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Abstract 

Background:  Gestational diabetes mellitus (GDM), one of the most common pregnancy complications, can lead to 
morbidity and mortality in both the mother and the infant. Metabolomics has provided new insights into the pathol-
ogy of GDM and systemic analysis of GDM with metabolites is required for providing more clues for GDM diagnosis 
and mechanism research. This study aims to reveal metabolic differences between normal pregnant women and 
GDM patients in the second- and third-trimester stages and to confirm the clinical relevance of these new findings.

Methods:  Metabolites were quantitated with the serum samples of 200 healthy pregnant women and 200 GDM 
women in the second trimester, 199 normal controls, and 199 GDM patients in the third trimester. Both function 
and pathway analyses were applied to explore biological roles involved in the two sets of metabolites. Then the 
trimester stage-specific GDM metabolite biomarkers were identified by combining machine learning approaches, 
and the logistic regression models were constructed to evaluate predictive efficiency. Finally, the weighted gene co-
expression network analysis method was used to further capture the associations between metabolite modules with 
biomarkers and clinical indices.

Results:  This study revealed that 57 differentially expressed metabolites (DEMs) were discovered in the second-tri-
mester group, among which the most significant one was 3-methyl-2-oxovaleric acid. Similarly, 72 DEMs were found 
in the third-trimester group, and the most significant metabolites were ketoleucine and alpha-ketoisovaleric acid. 
These DEMs were mainly involved in the metabolism pathway of amino acids, fatty acids and bile acids. The logistic 
regression models for selected metabolite biomarkers achieved the area under the curve values of 0.807 and 0.81 for 
the second- and third-trimester groups. Furthermore, significant associations were found between DEMs/biomarkers 
and GDM-related indices.

Conclusions:  Metabolic differences between healthy pregnant women and GDM patients were found. Associations 
between biomarkers and clinical indices were also investigated, which may provide insights into pathology of GDM.
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Introduction
Gestational diabetes mellitus (GDM), defined as diabe-
tes diagnosed during pregnancy, affects approximately 
15% of pregnant women globally [1]. Several risk fac-
tors are highly correlated with the development of GDM, 
including maternal obesity, advanced age, family history 
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of diabetes mellitus, and history of abnormal glucose 
metabolism [2, 3]. Studies have found that GDM can 
lead to several short-term and long-term complications, 
including obesity, impaired glucose metabolism, and car-
diovascular diseases, for both mothers and infants [4]. 
It was reported that in women with previous GDM the 
risk of developing diabetes after delivery was more than 
seven times that in women with normal glucose toler-
ance (NGT). For the offspring, they are more than two 
to eight times as likely to develop obesity, the metabolic 
syndrome, type 2 diabetes, and impaired insulin sensitiv-
ity and secretion [5]. Although the pathogenesis of GDM 
is still not well understood, metabolomics has introduced 
new insights into the pathology of GDM and has yielded 
potential biomarkers related to GDM [6].

Metabolomics is the comprehensive analysis of low 
molecular weight compounds, known as metabolites, 
in biological systems. As the end products of meta-
bolic processes, metabolites can reflect the internal 
physiological status of the organism that changes in 
response to environmental factors. Metabolic profil-
ing is a useful approach for qualitative and quantitative 
metabolite studies of cell, bio-fluids, and tissue [7]. In 
recent decades, metabolomics has been applied in vari-
ous aspects, including disease diagnosis and treatment, 
metabolic pathway elucidation, biomarker discovery, 
and drug safety evaluation [8, 9]. For example, an untar-
geted metabolomics study has revealed a large number of 
pregnancy-related metabolic pathways and metabolites, 
five of which were able to predict gestational age in high 
accordance with ultrasound [10].

Many omics-based studies have been conducted for 
identifying biomarkers of GDM and for exploring the 
underlying mechanisms of its development [11, 12]. 
Previous proteomics studies have confirmed the down-
regulation of adiponectin among GDM women [13, 
14]. Adiponectin could mediate antidiabetic metabolic 
effects through phosphorylation and activation of the 
5’-AMP-activated protein kinase and acetyl coenzyme 
A carboxylase, thereby increasing fatty acid oxidation 
and glucose uptake in  vivo. Conversely, downregula-
tion of adiponectin may induce insulin resistance as well 
as GDM [15, 16]. Like proteomics, metabolomics could 
provide a deeper insight in the pathogenesis of GDM. 
Akturk et al. observed that asymmetric dimethylarginine 
was elevated in women with GDM during late pregnancy 
[17]. Cetin et al. found that in GDM pregnancies, valine, 
methionine, phenylalanine, isoleucine, leucine, ornith-
ine, glutamate, proline, and alanine were increased while 
glutamine was significantly decreased [18]. Chen et  al. 
revealed that 2-aminobutyric acid was associated with an 
increased likelihood of GDM in China [19]. Moreover, 26 
serum metabolites investigated by Liu et al. contributed 

to GDM, including 1-methyladenosine, homovanillic 
acid sulfate, and glucosamine compared with healthy 
pregnant women. These identified biomarkers are 
involved in some metabolic pathways that mainly partici-
pate in lipid, carbohydrate, and amino acid metabolisms 
[20]. Although these investigations of metabolite profiles 
have identified branched-chain amino acids (BCAAs), 
aromatic amino acids, sulfur-containing amino acids, and 
other metabolites, their findings still lack consistency. 
Therefore, systemic analysis of the metabolites of GDM 
is necessary for obtaining more clues for GDM diagnosis 
and mechanism research.

In this study, we aimed to explore the metabolic dif-
ference between GDM women and normal pregnant 
women in the second and third trimester, using ultra-
performance liquid chromatography coupled to tandem 
mass spectrometry (UPLC-MS/MS) system. Additionally, 
we expected to reveal the association of clinical indices 
with differentially expressed metabolites (DEMs) found 
in such metabolomics analysis.

Materials and methods
Study participant recruitment
All the samples were obtained from 200 healthy pregnant 
women and 200 GDM women in the second trimester, 
199 normal controls, and 199 GDM patients in the third 
trimester at the University of Hong Kong-Shenzhen Hos-
pital from 2016 to 2018. GDM patients were matched 
1:1 with normal pregnant women. Matching was based 
on maternal age (± 3 years), pregestational BMI (± 3 kg/
m2), and gestational week (± 3 weeks). Participants with 
cancer, kidney disease, heart disease, hepatic disease, 
other metabolic diseases or patients using medications 
that might affect glucolipid metabolism were excluded. 
The diagnostic criteria for GDM women were based on 
the standards recommended by the International Asso-
ciation of the Diabetes and Pregnancy Study Group. 
Glucose (75 g) was used for 2 h for conducting oral glu-
cose tolerance test (OGTT). GDM was defined when 
fasting plasma glucose (FPG) was ≥ 5.1  mmol/L or 1-h 
plasma glucose was ≥ 10.0  mmol/L or 2-h plasma glu-
cose was ≥ 8.5  mmol/L. All values for the OGTT less 
than the thresholds were considered normal. The study 
was approved by the ethics committee of the University 
of Hong Kong-Shenzhen Hospital ([2017]13). It was con-
ducted according to relevant regulations, and informed 
consent was signed by every participant.

Sample collection and serum metabolomics
Age, height, and weight were recorded for every partici-
pant. General background information, including fam-
ily history of diabetes, reproductive history, and medical 
history, were collected. Information about pregnancy 
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outcomes was acquired after delivery, from the maternal 
and infant medical records in the hospital. Body mass 
index (BMI) was calculated as body weight (in kg)/height 
squared (in m2). Serum samples obtained from 24 to the 
end of 27 gestational weeks were defined as the second-
trimester group, while those after 28 gestational weeks 
were defined as the third-trimester group. Blood sam-
ples were drawn in the morning after an overnight fast 
through the antecubital vein. Glucose levels were meas-
ured using the hexokinase method on a Roche Cobas 701 
analyzer (Roche, Ltd, Basel, Switzerland). HbA1c values 
were tested using an Arkray HA-8160 analyzer (Arkray, 
Ltd, Kyoto, Japan). Serum lipids, including total triglycer-
ide (TG), total cholesterol (TC), high-density lipoprotein 
cholesterol (HDL-C), and low-density lipoprotein cho-
lesterol (LDL-C) levels were measured with a Siemens 
ADVIA2400 fully automated chemistry analyzer (Sie-
mens AG, Munich, Germany).

Metabolomic profiling was performed using Metabo-
Profile (Shanghai, China). Serum samples were stored 
at − 80 °C until analysis. All of the standards of targeted 
metabolites were accurately weighed and prepared in 
water or methanol to obtain individual stock solution 
with a concentration of 5 mg/mL. Appropriate amount of 
each stock solution was mixed to create stock calibration 
solutions. A mixture of stable isotope labeled internal 
standards were prepared in methanol at a concentration 
of 50 µM/L. 25 µL of serum was added to a 96-well plate 
and the plate was transferred to the Biomek 4000 auto-
mation workstation (Biomek 4000, Beckman Coulter, 
Inc., California, USA). Approximately 120 µL of ice-cold 
methanol with partial internal standards was automati-
cally added to each sample for extracting the metabolites. 
After vortexing for 5 min, the mixture was centrifuged for 
30 min at 4000 g; 30 µL of supernatant was transferred to 
a new 96-well plate, and 20 µL of freshly prepared deriva-
tive reagents (3-Nitrophenylhydrazine) was added to 
each well. After derivatization for 60 min at 30 °C, 330 µL 
of ice-cold 50% methanol solution was added for dilution. 
The samples were stored at − 20 °C for 20 min and were 
centrifuged at 4000 g for 30 min at 4  °C. Approximately 
135 µL of supernatant was mixed with 10 µL of internal 
standards in each well of a new 96-well plate. Serial dilu-
tions of derivatized stock standards were added to the left 
wells, and the plate was ready for analysis.

Chromatographic separation was performed on an 
ACQUITY UPLC BEH C18 VanGuard pre-column 
(2.1×5 mm, 1.7 µm) and an ACQUITY UPLC BEH C18 
analytical column (2.1×100 mm, 1.7 µm). The tempera-
ture of the column and the sample manager was set at 
40  °C and 10  °C, respectively. The mobile phase A was 
water with 0.1% formic acid, while B was a mixture of 
acetonitrile and isopropanol (70:30). Gradient conditions 

were 0–1 min, 5% B; 1–11 min, 5%–78% B; 11–13.5 min, 
78%–95% B; 13.5–14 min, 95%–100% B; 14–16 min, 100% 
B; 16–16.1 min, 100%–5% B; 16.1–18 min, 5% B. The flow 
rate was 0.4 mL/min with a 5 µL injection volume.

The mass spectrometer was operated in positive elec-
trospray ionization (ESI +) mode with a capillary voltage 
of 1.5 kV as well as the negative electrospray ionization 
(ESI −) mode with a capillary voltage of 2 kV. The tem-
perature of the ion source and desolvation was 150  °C 
and 550 °C, respectively. The desolvation gas flow was set 
at 1000 L/h. Raw data files generated by UPLC-MS/MS 
were processed using Masslynx software (v4.1, Waters, 
Milford, MA, USA) for performing peak integration, 
calibration, and quantitation for each metabolite. An 
overview of the research design and analysis workflow is 
presented in Fig. 1.

Bioinformatics analysis and metabolic biomarker 
recognition
For the analysis of clinical characteristics, participants 
were divided into four groups: the second-trimester 
GDM group (group 1), second-trimester normal group 
(group 2), third-trimester GDM group (group 3), and 
third-trimester normal group (group 4). Clinical char-
acteristics between the same gestational-stage groups 
(group1 vs. group 2 and group3 vs. group 4) were com-
pared using the Student’s paired t-test or signed-rank 
test for continuous variables and chi-square tests for cat-
egorical variables with SAS 9.3 (SAS Institute, Cary, NC, 
USA). After normality testing for continuous variables, 
the data was presented as mean ± standard deviation 
(SD) or median (interquartile range). The level of signifi-
cance was set at p < 0.05.

To observe changes in metabolites between the same 
gestational-stage groups, the univariate and multivariate 
analyses were conducted, including differential expres-
sion analysis using t-test, fold-change with volcano plot, 
principal component analysis (PCA), partial least square 
discriminant analysis (PLS-DA), and orthogonal par-
tial least square discriminant analysis (OPLS-DA). Data 
processing was performed using the iMAP platform 
(v1.0, Metabo-Profile, Shanghai, China). p < 0.05 and 
|log2FC|> 0 in the univariate analysis and variable impor-
tance in the projection (VIP) > 1 in the multivariate analy-
sis were the standards for screening DEMs. To investigate 
the biological meaning of DEMs, enrichment analysis 
was performed with the small molecule pathway data-
base (SMPDB) with p < 0.05 regarded as the significance 
level, and pathway analysis was also performed using p 
values to account for significance and false discovery. A 
threshold of p < 0.05 was used for considering the func-
tion or pathway to be impactful. Metabolites were fur-
ther analyzed using random forest (RF) for identifying 
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potential biomarkers based on which logistic regression 
(LR) models were constructed for evaluating predic-
tive efficiency. Area under the curve (AUC) for receiver 
operating characteristic (ROC) curves were calculated 
for assessing the performance of potential biomarkers 
with LR for GDM. The determination of sensitivity and 
specificity at the optimal cut-off point was defined by the 
minimum distance to the top-left corner. Longitudinal 
analysis for catching continue-changed metabolic bio-
markers with the disease was performed by extracting 
the shared candidate metabolic biomarkers from above 

classification-model evaluated biomarkers in two preg-
nancy stages. The weighted gene co-expression network 
analysis (WGCNA) [21] was used for inferring the asso-
ciation between metabolite modules and clinical indices.

Results
Clinical characteristic of study participants
The clinical characteristics of all participants are pre-
sented in Table  1. Compared with normal pregnant 
women, pregnant women who developed GDM had 
higher FPG, 1-h, and 2-h blood glucose levels after an 

a

b

c

Fig. 1  The design and analysis workflow of the study. a Participant selection. b Time points when blood samples were collected during OGTT. One 
blood sample at the zero-time point was obtained before OGTT for the serum sample. c Metabolic analysis pipeline
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OGTT and smaller changes in BMI during pregnancy, 
in both the second and third trimesters. HbA1c, TG, 
TC, and LDL were statistically different between the case 
and control groups in the second trimester, which were 
consistent with previous research conclusions [22, 23]. 
TC, delivery gestational week, neonatal weight, and neo-
natal length were statistically different between GDM 
patients and healthy pregnant women in the third trimes-
ter. Women with GDM were more likely to have a family 
history of diabetes. Age, BMI, and gestational week were 
similar between the two groups in each trimester.

Metabolomics profiling of study participants
As shown in the metabolomics profiles (Fig.  2a, b), 
the case group (GDM) did not separate from the con-
trol group (normal) in the second and third trimes-
ter with PCA; moreover, PLS-DA showed a relatively 
clear discrimination for both the trimesters (Fig.  2c, d). 
Finally, the results of OPLS-DA (Fig. 2e, f ) indicated the 

possibility of evaluating the differences between GDM 
patients and normal controls with metabolite abun-
dance. The results showed that R2 and Q2 of the OPLS-
DA model in the second trimester were 0.347 and 0.165, 
while in the third trimester were 0.324 and 0.201, respec-
tively. Permutation tests (n = 200) were employed for 
validating the predictive ability of the built OPLS-DA 
models (Additional file 1: Figure S1). The R2 and Q2 val-
ues derived from the permuted data were lower than the 
original values, which demonstrated that the OPLS-DA 
model did not overfit. The VIP values of the OPLS-DA 
model and criteria, including |log2FC|> 0 with p < 0.05, 
were further employed for determining the DEMs. A vol-
cano plot provided a quick way to display the differences 
in metabolite expression levels between normal pregnant 
women and GDM patients with statistical significance 
(Fig. 3). As shown in the volcano plot, of 200 metabolites 
found in this study, 57 metabolites in the second-trimes-
ter group (Additional file 4: Table S1) and 72 metabolites 

Table 1  Characteristics of the NGT and GDM groups in the second and third trimesters

Data are presented as means ± SD, median (interquartile range) or n (%)

NGT normal glucose tolerance, GDM gestational diabetes mellitus, FBG fasting blood glucose, 1 h-PG one hour postprandial glucose, 2 h-PG two hours postprandial 
glucose, LDL-C low-density lipoprotein cholesterol, HDL-C high-density lipoprotein cholesterol

Subjects in the second trimester Subjects in the third trimester

NGT (n = 200) GDM (n = 200) P NGT (n = 199) GDM (n = 199) P

Age (years) 29 (27,30) 29 (27,30) 0.117 31 (29,34) 31 (29,35) 0.208

Pregestational BMI (kg/m2) 20.33 ± 2.58 20.72 ± 2.77 0.151 21.33 ± 2.26 21.44 ± 2.39 0.665

Changes of BMI (kg/m2) 5.26 ± 1.31 4.63 ± 1.47  < 0.001 5.6 ± 1.46 4.68 ± 1.61  < 0.001

Gestational age (week) 25.71 (24.86, 26.43) 25.86 (25, 26.5) 0.925 29 (28, 31.1) 29.29 (28, 31.1) 0.395

FBG (mmol/L) 4.4 ± 0.32 4.56 ± 0.38  < 0.001 4.49 ± 0.25 4.63 ± 0.33  < 0.001

1 h-PG (mmol/L) 7.22 ± 1.29 9.67 ± 1.34  < 0.001 7.35 ± 1.37 9.94 ± 1.51  < 0.001

2 h-PG (mmol/L) 6.27 ± 0.92 8.5 ± 1.35  < 0.001 6.44 ± 1.06 8.79 ± 1.56  < 0.001

HbA1c  < 0.001 0.962

mmol/mol 32.47 ± 2.08 33.45 ± 2.53 32.93 ± 3.52 32.94 ± 3.14

% 5.12 ± 0.19 5.21 ± 0.23 5.16 ± 0.32 5.16 ± 0.29

Total cholesterol (mmol/L) 6.13 ± 1.05 5.83 ± 1.11 0.005 6.64 ± 1.22 6.13 ± 1.16  < 0.001

Triglycerides (mmol/L) 1.93 ± 0.65 2.33 ± 0.86  < 0.001 2.91 ± 1.38 2.94 ± 1.78 0.850

LDL-C (mmol/L) 2.91 ± 0.74 3.24 ± 0.96  < 0.001 3.29 ± 0.89 3.40 ± 0.91 0.233

HDL-C (mmol/L) 2.05 ± 0.37 2.02 ± 0.42 0.488 1.98 ± 0.39 1.95 ± 0.40 0.395

Delivery gestational age (week) 39 (38,40) 39 (38,40) 0.120 39 (39,40) 39 (38,40) 0.004

Neonatal weight (kg) 3.29 ± 0.38 3.23 ± 0.46 0.127 3.38 ± 0.39 3.26 ± 0.41 0.005

Neonatal length (cm) 50 (50,50) 50 (50,50) 0.214 50 (50,51) 50 (50,50) 0.010

Family history of diabetes, n (%) 5(2.5) 48(24)  < 0.001 27(13.6) 53(26.6) 0.001

(See figure on next page.)
Fig. 2  Discrimination analysis of metabolomic profiles. a PCA model in the second trimester. b PCA model in the third trimester. c PLS-DA model in 
the second trimester. d PLS-DA model in the third trimester. e OPLS-DA model in the second trimester. f OPLS-DA model in the third trimester. Blue 
refers to the control group while green refers to the case group in the second trimester, and purple refers to normal pregnant women while red 
refers to GDM patients in the third trimester
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Fig. 3  Differential expression analysis of metabolomic profiles. a Volcano plot of DEMs in the second-trimester group. b Volcano plot of DEMs in the 
third-trimester group. c Test statistics of DEMs in the second-trimester group. d Test statistics of DEMs in the third-trimester group. e Classification of 
DEMs in the second-trimester group. f Classification of DEMs in the third-trimester group
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in the third-trimester group (Additional file 5: Table S2) 
were considered DEMs. The top five DEMs in the sec-
ond-trimester group were 3-methyl-2-oxovaleric acid, 
3-hydroxybutyric acid, palmitic acid, alpha-hydroxy-
isobutyric acid, and acetic acid. As for the third-trimes-
ter group, they were ketoleucine, alpha-ketoisovaleric 
acid, pyruvic acid, L-tryptophan, and succinic acid. Most 
DEMs were down-regulated during the second trimes-
ter (Fig. 3a), while many DEMs were positively-regulated 
during the third trimester (Fig.  3b), suggesting different 
metabolomic dysfunction at different trimester stages. 
Amino acids, fatty acids, and organic acids account for 
around 70% of DEMs found in the second- and third-tri-
mester stages (Fig. 3e, f ).

Metabolic enrichment of biological function and pathway 
relevant to GDM
The DEMs for each comparison group were evaluated 
using enrichment analysis with SMPDB (Fig.  4a, b). In 
the second-trimester group, the alpha linolenic acid 
and linoleic acid metabolism pathways had the high-
est fold enrichment, lowest p value (p < 0.001), and FDR 
of < 0.1. Other significant functions included beta oxi-
dation of very long chain fatty acids and valine-leucine-
isoleucine degradation (Fig.  4a and Table  2, Additional 
file  6: Table  S3). In the third-trimester group, functions 
such as urea cycle, ammonia recycling, glycine and serine 
metabolism, valine-leucine-isoleucine degradation, argi-
nine and proline metabolism, alanine metabolism, gluta-
mate metabolism, aspartate metabolism, glucose-alanine 
cycle, phenylalanine and tyrosine metabolism, and carni-
tine synthesis were significantly associated with the cor-
responding DEMs (Fig. 4b and Table 3, Additional file 7: 
Table S4).

Pathway analysis was also performed for investigating 
the function of DEMs. 32 pathways were observed, nine 
of which were significantly enriched in the second-tri-
mester group (Fig. 4c, Additional file 8: Table S5), among 
which two pathways, valine-leucine-isoleucine biosyn-
thesis and valine-leucine-isoleucine degradation, played 
key roles in reflecting the changes in metabolites. For the 
third-trimester group, 48 pathways were found, of which 
21 were significantly enriched with DEMs (Fig. 4d, Addi-
tional file 9: Table S6).

Furthermore, remarkable differences also exist between 
different trimester stages on function and pathway lev-
els (Fig. 4 and Additional file 2: Fig. S2), suggesting that 
stage-specific biomarkers and diagnostic models should 
be considered.

Selection of potential metabolic biomarkers for GDM
After observing metabolomics differences between the 
groups and reliable functional enrichment analysis, it was 

necessary to establish a diagnostic model for predicting 
the presence of GDM in pregnant women and for select-
ing potential metabolite characteristics with the impor-
tance determined using machine learning algorithms [24, 
25].

For the second-trimester group, samples were first 
divided into training data with 70% samples and test data 
with 30% samples. The RF model was then learned on the 
training data for obtaining the importance score for each 
metabolite, based on which the candidate metabolite bio-
markers were selected with top large importance scores 
and with overlaps to DEMs as much as possible. Next, the 
LR model was constructed on the training data with such 
metabolite biomarkers (Additional file 10: Table S7), with 
a training AUC of 0.808. Finally, the second-trimester 
group-specific LR model was validated on the test data 
and achieved a testing AUC of 0.807 (Fig. 5a). Similarly, 
for the third-trimester group, the metabolite biomarkers 
(Additional file 10: Table S7) were selected using RF, and 
an LR model was built, which had learning performance 
as AUC 0.819 and validation performance as AUC 0.810 
on the test data (Fig. 5b). In practice, patients diagnosed 
as positive by our new diagnostic method have about 
30% probability of actual disease when the prevalence 
of GDM is 11.91% [26]. The positive predictive value in 
the second-trimester group is 0.328, and the negative 
predictive value is 0.964 (when sensitivity and specificity 
are all 0.783, the best diagnostic bounds), while the posi-
tive predictive value in the third-trimester group is 0.269, 
and the negative predictive value is 0.958 (when sensitiv-
ity is 0.767 and specificity is 0.717). In addition, almost 
all identified biomarker candidates were DEMs (Table 4). 
Of note, there are three common potential metabolic 
biomarkers (3-hydroxybutyric acid, isobutyric acid, and 
isovaleric acid) discovered both in second- and third-tri-
mester groups, whose trend changes longitudinally across 
pregnancy were displayed in Additional file 3: Figure S3. 
As the pregnancy progressed, these three metabolic bio-
markers significantly increased among normal pregnant 
women, while in GDM patients only 3-hydroxybutyric 
acid was increased. We also assess the goodness of fit 
between the predicted and real probabilities with calibra-
tion plot (Fig. 5c, d), evaluating how similar the predicted 
probability values are to the actual probabilities.

Clinical relevance of metabolic biomarkers for GDM
Finally, to confirm the clinical relevance of metabolic bio-
markers associated with GDM, WGCNA was performed 
for inferring the association between metabolite modules 
and clinical indices. As shown in Fig.  6a, four modules 
were detected for the second-trimester group. Module 
turquoise was significantly associated with GDM (i.e., 
group index) and many other important clinical indices, 
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Fig. 4  The enrichment analysis of metabolomic profiles. a Function enrichment for DEMs in the second-trimester group. b Function enrichment 
for DEMs in the third-trimester group. c Pathway enrichment for DEMs in the second- trimester group. d Pathway enrichment for DEMs in the 
third-trimester group
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including pre-pregnancy BMI, OGTT, TC, TG, and LDL. 
Additionally, this module significantly included 11 DEMs 
(P = 9.99e−04), compared to module blue containing 
three DEMs (P = 0.666), module brown containing two 
DEMs (P = 0.580), and module grey containing 41 DEMs 
(P = 0.868) (Fig.  6c). Similarly, five modules were found 
for the third-trimester group (Fig. 6b), where the module 

turquoise contains 21 DEMs (P = 6.737e−08), module blue 
contains five DEMs (P = 0.944), module brown contains 
six DEMs (P = 0.090), module grey contains 37 DEMs 
(P = 0.992), and module yellow contains three DEMs 
(P = 0.606) (Fig. 6d). At this time, module turquoise was 
associated with group, OGTT, TC, TG, and LDL; and 
module yellow was positively associated with the group, 

Table 2  Enrichment analysis of the second trimester group

Pathway associated metabolite sets with p value < 0.05 are shown in the table. Total means total number of metabolites in the metabolite set; Hits mean number of 
metabolites from GDM patients in the metabolite set; Raw p refers to original p value in the enrichment analysis; Holm p refers to adjusted raw p value by Holm-
Bonferroni method; FDR is the false discovery rate

Pathway associated metabolite sets Enriched compounds Total Hits Raw p Holm p FDR

Alpha linolenic acid and linoleic acid metabolism Linoleic acid; alpha-linolenic acid; docosahexaenoic acid; 
adrenic acid; 8,11,14-eicosatrienoic acid

19 5 0.000693 0.0679 0.0679

Beta oxidation of very long chain fatty acids L-carnitine; L-acetylcarnitine;
Caprylic acid

17 3 0.0292 1 1

Valine-leucine-isoleucine degradation Alpha-ketoisovaleric acid; L-Valine;
L-Isoleucine;3-Methyl-2-oxovaleric acid; L-Leucine; 

Ketoleucine;

60 6 0.0314 1 1

Table 3  Enrichment analysis of the third trimester group

Pathway associated metabolite sets with p value < 0.05 are shown in the table

Pathway associated metabolite sets Enriched compounds Total Hits Raw p Holm p FDR

Urea cycle Pyruvic acid; Oxoglutaric acid;
L-Alanine; L-Arginine;L-Glutamine
Citrulline

29 6 0.000325 0.0318 0.0176

Ammonia recycling Glycine; L-Histidine; L-Glutamine;
L-Serine; Oxoglutaric acid; Pyruvic acid

32 6 0.000574 0.0557 0.0176

Glycine and serine metabolism Glycine;Guanidoacetic acid;Pyruvic acid;L-
Alanine;L-Serine;L-Arginine

Oxoglutaric acid; L-Methionine

59 8 0.000638 0.0612 0.0176

Valine-leucine-isoleucine degradation Alpha-ketoisovaleric acid; L-Valine;
Methylmalonic acid; Oxoglutaric
acid; Succinic acid; Ketoleucine;
3-Methyl-2-oxovaleric acid; L-
Leucine

60 8 0.000718 0.0682 0.0176

Arginine and proline metabolism Glycine; Guanidoacetic acid; L-
Proline; Oxoglutaric acid; Succinic
acid; L-Arginine; Citrulline

53 7 0.00173 0.163 0.034

Alanine metabolism Glycine; Oxoglutaric acid; Pyruvic
acid; L-Alanine

17 4 0.00221 0.206 0.0362

Glutamate metabolism Glycine; L-Alanine; Oxoglutaric
acid; Pyruvic acid; Succinic acid;
L-Glutamine

49 6 0.00571 0.525 0.0747

Aspartate metabolism Oxoglutaric acid; L-Arginine; L-
Glutamine; N-Acetyl-L-aspartic
acid; Citrulline

35 5 0.00609 0.555 0.0747

Glucose-alanine cycle L-Alanine; Oxoglutaric acid;
Pyruvic acid

13 3 0.00896 0.807 0.0976

Phenylalanine and tyrosine
Metabolism

L-Tyrosine; Phenylpyruvic acid;
4-Hydroxyphenylpyruvic acid;
Oxoglutaric acid

28 4 0.0144 1 0.141

Carnitine synthesis Glycine; Oxoglutaric acid; Succinic
acid

22 3 0.0388 1 0.346
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pre-pregnancy BMI, and OGTT. It should be noted that 
the biomarker candidates are almost DEMs (Table  4); 
thus, they have similar contribution to particular mod-
ules and their associations with GDM.

Discussion
Using UPLC-MS/MS for metabolomics analysis, detailed 
information was obtained on the metabolic changes 
in normal pregnant women and GDM patients in our 
study. The changes in serum metabolites were further 
investigated using univariate and multivariate statisti-
cal analyses. Thirteen candidate metabolite biomarkers 
found in the second-trimester group and thirteen found 

in the third-trimester group contributed to GDM when 
compared with healthy pregnant women. According to 
metabolic enrichment and pathway analyses, valine-
leucine-isoleucine degradation in the second-trimester 
group was consistently found in both analyses. In the 
third trimester, valine-leucine-isoleucine degradation 
and glycine, serine, arginine, proline, alanine, glutamate, 
aspartate, and phenylalanine metabolisms were consist-
ent in both the analyses. Metabolic biomarkers have been 
found by RF, and LR models based on which showed 
high predictive efficiency. Furthermore, these biomark-
ers demonstrate remarkable relationship with clinical 
indices.

Fig. 5  Validation ROC curves of candidate metabolite biomarkers. a ROC curve in the second-trimester group. b ROC curve in the third-trimester 
group. c Calibration plot of the second-trimester group. d Calibration plot of the third-trimester group. X-axis shows average predicted probability 
values for each decile, and y-axis shows corresponding observed probability in each decile. Error bars represent 95% confidence intervals of mean 
predicted probabilities
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BCAAs, which consist of valine, leucine, and isoleu-
cine, were higher in the GDM group than in the NGT 
group in our study. Although some studies have found 
that the levels of BCAAs did not differ significantly 
between GDM and NGT [27, 28], several studies have 
shown that elevated BCAAs in GDM patients might 
serve as biomarkers for GDM [29–31]. Phosphatidylin-
ositol-3-kinase (PI3K)/ protein kinase B (Akt)/mamma-
lian target of rapamycin (mTOR) signaling is involved 
in functions such as protein and lipid biosynthesis [32]. 
Mammalian target of rapamycin complex 1 (mTORC1) 
is controlled by the small GTPase Ras homolog enriched 
in brain (Rheb) and tuberous sclerosis complex (TSC) 
complex (TSC1 and TSC2) [33]. When insulin exists, it 
activates insulin receptor and insulin receptor substrate 
(IRS), which further promotes the activation of PI3K 
and Akt. Akt inhibits the TSC complex, allowing Rheb 
to stimulate mTORC1 to mediate cellular functions 
[34]. Ribosomal S6 protein kinase 1 (S6K1), one of the 
mTORC1 substrate, participates in the Rheb/mTOR/S6K 
pathway. However, constitutive activation of the Rheb/
mTOR/S6K pathway can induce a negative feedback and 
thus cause insulin resistance [35]. BCAAs might be asso-
ciated with insulin resistance in GDM women [36, 37]. 

One potential mechanism is that elevated BCAAs levels 
lead to activation of the mTOR/S6K1 pathway and ser-
ine phosphorylation of IRS1, contributing to inhibition 
of insulin-induced PI3K activation and insulin resist-
ance [38]. Also, BCAAs dysmetabolism could result in 
the accumulation of toxic BCAA metabolites that cause 
β-cell mitochondrial dysfunction and highly susceptibil-
ity to insulin resistance [39].

In our study, glycine and serine metabolisms were 
lower in the GDM group, which is consistent with find-
ings of previous studies. Takashina et  al. observed that 
fasting glucose and 2-h plasma glucose levels or the 
homeostasis model assessment of insulin resistance neg-
atively correlated with glycine levels, and the homeostasis 
model assessment for the β-cell function index negatively 
correlated with glycine and serine levels [40]. Moreover, 
oral glycine has been reported to increase insulin secre-
tion without affecting insulin sensitivity [41].

Additionally, arginine and proline levels were also 
lower in the GDM group. It has been reported that 
arginine and its metabolites promote insulin secretion 
[42] and improve insulin resistance in humans [43]. Argi-
nine plays multiple beneficial roles against metabolic 
abnormalities, but it might also induce oxidative stress 
[44]. Proline is absorbed and metabolized into glutamine, 
which may enter the tricarboxylic cycle and ultimately 
be converted into glucose. One study demonstrated that 
the ingestion of proline with glucose attenuated the glu-
cose area response without affecting insulin response 
and decreased glucagon levels compared to glucose alone 
[45].

Alpha linolenic acid is a precursor of polyunsaturated 
fatty acids, which mainly contain omega-6 and omega-3 
fatty acids. A meta-analysis by Zhong et al. investigated 
the efficacy of omega-3 fatty acid for GDM, reveal-
ing that omega-3 fatty acids supplementation in GDM 
patients could reduce FPG and HOMA-IR score [46]. 
Omega-3 fatty acids were involved in the mechanism of 
increasing β-oxidation of fatty acids, improving antioxi-
dant functions and insulin action, and reducing lipogen-
esis [47].

Short-chain fatty acids (SCFAs) refer to those fatty 
acids that have one to six carbons. Previous study has 
indicated that increased expression of free fatty acid 
receptor-2 and alteration of its endogenous ligands 
SCFAs contributed to glucose homeostasis by improv-
ing insulin secretion throughout gestation [48]. SCFAs 
also diminished late gestational androgen excess 
through suppression of adenosine deaminase /xan-
thine oxidase pathway, which protected against glucose 
dysmetabolism and poor fetal outcome [49]. SCFAs 
can not only impact metabolism, but also influence 
cardiovascular diseases. SCFAs are recognized by G 

Table 4  Candidate metabolite biomarkers associated with GDM 
in the second and third trimester

Name Second trimester Third trimester

3-Methyl-2-oxovaleric acid Grey* Grey*

D-Gluconolactone Grey*

D-Glucose Blue*

3-Hydroxybutyric acid Grey*

Alpha-Hydroxyisobutyric acid Grey*

Isobutyric acid Grey* Turquoise*

Isovaleric acid Grey* Turquoise*

Octanoic acid Brown*

Glycocholic acid Grey*

Nonanoic acid Grey*

Myristic acid Turquoise*

DHA Turquoise*

Palmitic acid Turquoise*

Glycylproline Turquoise*

Alpha-Ketoisovaleric acid Grey*

Ketoleucine Grey*

Acetic acid Grey*

Caproic acid Turquoise*

Heptanoic acid Turquoise*

Pyruvic acid Yellow*

Arachidonic acid Blue*

Adrenic acid Blue

Citramalic acid Turquoise*
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protein-coupled receptors, one of which is G protein-
coupled receptor 41(Gpr41). Another SCFA receptor 
olfactory receptor 78, together with Gpr41, participated 
in the modulation of blood pressure. While Gpr41 low-
ered baseline blood pressure [50, 51], olfactory recep-
tor 78 induced the hypertensive effect of SCFAs [51]. 
Acetate, one of major SCFAs, decreases among GDM 
patients in our study. It was believed to enhance glucose 
incorporation and lipid metabolism through activat-
ing AMP-activated protein kinase [52, 53]. Addition-
ally, supplementation of acetate significantly increased 
the number of activated Treg cells [54], which could 
attenuate cardiac hypertrophy and fibrosis and improve 
electric remodeling in hypertension/Angiotensin II–
induced cardiac damage [55].

Of note, 3-hydroxybutyric acid was selected as a poten-
tial metabolic biomarker in both the trimester groups. As 
a classic ketone body, the levels of 3-hydroxybutyric acid 
increases because of the oxidation of free fatty acids and 
excess acetyl-CoA. ATP production from fatty acids and 
carbohydrate oxidation happens out of control, resulting 
in increased acetyl-CoA levels. A study in diabetic rats 

showed that inefficient utilization and mobilization of 
glucose may contribute to the elevation of 3-hydroxybu-
tyric acid levels [56].

In the WGCNA, carnitine was included in the mod-
ule grey for both the trimesters. Previous studies have 
shown that using 2  g/day of L-carnitine resulted in a 
reduction of TC and LDL, and its mechanism may be 
related to the phenomena of insulin resistance and 
lipotoxicity [57]. However, a higher dose of L-carni-
tine had different effects, since it contributed to the 
elevation of TG, apolipoprotein-A1, and apolipopro-
tein-B100 levels [58]. While BCAAs are in the mod-
ule grey in the second-trimester group, isoleucine 
belongs to the module grey, leucine and valine are in 
the module turquoise for the third-trimester group. It 
is widely accepted that BCAAs transaminase helps in 
the conversion of isoleucine and valine into branched-
chain α-ketoacids, which are further transformed into 
propinonyl-CoA by the branched-chain α-ketoacid 
dehydrogenase complex. Propinonyl-CoA can become 
methylmalonyl-CoA with relevant carboxylase. Meth-
ylmalonyl-CoA mutase (MUT) is an enzyme that 

Fig. 6  Clinical relevance of DEMs related to GDM. a The WGCNA for metabolite module and clinical indices in the second-trimester group. b The 
WGCNA for metabolite module and clinical indices in the third-trimester group. c DEMs’ distribution in metabolite modules in the second-trimester 
group. d DEMs’ distribution in metabolite modules in the third-trimester group
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catalyzes the conversion of methylmalonyl-CoA to 
succinyl-CoA [59]. Based on experiments with mice, 
decreased Mut expression led to higher body weight, 
hyperinsulinemia, elevated fasting glucose and 
increased triglyceride [60].

Actually, this study has some limitations. First, in a 
cross-sectional study design, metabolites were only 
measured at one point; thus, further prospective cohort 
studies are needed for establishing the dynamic associa-
tion of these metabolites with GDM. Second, though 
metabolite biomarkers in the first trimester allow early 
diagnosis and timely intervention, we mainly focused 
on the metabolic changes during the second and third 
trimesters due to lack of enough participants recruited 
in the first trimester stage. Third, while the second tri-
mester starts at week 14 of pregnancy and lasts through 
the end of week 27, participants were recruited from 
24 weeks to the end of 27 gestational weeks for the sec-
ond-trimester group; thus, important information may 
have missed out. Fourth, the precise molecular mech-
anisms underlying the development of GDM remain 
unclear and mechanistic studies need to be conducted 
for clarifying the exact roles of these discovered metab-
olites in GDM.

Conclusion
In conclusion, with the analysis of serum samples, our 
study suggested that specific metabolomic profile existed 
among GDM patients. Several key metabolites, such as 
glycine, serine, proline, and 3-hydroxybutyric acid, are 
associated with GDM in the second or third trimester, 
and potential biomarkers for GDM have been identi-
fied. These metabolites mainly participated in fatty acid 
and amino acid metabolism, which may shed light on the 
pathology of GDM. However, further research is needed 
to confirm our findings and explore the underlying 
molecular mechanisms.
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