
knowledge of the kinetics of these structures, in order to define quadruplexes over foldback structures (35-37).

acceptable incubation times, choice of temperature and buffer. In this manuscript, we will demonstrate that the slow
Finally, the intracellular ionic environment, where potassium kinetics of association and dissociation of tetramolecular



G-quadruplexes actually make equilibrium measurement
impractical (29). We show here that, as for other nucleic
acid structures, ko, but not kg, is strongly ionic strength
dependent. General rules will be drawn up for various DNA
and RNA sequence motifs, involving 3-6 consecutive
guanines and a variable number of 5’ and/or 3’ protruding
bases. This allows us to calculate the amount of time required
for 50% (or 90%) quadruplex formation as a function of strand
sequence and concentration (in the micromolar to millimolar
range), temperature (between 2 and 37°C) and ionic strength.

MATERIALS AND METHODS
Oligonucleotides and nomenclature

The DNA and RNA oligonucleotides presented here were syn-
thesized by Eurogentec (Seraing, Belgium) on the 200 or
1000 nmol scale and dissolved in 200-500 pl of double-
distilled water. Once formed, some quadruplexes are difficult
to disrupt and 30 min at 100°C did not lead to significant
quadruplex unfolding. When undesired quadruplex formation
is observed before a kinetic experiment, the addition of limited

Table 1. Oligonucleotides chosen for this study
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amounts of sodium hydroxide followed by HCI neutralization
is a convenient and fast method to disrupt these complexes
(38,39), but results in a net increase in salt concentration.
Concentrations of all oligodeoxynucleotides were estimated
by UV absorption using published sequence-dependent
extinction coefficients (40) (Table 1).

All oligonucleotides studied here contain only one block of
guanines and form tetramolecular species. In this manuscript,
the tetramolecular quadruplex resulting from the association
of four d-TGGGGT strands will be called d-(TG4T),.

Thermal denaturation and renaturation

Formation and dissociation of the different duplexes and quad-
ruplexes were estimated by heating/cooling experiments,
recording the UV absorbance at several wavelengths as a
function of temperature on Kontron Uvikon 940 spectrophoto-
meters thermostated with an external ThermoNeslab RTE111
or a ThermoHaake Phoenix C25P1 waterbath. The tem-
perature of the bath was increased or decreased at a rate of
0.02-3.4°C/min. All temperatures were measured in a buffer-
containing cuvette as significant differences between water
bath and sample temperatures may be observed. Hence, the

Sequence (5" — 3') G-tract length et kon? T, Na* T,% KT Reference(s)
DNA: d-

TGGG' 3 39200 n.d. n.d. 51

TGGGT 3 47700 5.2 %107 16 48 (72,75,76)
TTAGGG 3 61300 1.8 x 10" 17 50 77)
TTAGGGT 3 69 800 2.1 x 10° 24 55 (77,78)
TGGGG 4 49300 2.8 x 10% 47 — (46)
GGGGT! 4 50300 e 63 —

TTGGGG 4 57400 n.d. 48.5 — (77,79)
GGGGTT' 4 58400 1.5 x 10% 64.5 —

TGGGGT 4 57800 3.8 x 10 54.5 — (49-56)
AGGGG 4 55300 3.9 x 10'%f 54 —

AGGGGT 4 63800 1.3 % 10" 59.5 —

TTGGGGT 4 65900 4.3 %107 n.d. n.d. (56,77,80)
TTGGGGTT 4 74000 1.5 x 10° 71 — (29,56,64)
TTTGGGGT 4 74000 1.3 % 10° 67 n.d.

TGGGGG 5 59400 3.1 x 10" — —

TTGGGGG 5 67500 2.2 x 10" — —

TGGGGGT 5 67900 6.1 x 10° — —

TTGGGGGTT 5 84100 6.1 x 107 — —

TGGGGGGT' 6 78 000 1.4 x 10" — —

RNA: r-

UGGGU 3 49900 n.d. 50 n.d.

UGGGGU 4 60000 5.0 x 102 89 — 81)
UGGGGU® 4 60000 2.0x 10" 75 —

UUGGGGU 4 69700 5.0 x 102 >85 n.d.

UGGGGUUU 4 79 400 2.1 x 10" 69 n.d.

UUUGGGGU 4 79400 6.3 x 10! >85 n.d.

UUGGGGUU 4 79 400 2.0 x 10" 79 n.d.

n.d.: not done. Reference oligomers (TG4T and UG4U) are shown in bold.

“Extinction coefficient, in M’1~cm’l, according to (40).

bAssociation rate constant at 4°C, pH 7, with 0.11 M Na*, in M3 kg is given £30%. Note that, as in Wyatt et al., we defined k., as d[A)/dr = —4-d[A4)/

dr = —kea[AT".

¢(Non-equilibrium) melting temperature of the preformed quadruplex, in °C, in 0.11 M Na™, determined with a temperature gradient of 0.18°C/min. —: no melting of
the quadruplex, even at the highest temperature recorded (94°C).
9d(Non-equilibrium) melting temperature of the preformed quadruplex, in °C, in 0.11 M K* determined with a temperature gradient of 0.18°C/min. —: no melting of the

quadruplex, even at the highest temperature recorded (94°C). T, is provided with a 0.5°C accuracy.

“Poor fit.

'Anomalous migration/several bands (for a simple tetramolecular quadruplex) on a non-denaturing gel; see Supplementary Figure S4 for details.

£2-0-methyl.
"Single point determination.
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temperature values reported here reflect the real temperature of
the sample, even when fast heating/cooling experiments are
performed. All experiments were carried out in 10 mM sodium
cacodylate or lithium cacodylate buffer (pH 7.0 or 7.2) con-
taining 50400 mM NaCl or KCI. The thermal denaturation of
the G-quadruplex gives rise to hyperchromism at 240-245 nm
and to alarge hypochromism at 295 nm (41). Following absorb-
ance at 240 or 295 nm is therefore a convenient way to monitor
quadruplex dissociation or formation. Depending on strand
concentration, 0.2 or 1 cm pathlength cuvettes were used.
In order to convert absorbance values into unfolded fraction,
linear baselines were manually chosen, as previously
described (42). For tetramolecular quadruplexes, this conver-
sion was simple, especially for the low temperature baseline,
as the absorbance of the folded species was nearly temperature
independent (see Figure 1B and C).

A prerequisite for the recovery of thermodynamic, that is
equilibrium, parameters from these curves is that they are true
equilibrium curves. A simple and useful criterion for this is the
coincidence of the heating and cooling curves at the chosen
rate of heating and cooling. This is generally the case for
double-stranded helix—coil transitions of oligodeoxynucleo-
tides. We have previously observed that a rapid increase in
temperature may lead to experimental curves that do not cor-
respond to the equilibrium curves (43,44). Most melting
curves recorded by heating a preformed quadruplex do not
correspond to equilibrium melting curves; the ‘T,,” deduced
from these experiments (which depends on the heating rate) is
therefore inaccurate. It is still informative, though, as it reflects
the temperature dependency of the dissociation process. In
order to distinguish it from the true thermodynamic 7T,, we
will call this value Ty/,. For the tetramolecular quadruplex
structures studied here, the hysteresis phenomenon is extreme:
no renaturation is observed for the DNA sample at low strand
concentration (Figure 1B) whereas a 60°C difference may be
found between the ‘T,,,” obtained during heating and cooling of
a RNA quadruplex (Figure 1C). The apparent melting tem-
perature (T4,,) was found to be strongly dependent on the
temperature gradient chosen for the experiment (i.e. the rate
of heating; see Figure 2A and B for an example).

Isothermal kinetic analysis for association

Isothermal experiments were performed on a Kontron Uvikon
940 UV/Vis spectrophotometer. In general, association experi-
ments were carried out at various strand concentrations (up to
500 uM), depending on the kinetics. In order to fit the experi-
mental data (using Kaleidagraph 3.5) with a proper mathem-
atical model, we had to make the following assumptions or
determinations:

(i) A two-state analysis is required. Our data were analyzed
within the framework of a concerted ‘two-state’ or ‘all-or-
none’ model of dissociation. In this model, it is assumed
that species with incomplete base pairing are not signific-
antly populated, so that the only absorbing species are
the separated strands and the full quadruplex. Note that
this model does not necessarily imply a simple kinetic
process. A useful criterion was recently proposed by
Wallimann et al. (45): a dual wavelength parametric test
allowed us to verify the two state model for various
experiments (Supplementary Figure S3).

(i) The order (n) of the reaction in separate strands was
initially floating (the kinetic order, the stoichiometry
and the molecularity of the reaction may be different).
For all further analysis, n was fixed equal to 4.

(iii) Denaturation may be neglected: once formed, the quad-
ruplex lifetime is long compared to the duration of the
experiment (1-3 days).

For each set of experimental conditions (temperature,
buffer) experimental curves were obtained at several strand
concentrations. However, because of the extreme dependence
of reaction rate on oligonucleotide concentration, the useful
concentration range for kinetic analysis is often limited.
Assuming that unfolding is negligible, the association of
four identical A strands leads to the formation of the tetramer
A4 4A — Ay. At each wavelength, the absorbance Abs of the
sample is linked to the fraction unfolded o by:

Abs = Cy [OLESS + (1 — (X)Sq}, 1

where g€ and £, are the extinction coefficients of the unstruc-
tured single-strand and of the oligonucleotide involved in a
quadruplex, respectively. o is the fraction of unfolded strand
[oo = [A](©)/Cy]. The order of the reaction n may be experi-
mentally estimated by analyzing the concentration depend-
ency of the association process d[A]/dt = —k, [A]".
Assuming that at r = 0; oo = 1, one can demonstrate that (29)

a=[1+C " (n = 1) k-], 2

where Cj is the initial strand concentration and &, the asso-
ciation rate constant. Experimental curves were fitted with this
formula using the Kaleidagraph 3.5 software.

In most cases, this equation gave excellent fits, with param-
eters independent of the wavelength chosen for analysis
(usually 240 or 295 nm, sometimes 230, 260 and/or 273 nm;
Supplementary Figure S2a). Therefore, the observed reactions
seem to obey a simple kinetic pathway and there is no evidence
that significant concentrations of intermediate species are
present. Nevertheless, one should note that oligomers ending
with a terminal 3’ guanine are more likely to form higher-order
molecular species. The time-dependent association of a few
oligonucleotides, such as d-G4T was much more complicated
(Figure S2c¢). In our hands, profiles obtained with some
guanine-rich sequences such as TGjz_s or G3_sT at various
wavelengths do not always agree, as pointed out with CD
by Lieberman and Hardin (46). This does not necessarily
imply a measurable buildup of intermediate species, but
could also be the result of the presence of several distinct
tetra- or higher molecular end products having different kin-
etics (47,48). It should be noted that there is no need and no
theoretical reason to fit these profiles with bi-exponential
forms. In any case, results obtained with oligomers that do
not involve guanine as a terminal 5" or 3’ base (such as d-TG4T
for example) are usually simpler.

Kinetic analysis for dissociation

The analysis of non-equilibrium melting profiles is based on
the methods we developed for triplexes (43) and i-DNA (44).
In our case, the calculations are even simpler as re-association
was not measurable in the temperature range where melting
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Figure 2. T, is dependent on the temperature gradient, not on strand concentration. (A) Normalized melting profiles recorded at 240 nm of the preformed d-(TG4T)4
quadruplex (20 uM strand concentration) in 10 mM lithium cacodylate buffer (pH 7.2) with 0.11 M NaCl at four different heating rates (circles: 0.054; crosses: 0.107;
squares: 0.26 and triangles 0.4°C/min). (B) T, of the d-(TG,T), quadruplex as a function of the average temperature gradient. Note that the ‘true’ equilibrium 7,,,
which would be obtained with an infinitely slow gradient is calculated to be below 30°C. T, is provided with a 0.5°C accuracy. (C) Melting and cooling profiles
recorded at 295 nm of the preformed d-(TG4T), quadruplex in 10 mM lithium cacodylate buffer (pH 7.2) with 0.11 M NaCl at two different strand concentrations
(20 uM: circles and 200 uM: squares. y-scale values shown on the left and right axis, respectively. 1 cm pathway cuvette for 20 uM, 0.2 cm for 200 uM). Thermal
gradient: 0.24°C/min. (D) Dependence of the T/, value (obtained upon heating at a rate of 0.24°C/min) of the preformed d(TG4T), quadruplex (5-200 uM strand
concentration) in 10 mM lithium cacodylate buffer (pH 7.2) with 0.11 M NaCl.

occurs (ko, ~ 0). As a result, rather than solving at each
temperature a system of two equations with two unknowns
(koge and ko), one has to deal with a single equation and one
unknown parameter (ko). As reformation of the complex is
negligible, d[A]/dt = kop-[A4], hence

_ d(or)) A(T) _ fkoe(1 — o)
dr dr dt 4 ’

where o is the fraction of unfolded strand and k. the rate
constant for appearance of single strands. k.p may simply be
deduced from Equation 3 at each temperature 7 where d[o )]/
dr (the time-dependent variation of the unfolded fraction at a
given temperature) and o0 may be determined with some con-
fidence (generally 0.05 < o < 0.95).

d
ao 3

RESULTS

All quadruplex-forming oligonucleotides studied here are pre-
sented in Table 1. For most sequences, quadruplex formation
has been demonstrated previously, and relevant references are
provided. Our goal was not to re-demonstrate quadruplex
formation for these oligomers; nevertheless, one should
note that the thermal difference spectra of all these structures
(Supplementary Figure S1) are in agreement with the forma-
tion of quadruplexes (41). Furthermore, non-denaturing gel
electrophoresis confirmed that, at least for some sequences,
a single major retarded band was observed when the oligonu-
cleotides were preincubated at high concentration in the pres-
ence of NaCl or KCI (Supplementary Figure S4). Long G-runs
such as TG¢T sometimes led to more complicated migration
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patterns. We aimed to obtain reliable thermodynamic and
kinetic data on these structures. We initially concentrated
our efforts on well-known tetramolecular quadruplexes
d-(TG4T)4 (49-56) and r-(UG4U), formed by the tetrameriza-
tion of 6-base long oligonucleotides before analyzing other
DNA and RNA guanine-rich oligomers.

Dissociation of the preformed d-(TG4T)4 and
r-(UG4U)4 quadruplexes

Hybridization to a complementary oligonucleotide is a
convenient method to study the dissociation process of a
quadruplex (31,57-59). Unfortunately, in this work, most
sequences were too short to allow the formation of a stable
DNA duplex, making this method inapplicable. The other
method commonly used relies on concentration jumps
(31,60), but the thermal inertia of preformed tetramolecular
quadruplexes is so high that lifetimes of the complexes are
very long (30) (see below). We therefore had to use melting
experiments to study the dissociation process.

Starting from preformed quadruplexes (several days at 0°C
and high strand concentration: 200-500 uM), one can simply
follow the denaturation of this structure by recording the
absorbance at 295 nm (41) in a 0.11 M Na* buffer. This
leads to a ‘nice’ inverted and ‘cooperative’ curve (Figure 1B),
which resembles data collected by CD experiments. As
shown in Figure 1B, this profile does not reflect an equilibrium
denaturation curve. Upon cooling, no renaturation of the DNA
quadruplex is obtained, and further heating/cooling cycles
led to a similar monotonous variation of absorbance with
no evidence for quadruplex reformation or denaturation. On
the other hand, one should note that partial renaturation of the
RNA quadruplex is observed below 10°C (Figure 1C).
Furthermore, this apparent melting temperature strongly
depends on the rate of heating (Figure 2A and B) again
indicating that this profile does not correspond to an equilib-
rium curve. It should be noted that if sodium is replaced by
potassium, no melting of this quadruplex is observed, in
agreement with a previous report (55).

This apparently annoying behavior has an interesting con-
sequence: the melting profile actually solely reflects the dis-
sociation of the quadruplex and it is possible to extract kg
values at each temperature. In this temperature range, what we
see in practice is a simple one-way reaction from a folded
quadruplex to a dissociated state. As the reverse reaction
(refolding) is not considered here, the only species for
which concentration matters is the folded tetramer. This
requires several assumptions or verifications. (i) Renaturation
at this temperature has to be minimal. This was checked by
using different strand concentrations (from 5 to 200 uM): no
variation at all of the T, was observed, in agreement with the
complete absence of renaturation in that temperature range
(Figure 2C and D). Another indication of negligible reassocia-
tion is provided by following the second heating profiles:
starting from completely unfolded species, one does not
observe any trace of reassociation (data not shown). (ii) ko
values extracted from a melting curve had to be confirmed
with another technique: we and others performed T-jump
experiments in which a preformed quadruplex (at low temper-
ature) is suddenly transferred to high temperature, and the
time-course of isothermal quadruplex dissociation is recorded

(29,60). Values obtained through this method were, within
experimental error, in agreement with the k¢ values deduced
from melting experiments (data not shown). (iii) The melting
temperature depends on the temperature gradient and knowing
E¢r (see below), it is even possible to predict the dependence
of Ty, on the heating rate (29,60).

In the temperature range in which the dissociation occurs
(35-60°C for the DNA quadruplex; 75-90°C for the RNA
quadruplex) one can determine o, the fraction of unfolded
oligonucleotide (Figure 1D) and d(o)/dz, the time-dependent
variation of the unfolded fraction. From Equation 3 (see
Materials and Methods) one can write:

[4-d(om) /d1]

. 4
(1 — oyr)]

kofi(T) =

The temperature range for which d(or))/d¢ may be
accurately determined is relatively narrow (the melting trans-
ition is spread over a limited temperature range). Hence,
the Arrhenius plots of In[ksg )] as a function of temperature
(presented in Figure 1E) involve a relatively limited number of
points, especially for RNA. Note that this temperature range
may be extended by using different temperature gradients
which lead to different apparent melting temperatures 7,
(Figure 2A and B). For d-(TG4T),, this apparent melting tem-
perature variation (between 46 and 66°C, Figure 2B) extends
the practical range for d(or))/dt determination to ~36-76°C
(data not shown). This ‘trick’ is not applicable to the RNA
sample: faster scan rates lead to partial denaturation only (77,
too high), whereas slower scans lead to unacceptable evap-
oration and degradation of the sample. Therefore, E ¢ values
deduced from the slope of Arrhenius plots of In[keg )] as a
function of temperature (+43 and +74 kcal/mol for DNA and
RNA, respectively) are determined with a much greater
confidence for DNA than for RNA.

Association of the isolated strands at low temperature:
effects of concentration

Isothermal renaturation experiments were used to study the
formation of the quadruplexes. We first determined that the
low temperature renaturation was minimal for the DNA sam-
ple at concentrations <20 uM (Figure 2C). Starting with a
concentration of 30 UM or higher, a time-dependent increase
of absorbance at 295 nm was observed (Figure 3A). An
opposite trend was seen at 240 nm, with a time-dependent
decrease of absorbance. These variations reflect the spectral
differences between the initial single-strand and the quadru-
plex (Supplementary Figure S1).

Concentration played a dramatic role in the kinetics of
association. Formation of the quadruplex at 3°C was nearly
complete in 2 h at 200 uM whereas much longer times are
required at 30 uM (Figure 3A). It was then possible to fit the
experimental profiles with the mathematical function defined
in the experimental section (Equation 2) for the determination
of the order of the reaction. Data could be fitted with
3.4 < n < 4.1; we defined n = 4 for all further studies. As
illustrated in Figure 3A, these fits (dotted lines) are in nearly
perfect agreement with the experimental curve (solid line; the
overlap between the two precludes seeing the mathematical
fit over most of the curve. This agreement is also reflected
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Figure 3. Kinetics of association. (A) Effect of strand concentration (30-200 uM) for d-TG,T at 3°C in 0.11 M Na* on the relative absorbance at 205 nm. Quadruplex
formation leads to an increase of absorbance at this wavelength (see Figure S1). Mathematical fits (Equation 2) are shown as dotted lines; data points are displayed as
solid lines (each curve results from the recording of 900 experimental points; only a few are shown). (B) Effect of temperature for d-TG4T (178 M) on the relative
absorbance at 295 nm. Circles: 36°C, triangles: 30°C, squares: 12°C (each curve results from the recording of 300 experimental points; only a few are shown). (C)
Arrhenius plots [In(k,,) versus 1/T] for the association of the DNA d-TGyT (circles), RNA (squares) and 2'-O-methyl (triangles) r-UG,U oligonucleotides. All
experiments were performed in a 10 mM sodium cacodylate buffer (pH 7.0) supplemented with 0.1 M NaCl.

by R > 0.995 and ¥ as low as 10~* in most cases). Moreover,
the k., values determined from the curves at three different
concentrations or at two different wavelengths (240 and 295 nm;
see Supplementary Figure S2A for an example) were in
excellent agreement [see Supplementary Figure S3 for a
dual wavelength parametric test (45)]. The association rate
constant at 4°C was 3.75 x 10® and 5.0 x 10> M5~ for
the DNA and RNA samples, respectively (see Table 1). The
value found for RNA (>10'%) may look extremely high when
compared with bimolecular rate constants (in the 10° to 10°
M~ lg! range for duplexes); one should note, however, that
these quadruplex rate constants reflect fourth-order reactions
and are expressed in different units (M >-s~') which prevents
a direct comparison of the numerical values. These values
allowed us to calculate the amount of time required for half
formation of the DNA, 2’Ome and RNA quadruplex at various
strand concentrations (Table 2).

Next, we performed the same renaturation experiment at
various temperatures. As shown in Figure 3B, an increase in
temperature has a deleterious impact on the kinetics of
association: at a given strand concentration, folding was

Table 2. Half-association times® for the d(TG4T), and r(UG,U),
quadruplexesb

Oligonucleotide/ 1 uM 10 uM 100 uM 1 mM
concentration

d-TG4T (DNA) >100 years 110 days 2.6 h 6s
0-UG,4U (2’0Ome) 120 days 29h 11s 1072
r-UG4U (RNA) 3 days 4.4 min 0.25s <1073

Calculated from Equation 2. To determine the time required for 90% quad-
ruplex formation, multiply by 143. For 99% quadruplex formation, multiply by
143 000!

PCalculated at 4°C in a 0.1 M NaCl, 10 mM sodium cacodylate pH 7.0 buffer
(total Na* concentration 0.11 M). At21°C, the reaction will take 15 times longer
(for DNA) and 150-200 times longer for RNA and 2'Ome. In 0.11 M KCI
(instead of NaCl) divide these durations by ~50. For sequences other than
dTGGGGT, multiply these numbers by the ratio between k, (d-TG4T) and
kon of the chosen sequence (values found in Table 1) (higher k,,, means faster
association!).

much slower at 36°C (circles) than at 12°C (squares). Similar
experiments were done for the RNA and 2'Ome samples
at various temperatures in the 2-37°C range. The associ-
ation rates are shown in Figure 3C (Arrhenius plot: natural
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logarithm of k,, as a function of 1/T). At low temperature
(3°C), the RNA sample folded 10* times faster than DNA (note
the logarithmic scale on the y-axis). At 30°C, this difference
was less pronounced: for the RNA UG4U sample, the associ-
ation process was even more temperature-dependent: a 10°C
increase led to a >20 times lower k.

Thermodynamics of the d-(TG4T)4 and r-(UG4U)4
quadruplexes

From the Arrhenius representations of association (Figure 3C)
and dissociation (Figure 1E) processes, it is possible, at least in
theory, to recalculate the equilibrium constant at every tem-
perature. However, one should note that the experimental
points are not experimentally determined in the same temper-
ature range (2-37°C for association, 37-90°C for dissocia-
tion): an extrapolation of these data is therefore required.
Fortunately, a reasonable linear fit may be obtained for these
points: their slopes allow the determination of the association
and dissociation activation energies (E,, and E ). The AH® of
the reaction may be deduced from the relation AH® = E,,, — E ¢
(Table 3). The values found for the DNA and RNA quadru-
plexes were —72 and —127 kcal/mol, suggesting that the RNA
quadruplex is significantly more enthalpy driven. The value
for DNA is in close agreement with calorimetric data for the

Table 3. Kinetic parameters for the d(TG4T), and r(UG4U), quadruplexes

Oligonucleotide E'(,na Eoffu AH® ab T]/zc tl/zd
d-TG4T (DNA) —29+2 43+1 —72+3 54.5 6 h
0-UG,U (2'Ome) —49+2 75+2 —124+4 75 3 years
r-UG4U (RNA) —53+4 747 12711 89 >100 years

All values determined ina 0.1 M NaCl, 10 mM sodium cacodylate pH 7.0 buffer
(total Na* concentration 0.11 M).

“In kcal/mol.

"Deduced from AH® = Ey, — Eogy

“In °C, determined with a temperature gradient of 0.2°C/min. T, is provided
with a 0.5°C accuracy. The true T;,, value (in °C), calculated at 100 uM strand
concentration is at least 20°C lower (data not shown).

Lifetime of the tetramolecular quadruplex at 37°C.
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same quadruplex under slightly different conditions (0.2 M
NaCl) (54). Note, however, that the values found for RNA are
less precise, as E is difficult to measure accurately.

Buffer effects on the association and dissociation
of the d-(TG4T)4 quadruplex

All profiles shown before were obtained in a buffer containing
Na"ionsat 1 10 mM. Next, we investigated the effects of varying
sodium concentration, replacing sodium by potassium, chan-
ging the pH or adding divalent or multivalent cations.

First, sodium was replaced by potassium. As previously
described, K" stabilizes quadruplexes, as demonstrated by
an increase in melting temperature, which reflects a slower
dissociation at a given temperature. However, potassium also
increases the association rate constant by a factor of 20-50
(data not shown). In other words, potassium affects k,, and
kogr. This difference in k., between sodium and potassium was
more or less conserved over a 2-37°C temperature range,
suggesting that the activation energies of association were
close. The 50-fold difference in k., between Na® and K*
was more or less constant in the 50-300 mM NaCl or KCl
concentration range (Figure 4B).

Second, various concentrations of sodium and potassium
were tested in the 50-400 mM range. Increasing NaCl con-
centration played little, if any role in the thermal dissociation
of the d-(TG4T)4 quadruplex (AT, < 2°C; data not shown).
However, varying the sodium concentration had a dramatic
effect on the association process, as shown in Figure 4A. This
illustrates the fact that the stability of parallel quadruplexes is
indeed dependent on the cation concentration, and that this
effect is mainly reflected in &, as for many other nucleic acid
structures such as duplexes or triplexes. A 10-fold increase in
Na™ concentration leads to a 1 x 10% to 2 x 10? increase in the
association rate constant, in agreement with the involvement
of several (=~3) Na* or K ions in the association process.

Third, pH was varied between 5.0 and 7.8. No variation of
association and of thermal stability was found between pH 5.5
and 7.8 (Supplementary figures S5A and S5B). However, the
association rate was significantly faster at pH 5.0. This
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Figure 4. Effect of NaCl concentration. (A) Examples of kinetics of association at 3.5°C at various NaCl concentrations (shown on the right in a 10 mM cacodylate
buffer). Absorbance recorded at 295 nm as a function of time, starting from an unfolded d-TG4T oligodeoxynucleotide (25 UM). Quadruplex formation leads to a
time-dependent increase of absorbance at this wavelength. (B) k., values determined as a function of NaCl (circles) or KCI (squares) concentration.



stabilizing effect (on association) is compensated by a desta-
bilizing effect on the denaturation process (evidenced by a 4°C
decrease in Ty,). These mildly acidic conditions have a
paradoxical role on the stability of the quadruplexes, as a
low pH both accelerates association and dissociation.

Fourth, magnesium chloride was added to a sodium- or
potassium-containing buffer. The results are shown in
Supplementary Figure S6A for the association rate at 4°C.
Magnesium ions accelerate the association process in a
concentration-dependent manner. This effect was observed
both in 0.11 M Na" and 0.11 M K". At the highest tested
Mg2+ concentration (15 mM), the association rate constant
was six times larger than in the absence of magnesium. We
next investigated whether magnesium affected the melting
temperature (74,,) of the preformed quadruplex. As shown
in Supplementary Figures S6B-S6C, increasing magnesium
concentration led to a decrease of the apparent melting
temperature, hence, led to an increase of the dissociation
process.

Finally, multivalent cations (spermine and spermidine, in
the 0.04-0.2 mM concentration range) were added to a 10 mM
sodium cacodylate buffer at pH 7.2 containing 0.1 M NaCl
(data not shown). Results were in qualitative agreement with
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the effects of magnesium (i.e. a net acceleration of association
and dissociation at 0.2 mM spermine or spermidine).

Sequence effects

So far, all results were obtained with the d-(TG4T)4 quadru-
plex or its RNA equivalent. We next investigated if the results
obtained for this sequence could be extended to other motifs.
The sequences used for this analysis are shown in Table 1, and
some of the results are summarized in Figure 5. For most
oligomers, the association process could well be fitted with
the same mathematical models.

First, concerning DNA oligomers, one can observe that the
longer the G-tract, the faster the association (Figure 5A).
This effect is surprisingly large: each extra guanine leads to
~10-fold larger association rate constant. As expected, a
stabilizing effect could also be seen on dissociation: the longer
the G-tract, the higher the T,,. Unfortunately, this effect was
harder to quantify as many quadruplexes did not dissociate at
90°C (Table 1).

Second, one can also notice that extra non G-bases at the
5" or 3’ end play a detrimental role in the association of DNA
and RNA (Figure 5B and Table 1). The addition of one
thymine/uracil to a DNA or RNA oligonucleotide decreased
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Figure 5. Sequence effects on ko,. (A) Impact of G-tract length on association rate constant. Squares: d-TG¢T; circles: d-TGsT; triangles: d-TG4T; diamonds: d-TG5;T
(single determination at 3°C). (B) Impact of non-guanine bases on association. Total number of 5’ and 3’ thymines shown on the left. Circles d-TGy; squares: d-TG,T;
triangles: d-T>Gy4T; crosses: d-T3G4T; inverted triangles: d-T,G4T,. (C) Influence of a 5’ terminal adenine on association. Sequence shown on the right. All
experiments performed in a pH 7.0 or 7.2 10 mM sodium cacodylate buffer containing 100 mM NaCl between 2 and 37°C (total Na* concentration: 110 mM).
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the association rate constant by a factor of roughly 10. This
effect was cumulative; the slowest forming quadruplexes
involved strands containing four thymines. The effect on
koge Was more variable. As shown in Table 1, the presence
of extra 5’ or 3’ thymines was often stabilizing (compare
TTAGGG and TTAGGGT, ATy, = +5°C in K', +7°C in
Na* or TGGGGT and TTTGGGGT, AT;, = +12.5°C in
Na®). A counter-example is provided by TGGG and
TGGGT, AT;,, = —3°C in K*. In other words, the presence
of extra thymines was always detrimental to the association
rate constant but often beneficial to the thermal stability of the
quadruplex.

Third, the replacement of a 5’ thymine by adenine had a
strong beneficial effect on the kinetics of association (Figure
5C). One may observe that d-AG4T has a 5-40 times higher
association rate constant than d-TG4T: the presence of a ter-
minal 5" adenine is much more favorable than a 5’ thymine,
especially at 4°C. This is the first direct evidence of the impact
of the nature of a 5’ terminal base on the kinetics of quadruplex
formation.

Generally, association processes for all these sequences
were temperature dependent, with a large negative energy
of activation of association (E,,). Plots of k,, versus temper-
ature for a variety of sequences are shown in Figure 5 and
as Supplementary Material (Supplementary Figures S7A-H).
Association was studied in 0.11 M Na* or K*. For most
sequences, and whatever the temperature studied, faster asso-
ciation was obtained in potassium. The ratio k5 /kN2+ varied
between 1 (for d-TTAGGG, Supplementary Figure S7TH) and
400 (d-TGGGGGT at 4°C, Supplementary Figure S7B). The
energies of activation of association (E,,) were negative
in sodium and potassium (and in some cases very close, see
Figure S7A for d-TTGGGGG).

DISCUSSION

In the present study, absorbance spectroscopy was used to
measure kinetics of association and dissociation. In agreement
with the seminal paper by Wyatt et al. (29), who used size
exclusion chromatography to study this process, we found that
dissociation of quadruplexes appeared first order and associa-
tion fourth order with respect to strand concentration. We
actually took advantage of the unusual concentration depend-
ency of the association process to measure association rate
constants that differed by 10° or more: a 100-fold increase in
concentration (from 5 to 500 uM in this manuscript) allowed
us to analyze processes with a 10° slower association rate
constant. Most experiments were performed on the d-
(TG4T)4, DNA quadruplex and its corresponding RNA tetra-
plex r-(UG4U),. These oligomers adopt relatively similar
folded conformations: the four strands are parallel, all nucleo-
tides are in the anti conformation and both of these structures
exhibit right-handed helicity. Differences may be found in the
organization of the thymine/uracil and in sugar pucker: in the
DNA and RNA motifs, the sugar conformations are mostly of
the S-type and mixed type, respectively (61).

Temperature effects

We took advantage of the large hysteresis or quasi-irreversible
melting of these complexes to study the association and

dissociation processes independently. This difference between
heating and cooling (and between the first and second heating)
should lead to great caution concerning conclusions reached
solely by the likening of the heating curves to thermodynamic
equilibrium curves. For most oligonucleotides, it was possible
to find the following:

¢ A temperature range for which association could be studied
with negligible dissociation (once formed, the structure was
so inert that no dissociation occurred in the time range of the
experiment, making the association process a quasi-
irreversible reaction).

* A (higher) temperature range where association could be
neglected, and stability of the complexes was sufficiently
lowered to observe their dissociation. Again, denaturation
of the complex at these high temperatures could be consid-
ered as an irreversible process.

This uncoupling between the association and dissociation
processes allowed easy determination of k,,, and k¢ Unfortu-
nately, this uncoupling necessarily means that k., and kg
values were not obtained at the same temperature. The calcu-
lation of the equilibrium constant required the determination
of ko, and kog at several temperatures and an extrapolation
(which in turn required a precise measurement of the associ-
ation and dissociation activation energies E,, and E) to the
desired temperature range. In the temperature range delimited
in Figures 1E and 3C where these values are obtained with
some confidence, straight lines are obtained with a positive
slope for k,, and a negative one for k,¢. In other words, the
activation energy E,, for the association is negative and the
activation energy E.¢ for the dissociation is positive.

Once formed, the structure is extremely inert, as the ring
protons of the guanines involved in central quartets require
days to exchange even at 60°C (62). This is consistent with the
exceptional thermal stability of this structure, which is still
partially formed at 95-100°C in the presence of potassium
(36,63). In our hands, it was difficult or impossible to observe
the melting of a pre-formed DNA quadruplex that involves
four or more guanines (in 0.11 M K) or five or more guanines
(in 0.11 M Na™). Hence, data on k. could only be collected for
a subset of the sequences shown in Table 1, corresponding to
oligomers containing relatively short runs of guanines. For
these oligomers, it was clear that (i) stability was strongly
temperature dependent; the activation energy for dissociation
E ¢ was strongly positive, (ii) at a given temperature k¢ was
smaller in potassium than in sodium, (iii) at physiological
temperature or lower, the time for half dissociation of these
complexes was generally long (days or more), (iv) a decrease
in NaCl concentration had little effect on G4 dissociation but
strongly decreased the rate constant of association hence, the
equilibrium constant.

Concentration effects

For the T,G4T, sequence, Shida et al. noted that the trans-
formation of the single-stranded form into the quadruple-
stranded form was undetectable at 43 uM strand concentration
at room temperature. However, at a 50-fold higher strand
concentration, the single-stranded oligomer was gradually
converted into the quadruplex (64). The rates of association
of the DNA, RNA and 2'Ome oligomers depend strongly on



oligonucleotide strand concentration (see Figures 2C and 3A):
fourth-order reactions are not common in biochemistry, and
the practical consequences of this reaction order are important.
At some concentrations (below 30 uM for d-TG4T) no detect-
able association may be measured over a 3-day period. In
contrast, at slightly higher concentrations, the association is
so rapid that a majority of the oligonucleotide is already folded
when the first measurement is performed. This is illustrated in
Table 2, where the times required for 50% quadruplex forma-
tion is indicated for the DNA, RNA and 2’Ome oligomers.

Mechanism for quadruplex association

Concerning association, two important results were found: (i)
the association process is fourth order in monomer; (ii) the
activation energy of association is negative. These observa-
tions were valid for a majority of different DNA and RNA
sequences under a variety of experimental conditions.

A fourth-order reaction does not imply that an elementary
kinetic step involves a four-body collision. Such mechanism is
extremely unlikely and other processes could lead to this
fourth order. For example, our data are in full agreement
with the pathway proposed by Wyatt ez al. (29), where single
strands and dimers are in a rapid pre-equilibrium that favors
single strands, and tetramer formation from dimers is rate
limiting. The structure of this elusive dimer intermediate
remains unknown: Stefl et al. have recently demonstrated
that a Hoogsteen G—G duplex is an improbable intermediate
(28). Its identification will be experimentally difficult, as
numerical simulations indicate that it may not be present at
detectable levels (29).

Concerning the activation energy of association, Porschke
and Eigen (65) obtained negative ‘apparent’ activation ener-
gies for duplex formation and interpreted their results within
the now so-called nucleation-zipping model. Our data is con-
sistent with the observed fourth-order dependence of the
association rate and with the negative energy of activation for
association, which implies a rapid pre-equilibrium step (29).
The negative values we have obtained for E,, are in favor of
the nucleation-zipping model. Our finding that k,, strongly
decreases upon reducing ionic strength whereas k¢ is inde-
pendent of NaCl concentration is also in good agreement with
what is observed in the duplex case. Other nucleic acid struc-
tures such as duplexes (65,60) triplexes (43) and i-DNA (44)
also exhibit a negative E,,. The observation that ionic strength
and nature of the monocation plays an important role in the
value of k,, indicates that several ions are involved in this
rate-limiting step and participate in the early stages of the
quadruplex stem assembly (28): k,, strongly decreases upon
reducing the NaCl concentration but k.¢ is independent of
ionic strength.

In most (but not all cases, see d-TG,, and d-G,,T), there is no
clear evidence for complicated folding pathways proceeding
through stable intermediate states, as observed by Hardin et al.
(46,67). Nevertheless, the order of the reaction n, when left
unknown in Equation 2 is often experimentally found between
3.4 and 4 (i.e. lower than 4; data not shown); this could be the
signature of small amounts of stable intermediates. Finally,
one may note that low pH, magnesium, spermine and spermi-
dine seem to act as catalysts for quadruplex association and
dissociation. These cations lead to an increased rate of both
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association and dissociation; it is difficult to determine
whether these effects cancel each other out, in other words
if the equilibrium constant is unaffected.

DNA versus RNA and other nucleic acid analogs

It is important to emphasize the extreme stability of parallel
RNA quadruplexes. r-UG4U forms a much more stable quad-
ruplex than its DNA counterpart (d-TG4T). This increased
stability results from a faster association (350 times faster
at 30°C) and a slower dissociation (at least 1000 times slower
at 60°C). Besides a larger number of sugars in the C3'-endo
conformation in the RNA quadruplex, the main structural
difference between the two structures is the organization of
the uracyl/thymine groups (61). This is in contrast with phos-
phorothioate (PS) oligomers, which exhibited a slower asso-
ciation and faster dissociation as compared to DNA (29). Data
collected from this study, Wyatt et al. (29) and unpublished
observations from our group (B. Sacca and J.L. Mergny, in
preparation) allow oligomers to be ranked in the following
order of thermodynamic stability:

MP < PS < DNA < 2'Ome < RNA

Besides methylphosphonate oligonucleotides (MP) which
are, in our hands, totally unable to form tetramolecular quad-
ruplexes, it should be noted that all other modifications (RNA,
DNA, 2'0O-methyl and phosphorothioates) exhibit a fourth-
order dependence of the association rate, a negative energy
of activation for association and a strongly positive energy of
activation for dissociation. The extremely high stability of
RNA parallel quadruplexes was unexpected: bi- and intra-
molecular RNA quadruplexes are less stable than their
DNA counterparts in sodium (B. Sacca and J.L. Mergny,
in preparation). This difference might be explained by the
greater difficulty in adopting a syn conformation for the ribo-
nucleoside residues, making the formation of quadruplexes
involving an antiparallel strand alignment unfavorable (68).

This suggests that the kinetic model initially proposed for
DNA and phosphorothioates (29) could apply to a variety of
nucleic acid modifications. In particular, close inspection of
the melting profile of the ‘Locked Nucleic Acid’ (LNA) par-
allel quadruplex (69) suggests that these locked nucleic acids
could also obey to the same kinetic rules. LNA could actually
induce a change from an antiparallel to parallel structure (70).
On the other hand, the question remains open for ‘Peptide
Nucleic Acids’ (PNA) quadruplexes (71,72): the PNA TG3
sequence exhibited a surprising independence of the presence/
nature of the monocation (72). It should be noted that, contrary
to most nucleic acids discussed above, interbase linkers in
PNA are not charged, and that the global charge of these
PNA at neutral pH is often positive because of an N- or
C-terminal lysine group.

Sequence effects

Oligomers that have a single multi-guanine motif at their 3’ or
5" end, with a guanine as the terminal base, also form higher-
order products (47,48,63,73), which may sometimes be evid-
enced by an anomalous migration on a non-denaturing gel
(Supplementary Figure S4). This is in agreement with the
observation that mathematical fits were often of lower quality
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for G, T,, sequences than for TG,T,, (e.g. in Supplementary
Figure S2C). Previous work indicated that the additional T at
the 5’ or 3’ end not only inhibited formation of higher-order
structures, but also stabilized the complex (63). As demon-
strated here, this stabilization is reflected by a lower dissocia-
tion rate constant; on the other hand, this extra base has a
strong detrimental effect on the association rate of the quad-
ruplex. The net effect on the thermodynamic constant K = ko g/
kon may be detrimental. On the other hand, extra 5’ thymines
are always detrimental, not only because the T/, is decreased
(74), but also because the association rate constant is nega-
tively affected. In that case, the effects on k., and ks are in the
same direction. We would like to point out that an increase in
T/, does not always imply a higher thermodynamic stability:
it rather indicates a slower dissociation process. One should
compare the association and dissociation processes of these
modified quadruplexes to conclude that such modifications
provide a net gain in free energy.

Conclusion and perspectives

Our data enable us to propose a quantification of the kinetic
inertia of tetramolecular quadruplexes. We have summarized
the impact of a number of parameters on the kinetics of
association and dissociation of these complexes (Table 4).
This might be helpful for a variety of applications. One
may for instance study the interaction of small ligands or
proteins with quadruplexes: are these molecules able to accel-
erate the kinetics of association of monomers giving the tetra-
meric form, or do they only bind to the structured quadruplex,
lowering its dissociation rate constant? What happens with
helicases of the RecQ family such as Werner or Bloom’s?
Knowledge of the kinetics of folding should also be useful
for structural studies (X-ray or NMR) where high concentra-
tions are often chosen: as shown in Table 2, millimolar strand
concentrations lead to fast processes: tetrameric quadruplex
formation is not necessarily a long timescale event with com-
plicated kinetics. Finally, one should emphasize the extraord-
inary stability of RNA quadruplexes, coupled with their

Table 4. Summary of the effects of various parameters on G-quadruplexes

Parameter Association Dissociation Equilibrium
Ka = kon/kuff

Increased temperature — ++ ——

Increased concentration ++ 0 n/a

Increased ionic strength + 0 +

Mg?* addition + + ~

Spermine/spermidine add. + + =

Lower pH* 0 - -

Na* — K" ++ —— ++

DNA — RNA ++ —— ++

DNA — PS°¢ — + —

Longer G-stretch ++ — ++

Longer non-G overhang — +/-° varies®

0: no effect. n/a: not applicable.

+/++: increase or strong increase (>30-fold), respectively of the association or
dissociation process or of the equilibrium constant.

—/——: decrease (strong decrease) of the parameter.

“Below pH 5.5. No effect of pH in the 6.0-7.8 range.

"Generally, dissociation is slower, but sequence-dependent effects may be
observed, depending on length, base composition, side (5" or 3) of the extra
thymines.

“From Wyatt ef al. and B. Sacca et al., unpublished data.

relatively fast kinetics of association. Runs of guanines are
frequent in biological RNAs: or pose a specific problem, as
cellular or viral machineries (such as reverse transcriptases)
cannot displace these structures. Our results suggest that the
presence of a few extra bases delays association: what are the
effects of a much longer overhang, e.g. in the context of a
natural RNA? This will be a crucial question for mRNA or
genomic DNA, but also for antisense/triplex-forming ~20-
base-long oligonucleotides involving short stretches of gua-
nines. It would be interesting to investigate whether some
helicases are able to disrupt these RNA quadruplexes.

SUPPLEMENTARY MATERIAL
Supplementary Material is available at NAR Online.
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