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Abstract

Background: Planning for the reliable and cost-effective supply of a health service commodity such as medical oxygen
requires an understanding of the dynamic need or ‘demand’ for the commodity over time. In developing country health
systems, however, collecting longitudinal clinical data for forecasting purposes is very difficult. Furthermore, approaches to
estimating demand for supplies based on annual averages can underestimate demand some of the time by missing
temporal variability.

Methods: A discrete event simulation model was developed to estimate variable demand for a health service commodity
using the important example of medical oxygen for childhood pneumonia. The model is based on five key factors affecting
oxygen demand: annual pneumonia admission rate, hypoxaemia prevalence, degree of seasonality, treatment duration, and
oxygen flow rate. These parameters were varied over a wide range of values to generate simulation results for different
settings. Total oxygen volume, peak patient load, and hours spent above average-based demand estimates were computed
for both low and high seasons.

Findings: Oxygen demand estimates based on annual average values of demand factors can often severely underestimate
actual demand. For scenarios with high hypoxaemia prevalence and degree of seasonality, demand can exceed average
levels up to 68% of the time. Even for typical scenarios, demand may exceed three times the average level for several hours
per day. Peak patient load is sensitive to hypoxaemia prevalence, whereas time spent at such peak loads is strongly
influenced by degree of seasonality.

Conclusion: A theoretical study is presented whereby a simulation approach to estimating oxygen demand is used to better
capture temporal variability compared to standard average-based approaches. This approach provides better grounds for
health service planning, including decision-making around technologies for oxygen delivery. Beyond oxygen, this approach
is widely applicable to other areas of resource and technology planning in developing country health systems.
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Introduction

Pneumonia is the leading cause of child mortality globally,

representing 18% of the 7 million deaths under-five in 2011 [1].

Pneumonia is most prevalent during the rainy season in tropical

regions, and during the cooler, drier winter season elsewhere [2–

10]. Pneumonia is associated with severe hypoxaemia (arterial

blood oxygen saturation, SpO2, below 90%), a potentially fatal

complication that requires oxygen therapy [11–13].

Medical oxygen is an important example of a health commodity

that is not widely or reliably available in many low-income settings

due to financial constraints, poor infrastructure (e.g., roads,

electricity), and inadequate capacity for supply management and

equipment maintenance [14–16]. Access to oxygen has been

found to be particularly inadequate in paediatric wards due to

insufficient supply and competition for use by other services [17].

Anecdotally, oxygen is often rationed to only the sickest children

during busy periods [18]. The World Health Organization (WHO)

even offers suggestions on how to prioritize the use of limited

oxygen supplies [19]. Given that oxygen has been shown to reduce

mortality from pneumonia in children by as much as 35% [20]

improved oxygen supply to this patient population has the

potential to substantially reduce child deaths.

To plan for reliable and cost-effective supply, the paediatric

oxygen needs of a health facility must be understood, but

collecting longitudinal clinical data is difficult in developing

countries. One approach to overcoming this challenge is to

periodically assess the supply/demand mismatch over a short time

PLOS ONE | www.plosone.org 1 February 2014 | Volume 9 | Issue 2 | e89872

http://creativecommons.org/licenses/by/4.0/


period (e.g. 24-hours [21]), but this does not capture oxygen

shortages throughout the year nor provide insight into how to

effectively adjust the supply to meet changing needs. Another

approach is to project oxygen demand using average estimates of

key factors (e.g., annual admission rate, treatment duration, flow

rate, etc.) [22,23]. However, this approach will underestimate

oxygen demand a large proportion of the time because it does not

consider peaks arising from: (a) seasonal variations in respiratory

disease burden and the corresponding disproportionate need for

oxygen, and; (b) random variations in patient-specific factors that

occur on shorter time scales.

Given the difficulties in collecting long-term demand data, and

the shortcomings of using averages, the objective of this paper is to

present a discrete event simulation (DES) model for estimating

demand for a seasonal health commodity, using the example of

oxygen for childhood pneumonia. DES is a well-accepted

computer simulation technique in health services research,

particularly in the assessment and design of health care delivery

systems, and in forecasting demand for human and physical

resources [24–27]. However, the application of DES to study

health service delivery challenges in low-income countries is still in

its infancy. Only recently have models been developed to evaluate

the cost-effectiveness of new technologies or interventions [28–30],

or the impacts of policy changes affecting service delivery

operations [31] or supply chain logistics [32,33]. To our

knowledge, forecasting temporal demand for a health commodity

used in a critical care in-patient environment is a novel application

of DES for low-income health systems.

We hypothesize that DES will provide realistic time-varying

oxygen demand estimates, and will allow for the first time the

ability to quantify temporal variations in simultaneous demand,

expressed as either patient load or oxygen flow rate, at a health

facility level. Oxygen demand due to childhood pneumonia is

dependent on seasonality, annual case load, hypoxaemia preva-

lence, and variations in individual patients’ prescribed flow rates

and treatment durations. These key demand factors underpin our

model and are described further below.

Factors Affecting Oxygen Demand
Seasonality. Pneumonia among children is seasonal [8–

10,34–37]. In the pneumonia ‘‘high season’’, which typically lasts

3 to 5 months, the average monthly case load can be 20 to 90%

greater than that of the ‘‘low season’’, depending on the degree of

seasonality (i.e., the proportion of total annual cases accounted for

in high season) [2,10,34,37,38]. This seasonal difference in case

burden is primarily due to outbreaks of viral pathogens, such as

respiratory syncytial virus, during hot, rainy months in tropical

regions [2–5,38,39], and outbreaks of influenza viruses during

cooler, drier months in more temperate regions [6].

Pneumonia case load. Although global estimates of pneu-

monia incidence and mortality are available [40–42], empirical

data on admission rates for individual health facilities in low-

income countries are scarce. A few studies have reported average

annual pneumonia admissions ranging from about 50 cases at

small rural health centres to over 1000 cases at district or main

referral hospitals [14,23,43].

Hypoxaemia prevalence. Hypoxemia prevalence among

childhood pneumonia cases varies widely between geographic

regions and at different altitudes, as well as with pneumonia

severity [11–13,37]. An estimated 13.3% (IQR 9.3% - 37.5%) of

WHO-defined pneumonia cases globally are hypoxaemic [12]; in

lower-lying African countries, prevalence ranges from 3 to 10%,

whereas in Asia at higher altitudes prevalence ranges from 9% to

39%.

Flow rate. The WHO-recommended flow rates when using

nasal prongs are 0.5 L/min for young infants and 1 to 2 L/min for

preschool aged children, with a maximum of 4 L/min [19,44]. On

average, flow rates of 0.6 to 1.0 L/min are required to achieve .

90% SpO2, with high inter-patient variability [45–47]. In practice,

patients will often receive equal flow rates from a source split

equally among multiple patients [23].

Treatment duration. The duration of oxygen therapy

typically ranges from 2 to 5 days [19]. A study from The Gambia

found mean treatment duration for children to be 3.6562.92 days

[45]. Constant treatment durations of 3 and 2.8 days per patient

were used to estimate oxygen demand in The Gambia [22] and

Papua New Guinea [23], respectively, without considering

variability.

Methods

Re-interpreting Demand Factors for a DES Model: Input
Parameters and Assumptions

Seasonality. We model pneumonia seasonality with a single

high season once per year. The proportion of annual pneumonia

cases concentrated in high season – or ‘degree of seasonality’ - is a

fixed percentage, P. The high season duration, D, is a fixed value

in months.

Pneumonia case load. Pneumonia case load is modeled

using random patient arrivals following a Poisson Process [48–50]

with rate parameter, l, which denotes the number of pneumonia

arrivals per year. The average monthly admission rate in high

season is Pl/D. To smooth the admission profile between seasons,

we assume one-month ramp up and ramp down periods as part of

the high season, with monthly admission rates adjusted appropri-

ately to reflect this profile while maintaining the prescribed high

season average. In low season, the monthly admission rate is (12

P)l/(122D) and does not vary by month.

Hypoxaemia prevalence. Although a range of values have

been reported for hypoxaemia prevalence among pneumonia

cases, H, no data is available regarding seasonal variability. We

therefore assume H to be invariant across seasons. The number of

hypoxaemic cases, however, will vary seasonally since pneumonia

incidence is seasonal.

Flow rate. Prescribed flow rate, F, is modeled as a random

variable based on a modified Poisson distribution with a mean, r,
of 1 L/min, a minimum value of 0.5 L/min, and discrete

allowable values in increments of 0.5 L/min. This distribution

reflects the WHO recommendations for infants and children

[19,44] and the reality that most patients likely receive 0.5 L/min

or 1 L/min due to flow-splitting technology limitations [23]. The

same distribution is used for high and low seasons.

Treatment duration. An exponential distribution with a

mean, m, of 3.5 days is used to describe the random treatment

duration, T. An exponential distribution is a special case of the

Weibull distribution, which is widely used to model ‘length of stay’

in health services [51,52].

Model Mechanics and Output
The DES model was developed in Matlab (MathWorks Inc.,

Natick, MA). Events are simulated over a one-year period,

beginning with the first day of low season. Each arriving patient

generated by the Poisson Process is randomly assigned to a state of

hypoxaemic (needs oxygen) with probability H; hypoxaemic

patients are further randomly assigned a flow rate and a treatment

duration according to the distributions described earlier (Figure 1).

At the end of the 365-day simulation period, any remaining
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treatment time for patients in the system are wrapped around to

the beginning of the simulation year.

Simulation mechanics are illustrated in Figure 2. Random

arrival times result in patients being present simultaneously for

random periods of time. The number of simultaneous patients

requiring oxygen and their collective flow rate vary in an un-

correlated fashion because oxygen requirements differ from

patient to patient.

The simulation output is aggregated into an hour-by-hour

account of patient load and collective flow rate. The output can be

further analyzed to determine total demand, variability in

demand, or maximum peaks in demand, for any time scale (e.g.,

daily, monthly, seasonally, annually). These metrics are then

analysed across the desired number of simulation iterations.

Scenario Analysis
Three scenarios were selected to represent a wide range of

health facilities. Input parameters for all scenarios are summarized

in Table 1. 500 iterations were conducted for each set of

conditions.

Scenario 1 illustrates the implications of considering demand on

an hourly basis by visually comparing DES output for a typical

setting with estimates from an average-based approach character-

ized by the same annual case load and hypoxaemia prevalence,

but no seasonal variation, and constant (average) values for flow

rate and treatment duration.

Using the same hypoxaemia prevalence (H), degree of

seasonality (P), and high season duration (D) as Scenario 1, annual

pneumonia case load (l) was varied from 50 to 2,000 in Scenario

2. Total oxygen demand was computed for both high and low

seasons and compared to average-based demand estimates.

For Scenario 3, H and P were varied to explore the effects of

these context-specific factors on peak demand. Three levels of H

(10%, 20% and 30%) covering the interquartile range of the global

systematic review [12], and three levels of P (35%, 45% and 55%)

were selected, giving nine combinations of these two parameters.

Note that for a 4-month high season, P=35% represents a very

low degree of seasonality (i.e., 35% of cases in 33M% of the year).

We analyzed ‘peak demand’ in terms of both patients and time. First,

we found the maximum simultaneous patient load in each season.

Then, we computed the amount of time spent at or above selected

peak patient load thresholds, as well as the amount of time that

demand (collective flow rate) exceeded average-based estimates.

Results

Model Verification
All input parameters for Scenario 1 fell within the 95%

confidence intervals of the corresponding simulated outcomes

(Table 2).

Scenario Results
Scenario 1. Figure 3 illustrates how hourly oxygen demand

fluctuates throughout the year due to seasonality and variability in

patient arrivals, treatment duration, and flow rate. Only five out of

the 500 iterations (i.e. simulated years) of Scenario 1 are shown.

Constant flow rate demand corresponding to an average-based

estimate, as well as double (2X) and triple (3X) this average

estimate, are also shown. Simulated demand exceeds the constant

average-based estimate 29.3% and 43.8% of the time in low and

high season, respectively. Demand often exceeds the 3X level for

several consecutive days, even in low season (Figure 3).

Scenario 2. In Scenario 2, oxygen demand increases with

increasing annual pneumonia case load (l), as expected (Figure 4).

When aggregated as annual totals, simulated estimates match

closely with average-based estimates. However, the DES approach

allows for the calculation of seasonal totals as well as year-to-year

variability from multiple iterations. For example, the standard

deviation of annual high-season oxygen demand across iterations

ranges from about 15% of the mean high season volume for

l=2,000 to over 90% for l=50, suggesting that smaller health

centres have much less predictable oxygen needs from year to year

(Figure 4). Trends were identical for low season (figure omitted).

Scenario 3. Results from Scenario 3 on the effects of

hypoxaemia prevalence and degree of seasonality are shown in

Figures 5 and 6. Figure 5a shows a sensitivity matrix of maximum

simultaneous patient load expected in high season. Maximum

patient load nearly doubles as H increases from 10% to 30%, as

shown by the sharp gradient from bottom to top. Maximum

patient load also increases with P, but with a weaker dependence

than H. Similar observations were seen for low season (figure

omitted).

The duration of time that patient load is at or above selected

thresholds – representing possible health facility capacity limits – is

also an important consideration. P strongly influences the time

spent at or above peak patient load thresholds during high season,

as shown by the sharp gradient from left to right in Figure 5b. For

example, the amount of time at or above five patients is five times

greater where P=55%, compared to where P=35% (i.e., very

Figure 1. Process flow diagram of a patient’s pathway through
the simulation. Simulation continues until 365 days are reached.
doi:10.1371/journal.pone.0089872.g001
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little seasonality). Conversely in low season, the amount of time

above peak patient thresholds is greater when P is lower.

Figure 6 shows peak demand in terms of the amount of time

that simulated demand exceeded average-based estimates, and

double and triple these estimates. With increasing H and P, oxygen

demand exceeded average-based estimates anywhere from 9.5 to

16.4 hours per day in high season. In low season, demand

exceeded the average between 6.7 and 11.4 hours per day (low

season results not shown in figure).

As H increases, the 2X and 3X estimates increasingly

encompass true variability in demand, as shown by the darkening

gradient from top to bottom in Figure 6b and 6c. For example, at

H=10%, demand exceeds the 3X estimate by as much as 3.6 to

6.2 hours per day in low and high season, respectively; while the

corresponding values when H=30% are only 0.9 and 3.7 hours,

respectively (low season results not shown in figure). We

hypothesize that with lower H, the flow rate and treatment

duration are more dominant sources of variability, causing

demand to fluctuate widely around lower constant average-based

demand estimates.

Discussion

We present a model for estimating oxygen demand due to

childhood pneumonia, which leverages the distinctive time-based

approach of DES in order to capture temporal variability in key

demand factors. Modeling results for a range of hypothetical low-

resource settings reveal that substantial year-to-year variability in

oxygen demand can exist, particularly for small health facilities.

We also show that average-based estimates can severely underes-

timate demand during seasonal highs as well as random peaks

throughout the year; for as many as 16 hours per day in high

season, and as many as 11 hours per day in low season. This

means that with a system tailored to meet average demand levels,

Figure 2. Example timeline view of simulated patient arrivals and variable assignments. Lower portion shows simulation ‘events’. Upper
portion shows changing level of simultaneous patients on oxygen and collective flow rate (L/min) over time.
doi:10.1371/journal.pone.0089872.g002

Table 1. Input parameters for modeled scenarios.

Factor Parameter Scenario 1 Scenario 2 Scenario 3 References

Annual pneumonia case load l (patients/year) 500 50 to 2,000 500 [14,23,43]

Hypoxaemia prevalence H (%) 13 13 10, 20, 30 [12]

Seasonality P (%) 45 45 35, 45, 55 [2,10,34,37,38]

D (months) 4 4 4 [10,34–37]

Flow rate F (L/min)* r=1 r=1 r=1 [19,23,44] `

Treatment Duration T (days) { m=3.5 m=3.5 m=3.5 [19,22,45] `

*random variable with modified Poisson distribution;
{random variable with exponential distribution;
`references support parameter value selection, not the type of distribution chosen to describe the demand factor.
doi:10.1371/journal.pone.0089872.t001
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oxygen shortages may be experienced up to 68% of the time in

high season, and about half the time in low season, leaving many

patients under-served or even untreated altogether.

Our approach also enables the analysis of sensitivity to different

demand factors; such inter-dependent relationships can help

inform oxygen supply planning. For example, maximum patient

load was more dependent on hypoxaemia prevalence, whereas

time at or above peak demand loads was more dependent on

degree of seasonality. Maximum patient load has implications for

the physical technology capacity needed to meet demand (e.g.,

number of oxygen concentrators, flow-splitting devices, nasal

prongs, etc.), whereas time spent at certain demand levels has

implications for more temporally-based supply management and

planning issues, both financial and logistical (e.g., cost per kWh to

operate concentrators and/or generators, cylinder depletion rates

and refilling frequency, etc.). Thus, to accommodate peak patient

loads, it might be more important to plan around hypoxaemia

prevalence, whereas to accommodate sustained time at peak loads,

the degree of seasonality would be the foremost factor to consider.

Our approach also allows for the analysis of how such inter-

dependent relationships might differ between low and high season,

which could inform better temporally-based oxygen supply

planning.

For health technology decision-makers, the issue of oxygen

supply is wrought with trade-offs. Systems that meet wide-ranging

demand requirements will have positive health benefits but may

have high operating costs and oxygen surplus during low demand

periods, whereas systems meeting average demand criteria may

inadequately account for periods of high variability in demand

resulting in adverse health consequences. Our model could thus

help determine what strategic mix of both a ‘fixed’ technology

system (e.g. concentrators with adequate power supply) meeting

some baseline demand, and a contingency backup supply (e.g.

additional concentrators, cylinders, or other means of oxygen

storage), may be required to cost-effectively meet variability in

demand in both low and high seasons. For example, our model

could inform decisions about how many concentrators to purchase

to meet the majority of expected demand and how much stored

oxygen to stock to meet short-term variability beyond the capacity

of the concentrators. Model estimates of maximum patient load

during high season could inform decisions about the layout of a

ward to ensure that adequate access points to oxygen are available

to accommodate all patients during busy periods. With estimates

of how demand is distributed between low and high seasons, our

model could also help inform how to appropriately split budgetary

resources between low and high seasons to ensure adequate

financial resources are reserved for increased electricity usage, or

cylinder refilling, during peak periods.

Our simulation model can be further developed in several areas,

particularly with the availability of better data. First, hypoxemia

prevalence has been found to be age-dependent, with higher

occurrences in neonates compared to older children [37].

Table 2. Verification of model output for Scenario 1.

Factor Parameter Scenario 1 Input Simulation Outcome (Mean [95% CI])

Annual pneumonia case load l (patients/year) 500 500.5 [498.5, 502.5]

Hypoxaemia prevalence H (%) 13 13.1 [12.9, 13.2]

Seasonality P (%) 45 44.8 [44.6, 45.0]

D (months) 4 4

Flow rate F (L/min) r=1 1.00 [0.99, 1.00]

Treatment Duration T (days) m=3.5 3.51 [3.47, 3.54]

doi:10.1371/journal.pone.0089872.t002

Figure 3. Hourly oxygen demand for a typical health facility. Scenario inputs were 500 pneumonia admissions per year (l), degree of
seasonality (P) of 45%, high season duration (D) of 4 months, and hypoxaemia prevalence (H) of 13%. Different coloured lines represent five distinct
simulation iterations. Horizontal lines represent the average-based estimate (solid), as well as 2 and 3 times this estimate (dashed), for this particular
scenario. Prolonged periods of 4.4 and 7.8 days exceeding 3 times the average level in low season are shown.
doi:10.1371/journal.pone.0089872.g003
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Including age variation will be important where age-dependent

demand has implications for oxygen technology planning (e.g.,

different ward locations for neonates, infants and children).

Second, hypoxaemia prevalence among pneumonia admissions

may be higher during high season, due to increasing severity of

illness [37]. The flow rate distribution may also shift to higher

levels, corresponding to more severe illness in high season. We

lacked sufficient data to model such variations. Third, hypoxaemia

is also prevalent in non-pneumonia conditions. For example, high

hypoxaemia rates have been found in children with malaria,

meningitis, and malnutrition [12]. As more becomes known about

hypoxaemia prevalence, our model can easily integrate the

Figure 4. Total oxygen demand and year-to-year variability in high season for pneumonia admissions (l) ranging from 50 to 2000.
Other scenario inputs: degree of seasonality (P) of 45%, high season duration (D) of 4 months, and hypoxaemia prevalence (H) of 13%. Mean high
season volume is averaged across 500 simulation iterations (right axis). Standard deviation as a percentage of the mean high season volume is
plotted to represent variability across simulation iterations (left axis).
doi:10.1371/journal.pone.0089872.g004

Figure 5. Peak demand in high season, measured in terms of both patients and time. Sensitivity matrices show (A) maximum
simultaneous patient load in high season; and (B) amount of time (hours) patient load exceeds selected peak patient load thresholds in high season,
for hypoxaemia prevalence (H) ranging from 10 to 30% and degree of seasonality (P) ranging from 35 to 55%, averaged across 500 simulation
iterations. In (B) thresholds of 3, 4 and 5 simultaneous patients were used for H levels of 10%, 20%, and 30%, respectively. Results are for l= 500
pneumonia admissions per year.
doi:10.1371/journal.pone.0089872.g005
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compounding effects of multiple illnesses on oxygen demand by

simulating separate illness-specific admission streams, each with

their own unique admission rate, degree of seasonality, and

treatment considerations. By focusing on childhood pneumonia,

we are taking a major step towards addressing total paediatric

oxygen demand, as it is more likely that pneumonia cases are

screened for hypoxaemia and prescribed oxygen. An integrated

approach to identifying and treating hypoxaemia in other

common childhood illnesses is an issue that deserves serious

attention, especially if the oxygen needs of such illnesses are to be

adequately met [12]. Lastly, the model could be applied beyond

paediatric applications incorporating estimates of oxygen needs for

other clinical services (e.g. surgery, adult respiratory illnesses) if

data on the five key factors affecting demand represented in the

model are available.

The DES model presented demonstrates a novel approach to

estimating oxygen demand due to childhood pneumonia in low-

resource settings. The model provides a more realistic estimate of

time-varying demand at the health facility level, and can be

applied to a wide range of geographies by choosing appropriate

context-specific inputs. Oxygen is a unique health commodity in

that managing the supply can be decentralized to the facility level

with the use of local oxygen generating technology. Thus, a better

understanding of oxygen need dynamics at the facility level could

go a long way in improving health systems planning and cost-

effective decision-making around oxygen technologies.

Despite the widespread use of DES in health services research,

its application to low-income settings is relatively new. DES can be

applied to any health commodity with a temporal demand profile

(e.g., rapid malaria diagnostic tests, seasonal vaccines or drug

treatments); thus the potential impact of DES as a technique for

health resources forecasting is significantly broader than the

problem of oxygen.
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