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Decoupling epithelial-mesenchymal transitions
from stromal profiles by integrative expression
analysis
Michael Tyler1 & Itay Tirosh 1✉

Epithelial-to-mesenchymal transition (EMT) is the most commonly cited mechanism for

cancer metastasis, but it is difficult to distinguish from profiles of normal stromal cells in the

tumour microenvironment. In this study we use published single cell RNA-seq data to directly

compare mesenchymal signatures from cancer and stromal cells. Informed by these com-

parisons, we developed a computational framework to decouple these two sources of

mesenchymal expression profiles using bulk RNA-seq datasets. This deconvolution offers the

opportunity to characterise EMT across hundreds of tumours and examine its association

with metastasis and other clinical features. With this approach, we find three distinct patterns

of EMT, associated with squamous, gynaecological and gastrointestinal cancer types. Sur-

prisingly, in most cancer types, EMT patterns are not associated with increased chance of

metastasis, suggesting that other steps in the metastatic cascade may represent the main

bottleneck. This work provides a comprehensive evaluation of EMT profiles and their func-

tional significance across hundreds of tumours while circumventing the confounding effect of

stromal cells.
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Metastasis is the main cause of death in cancer, but its
underlying mechanisms remain unclear. The most
commonly cited mechanism for metastasis in carci-

noma is epithelial-to-mesenchymal transition (EMT), a process
which occurs during normal development and wound healing
and is thought to be co-opted by cancer cells1,2. In the classical
form of this process, epithelial cells lose their cell-cell junctions
and convert their rigid keratin cytoskeleton to a more flexible
Vimentin-based structure. They gain the ability to modify and
bind to elements of the extracellular matrix (ECM) by expressing
proteins such as fibronectin, integrins and matrix metallopro-
teases, and they increase their affinity to stromal cells by
expressing N-cadherin in place of E-cadherin. They thus acquire
properties of mesenchymal cells that allow them to break away
from the epithelial cell layer and migrate. This process is driven
by five core EMT transcription factors (EMT TFs) - SNAI1
(Snail), SNAI2 (Slug), TWIST1, ZEB1 and ZEB2 - which are
believed to be essential for its induction. EMT may be employed
by cancer cells to enable local invasion and intravasation, after
which they may colonise a new site, possibly by undergoing the
reverse process, mesenchymal-to-epithelial transition (MET)1–3.
In addition to metastasis, multiple studies have linked EMT to
immune evasion, chemoresistance and cancer stem cell
properties4–7.

Much has been learned about EMT in cancer using cell lines or
mouse models, but despite this, its existence and potential role in
human cancer progression remains unclear. This is partly because
of evidence indicating that cancer cells can efficiently metastasise
even without undergoing EMT5,6,8. However, the main reason for
this uncertainty is the difficulty in detecting EMT in vivo in
humans. Multiple studies suggest that EMT is transient and often
partial, with cancer cells able to move dynamically and reversibly
along a spectrum of intermediate states between fully epithelial
and fully mesenchymal2,3. The term Epithelial-Mesenchymal
Plasticity (EMP) was recently proposed to better describe this
range of cell states9. Moreover, cells that have undergone EMT
closely resemble normal mesenchymal cells in the tumour
microenvironment (TME), especially cancer-associated fibro-
blasts (CAFs)3. CAFs constitute a major tumour component in
most cancer types, and they express many mesenchymal and
EMT markers.

This is particularly problematic for analysis of bulk-level
expression data from human tumour samples, where findings
concerning EMT could easily be confounded by the presence of
CAFs. For example, large-scale expression profiling of tumours in
studies of The Cancer Genome Atlas (TCGA) has uncovered
mesenchymal programs in a variety of cancer types, which were
the basis for the definitions of “mesenchymal” subtypes of cancers
including glioblastoma, ovarian cancer and head and neck
squamous cell carcinoma (HNSCC)10–12. However, multiple
studies have demonstrated that these programs may also reflect
CAFs. For example, the Mesenchymal and Basal subtypes of
HNSCC differed primarily by the abundance of CAFs rather than
the mesenchymal programs of the cancer cells13. Similarly, the
mesenchymal subtype of ovarian cancer was found to be
accounted for by high abundance of CAFs14. Other studies
defined subtypes of pancreatic and colorectal cancers with
mesenchymal properties15–18, which were later shown to also be
confounded by CAFs19–21.

Various methods have been developed to deconvolve bulk
expression profiles into constituent cell types or states22,23.
However, these methods rely on coherent marker gene sets for
well-defined cell subpopulations, rendering them inappropriate
for decoupling indistinct and heavily overlapping signatures. In
this study we demonstrate an approach for decoupling the
mesenchymal expression profiles of cancer cells and CAFs by

analysing both single cell and bulk expression profiles. We
develop a deconvolution method which we apply to TCGA bulk
expression data to characterise the EMT program across hun-
dreds of tumours from 12 cancer types, while accounting for the
presence of stroma. We observe expression signatures of partial
EMT (pEMT) which lack strong association with the core EMT
TFs, cluster into three distinct types and correlate with metastasis
and other prognostic features only in specific contexts.

Results
Evaluating EMT and CAF expression programs by single cell
RNA-seq. Single cell RNA sequencing offers an ideal setting to
directly compare the expression of mesenchymal signature genes
in cancer cells and fibroblasts and thereby decouple EMT and
CAF programs. However, due to cost and technical challenges,
most published studies of scRNA-seq in carcinomas included
relatively few patient samples or sequenced few cancer cells. As a
result, with the exception of HNSCC13, these scRNA-seq profiling
studies usually did not define EMT patterns de novo and mostly
either did not refer to EMT programs in cancer cells24–30 or used
literature gene-sets as a proxy for EMT31–33 without assessing
their coherence within the scRNA-seq data.

To provide a comprehensive view of EMT from scRNA-seq
data, we first collected data from all published studies of epithelial
cancers that we deemed most relevant (Table S1). We redefined
cancer cells in each of these datasets by inferring copy number
alterations (CNAs), and identified non-cancer cell types (immune
and stroma) by expression of marker genes, while maximising the
consistency with the authors’ original classifications (see
Methods) (Figs. S1–S3). Next, we defined cancer-type-specific
lists of EMT signature genes (ESGs) reflecting the expected EMT
signature of each cancer type. For this, we combined three gene
sets which represent complementary definitions for EMT-related
genes (Fig. 1a): (1) the MSigDB Hallmark EMT gene set34,35,
which is based on consensus across many EMT-related gene sets;
(2) the EMT signature genes from Tan et al.36, selected due to
their consistency with the EMT program across many cancer
types; and (3) genes that correlate highly in bulk RNA-seq data
with classical EMT markers (Vimentin and the 5 EMT TFs). The
latter approach was done separately for each cancer type, and
then integrated with the former two pan-cancer gene-sets, thereby
generating a collection of cancer-type-specific ESG lists. For each
cancer type, we also excluded those genes whose expression was
highest in a cell type other than cancer cells or CAFs (see
Methods).

Next, we examined the expression of these ESGs in both cancer
cells and CAFs in the selected scRNA-seq datasets (Fig. 1b, S4a).
In all cancer types examined, the ESG signal was stronger in
CAFs, which expressed more ESGs and at overall higher levels
than the cancer cells. The cancer cells expressed a smaller subset
of ESGs, typically at low and largely uniform levels, with some
exceptions of patient-specific effects (Fig. S4b). Thus, the data
provided limited evidence for EMT. Importantly, in most studies
Vimentin and the EMT TFs were expressed at very low levels in
the cancer cells and much more highly in CAFs, with the notable
exception of SNAI2 in HNSCC (Fig. 1c). Expression of TWIST1
and ZEB2 was largely absent in cancer cells, and, in 6 of the 8
cancer types, even the 95th percentile of Vimentin expression
levels in cancer cells was lower than its average expression level in
CAFs. Furthermore, expression levels of epithelial markers largely
did not correlate negatively with those of ESGs (Fig. S5). Taken
together, these results suggest that most expression of ESGs in
tumours reflects CAFs and that the weaker signal for a subset of
ESGs in cancer cells is more consistent with only a partial EMT
(pEMT) rather than full EMT. Notably, the expressed ESGs

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22800-1

2 NATURE COMMUNICATIONS |         (2021) 12:2592 | https://doi.org/10.1038/s41467-021-22800-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


0 4000 ≥ 8000

Genes detected

0 3 6 9 ≥ 12

Expression level

GADD45B
COL1A1

VIM
FN1

THY1

ZEB1
ZEB2

SNAI2
TWIST1

SNAI1
PLOD3
AREG

CXCL1

C
ol

or
ec

ta
l

-1
0
1
2

EMT score

Cancer cells CAFs

SPARC
VIM
ACTA2
COL1A1
FN1
ZEB2

TWIST1
ZEB1
SNAI1
TNC
SNAI2
LAMC2
SDC1

H
ead and N

eck

-2
0
2

EMT score

Cancer cells CAFs

COL1A1
VIM
FN1

SPARC

ZEB2
ZEB1

SNAI2
SNAI1

TWIST1
VEGFA
AREG
RHOB
SDC4

Lu
ng

 A
de

no
ca

rc
in

om
a

-1
0
1
2

EMT score

Cancer cells CAFs

TIMP1
VIM
COL1A1
COL1A2
FN1

SNAI2
ZEB1
TWIST1
ZEB2
SNAI1
VEGFA
LAMC2
SDC4

Pancreatic

-2
0
2

EMT score

Cancer cells CAFs

EM
T 

TF
s

CAFs Cancer cells

Br
ea

st
Co

lor
ec

ta
l

He
ad

 a
nd

 N
ec

k
Liv

er

Lu
ng

 A
de

no
ca

rc
ino

ma

Lu
ng

 S
qu

am
ou

s
Ova

ria
n

Pa
nc

re
at

ic
Br

ea
st

Co
lor

ec
ta

l

He
ad

 a
nd

 N
ec

k
Liv

er

Lu
ng

 A
de

no
ca

rc
ino

ma

Lu
ng

 S
qu

am
ou

s
Ova

ria
n

Pa
nc

re
at

ic

SNAI1

SNAI2

TWIST1

ZEB1

ZEB2

VIM

Average expression
CAFs Cancer cells

Br
ea

st
Co

lor
ec

ta
l

He
ad

 a
nd

 N
ec

k
Liv

er

Lu
ng

 A
de

no
ca

rc
ino

ma

Lu
ng

 S
qu

am
ou

s
Ova

ria
n

Pa
nc

re
at

ic
Br

ea
st

Co
lor

ec
ta

l

He
ad

 a
nd

 N
ec

k
Liv

er

Lu
ng

 A
de

no
ca

rc
ino

ma

Lu
ng

 S
qu

am
ou

s
Ova

ria
n

Pa
nc

re
at

ic

SNAI1

SNAI2

TWIST1

ZEB1

ZEB2

VIM

95th percentile

0

3

6

9

≥ 12

Expression
level

b

c

Combined
gene
set

Filter
Final 
gene 
set

Macrophage
Endothelial

Myocyte
T cellBulk RNA -seq

Correlation with core 
EMT markers

MSigDB
Hallmarks

Epithelial-Mesenchymal 
Transition

Tan et al.
Pan-cancer EMT 

signature

C
an

ce
r-

ty
pe

-s
pe

ci
fic

Pa
n-

ca
nc

er

Cancer cells
CAFs

a

Fig. 1 Expression of ESGs in cancer cells and CAFs by scRNA-seq. a Scheme depicting the gene selection and filtering process for defining cancer type-
specific lists of EMT signature genes (ESGs). b Heatmaps showing expression levels of ESGs (rows) in cancer cells and CAFs (columns) in 4 scRNA-seq
datasets (panels) out of the 8 considered (the remaining 4 are shown in Fig. S4). Columns (cells) are ordered by their EMT scores (see Methods), which
are shown in the line graphs below the heatmaps. The bar above each heatmap shows the number of genes detected in each cell. c Heatmaps showing the
average and 95th percentile of the expression levels of each of the core EMT TFs and Vimentin in cancer cells and CAFs in each of the 8 scRNA-seq
datasets.
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appear to differ between cancer types, underscoring the context
specificity of potential pEMT. These results were robust to
ambiguity in the definition of CAFs (Fig. S3, S6) and to the
normalisation method used to define expression levels (Fig. S7).

However, given the limited numbers of profiled cancer cells
and potential biases in scRNA-seq profiling, as particular cell
types may not survive through single cell isolation protocols, we
cannot exclude the possibility that rare cells with full EMT have
escaped detection in those datasets. Moreover, the low number of
tumour samples with available single cell data precludes statistical
associations of the identified pEMT programs with clinical
features. In contrast, bulk RNA-seq data does not suffer from the
same biases associated with isolation of particular cell types, and
is much more plentiful, with large and clinically annotated bulk
RNA-seq datasets together comprising thousands of tumour
samples. This motivates the development of a method to separate
the cancer-cell-specific pEMT program from CAF signatures in
bulk expression profiles.

Simulation of bulk expression profiles indicates that
mesenchymal signatures are dominated by CAFs. Before ana-
lysing bulk expression profiles, we sought to understand the
expected expression patterns of ESGs in bulk profiles based on
their patterns in scRNA-seq data. We simulated bulk expression
profiles by sampling from the scRNA-seq data various fractions of
CAFs and cancer cells, as well as other annotated cell types, and
aggregating their individual expression profiles. We thus obtained
a set of bulk expression profiles for simulated tumours with
known cell type composition and corresponding single-cell
expression data, which enabled precise calculation of the con-
tribution of each cell type to the bulk expression of ESGs. We
evaluated this contribution for each cell type by averaging over all
simulations in which that cell type had a particular cellular fre-
quency (Fig. 2a, S8a).

The contribution of CAFs to the bulk ESG signal was
consistently high in all the cancer types considered and in a
range of simulated tumour compositions. For example, in every
cancer type, when simulated tumours contained 30% CAFs, these
CAFs accounted, on average, for well over half the total ESG
signal, and hence more than the cancer cells. Notably, other
components of the tumour microenvironment, especially
endothelial cells and macrophages, also contributed significantly
to the total ESG signal, such that in many tumour compositions
their contributions were comparable to or higher than that of the
cancer cells.

Partial EMT profiles may be decoupled from CAF profiles in
simulated bulk expression profiles. While the mesenchymal
signal in simulated bulk expression profiles predominantly reflects
the presence of CAFs, our analysis also identifies specific ESGs
(e.g. SNAI2, SDC1/4 and LAMC2) whose expression levels in the
cancer cells are higher than or comparable to those in CAFs
(Fig. 1b). These might still be associated with metastasis, either by
directly promoting cell migration or by serving as an intermediate
step towards a rare or transient full EMT that promotes metastasis
but was not captured in the scRNA-seq data. Although expression
of ESGs in bulk samples reflects the sum of their expression across
multiple cell types, we reasoned that ESGs expressed highly by
cancer cells would have a different co-expression pattern from
those expressed primarily by CAFs, and hence that co-expression
patterns would enable deconvolution of the bulk ESG signal. The
assumptions behind this approach are that: (1) CAF profiles and
pEMT profiles are similar between patients of a given cancer type
(or subtype); but (2) the fractions of CAFs and of pEMT cells vary
significantly between tumours, and the correlation between these

two fractions is limited. Hence, the correlations among cancer-
cell-enriched ESGs, and likewise among CAF-enriched ESGs,
should be significantly higher than the correlations between these
two groups of genes. We thus expect to be able to separate ESGs
into two groups representing pEMT and CAF signatures using
bulk expression profiles.

To test this with the simulated bulk expression data, for each
cancer type we constructed a co-expression matrix for a subset of
ESGs, excluding those genes which correlated highly with marker
genes for non-malignant cell types other than CAFs (see
Methods). Ordering ESGs by their co-expression pattern using
the SPIN algorithm37 (with slight modifications) revealed a
separation into two clusters that closely mirrors the relative
expression of ESGs by cancer cells (left cluster) and by CAFs
(right cluster) (Fig. 2b, S8b). Additional ESGs (around the
midpoint of the co-expression matrix) are not clearly associated
with either one of the clusters as they co-vary with both pEMT
and CAFs to a similar degree. Interpretation of these clusters was
validated by examining the relative expression levels of ESGs in
individual cancer cells and CAFs in the scRNA-seq data (Fig. 2b,
S8b, lower panels).

We examined two additional measures of association with
cancer cells to enable the decoupling approach when scRNA-seq
data is not available (Fig. 2b, S8b, top panels). First, we calculated
the correlation of each gene with tumour purity (the fraction of
malignant cells), which is known for our simulated tumour
cohort but in general may be estimated from bulk tumour DNA
profiles38. As expected, purity correlations were higher for the
cancer cell cluster of genes than for the CAF cluster. Second, we
defined relative expression of genes in a collection of cancer cell
lines39 compared to tumours (see Methods). As cell lines contain
only cancer cells, while tumours comprise a heterogeneous
microenvironment, higher expression in cell lines suggests an
enrichment with cancer cells. This measure was also much higher
for the cancer cell cluster of genes than for the CAF cluster, with
minor discrepancies observed in liver and lung squamous cell
carcinomas. Such discrepancies may arise because cell lines only
partially recapitulate the in vivo state of cancer cells and may
express cellular programs not seen in human disease. Thus, this
measure is only used as a secondary validation and not as an
integral element of the method. Overall, these three distinct
validation approaches, incorporating scRNA-seq, tumour purity
and cancer cell lines data, converge to a consistent annotation of
ESG clusters as reflecting pEMT and CAF expression programs.

Co-expression patterns in bulk TCGA profiles recapitulate
pEMT and CAF separation. We next applied the above decon-
volution method to TCGA bulk RNA-seq datasets for multiple
epithelial cancer types with available scRNA-seq profiles. For
those cancer types with a large number of samples and well-
established subtype definitions, we examined each subtype sepa-
rately in order to consider the possibility of subtype-specific
pEMT profiles and to minimise the influence of differences
between subtypes on the deconvolution results. In a total of 22
cancer subtypes, we obtained a separation of ESGs into two
clusters that appear to reflect cancer cells and CAFs. To confirm
this interpretation, we examined the three annotation measures
described above - relative expression in cancer cells vs. CAFs
by scRNA-seq, correlation with tumour purity and expression in
tumours vs. cell lines. Two cancer types were excluded from
further analysis due to insufficient support from these measures,
and a further two were excluded due to potential confounding
effects by non-malignant cells besides CAFs (Fig. S9). For each of
the remaining 18 cancer types/subtypes, we obtained a robust
separation of ESGs into two clusters that were annotated as
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pEMT and CAF programs based on the three validation measures
(Fig. 3a,b, S10a). It is important to note that the scRNA-seq data
used for annotation of ESG clusters was not used in the decon-
volution method itself, hence this measure constitutes an inde-
pendent validation of the inferred pEMT and CAF
signatures (Fig. 3c).

Given the consistency between these three measures for
assigning ESG clusters to CAFs and cancer cells (Fig. S9a), we
reasoned that we could also provide putative annotations for ESG
clusters based only on the latter two methods, thereby relieving
the requirement for scRNA-seq data. We thus extended the
analysis to epithelial cancer types without scRNA-seq datasets.
This allowed us to define a robust separation of ESGs into clusters
which were annotated as putative pEMT and CAF signatures for

6 additional cancer types/subtypes, after filtering as described
above (Fig. S9, S10b). Overall, we defined a deconvolution of
ESGs in 24 cancer types/subtypes (18 with and 6 without scRNA-
seq data) (Fig. 3d, S10). We note, however, that the first measure
of scRNA-seq is the most reliable one (as it directly validates
expression in cancer cells and CAFs) and hence the most reliable
deconvolution signatures are those from cancer types/subtypes
with scRNA-seq data.

Shared and unique aspects of pEMT programs across cancer
types. Next, we assessed the consistency of pEMT and CAF
programs across the 24 cancer types/subtypes. We defined a score
for each gene in each cancer type/subtype, reflecting its relative

Fig. 2 Contribution of different cell types to expression of ESGs in simulated bulk tumours. a Line plots showing the relative contributions of different
cell types to ESG expression (EMT signal), for various fractions of tumour composition, in simulated bulk expression profiles based on 3 scRNA-seq
datasets out of the 8 considered (the remaining 5 are shown in Fig. S8a). Each point represents the average proportion of EMT signature gene expression
coming from the corresponding cell type in a collection of 100 simulated tumours with the given fraction of that cell type and varying proportions of the
other cell types. Error bars show the standard deviation over the set of 100 simulations. b ESG co-expression matrices derived from simulated bulk
expression profiles based on the 3 scRNA-seq datasets shown in (a) (the remaining 5 are shown in Fig. S8b), ordered by the SPIN side-to-side algorithm37

with slight modifications (see Methods). ESGs are annotated with two colour-coded panels at the top: (1) correlations with simulated tumour purity
(Pearson correlation coefficient); and (2) comparison of expression levels in simulated tumours versus in cell lines, where positive numbers indicate higher
expression in tumours than in cell lines. Heatmaps below the co-expression matrices show the relative expression levels of ESGs in individual CAFs
(bottom rows) and cancer cells (top rows) in the scRNA-seq data. Selected ESGs are labelled at the side of each co-expression matrix. Source data are
provided as a Source Data file.
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co-expression with the pEMT ESGs compared with the CAF
ESGs (Fig. S11). Averaging these scores across cancer types/
subtypes (Fig. 4a) identified many ESGs that are strongly and
consistently associated with the CAF signatures, including clas-
sical CAF markers such as FAP, SPARC, THY1 (CD90) and
various collagens. In contrast, relatively few genes were con-
sistently associated with the pEMT program across cancer types,
and these were not as strongly biased as the CAF genes. This
suggests that pEMT programs exhibit greater context-specificity
than the CAF signatures, underscoring the difficulty in defining
universal pEMT markers. Notably, Vimentin and the five EMT

TFs were all weakly biased towards CAFs, with none showing a
consistent association with pEMT. Instead, the top pEMT-
associated genes included laminins (LAMC1, LAMC2, LAMA3),
integrins (ITGA2 and ITGB1), CD44 and PVR. However, even
these genes are differentially associated with pEMT across cancer
types/subtypes (Fig. S11).

To further characterise the context-specificity of pEMT
programs, we computed the pairwise correlations between cancer
types with respect to their ESG scores (Fig. 4b). This analysis
identified three clusters of cancer types, as well as some cancer
types that appeared as intermediates. This variability is not fully

Fig. 3 Deconvolution of cancer and CAF ESG expression from TCGA bulk expression profiles. a ESG co-expression matrices derived from TCGA bulk
expression data for 3 cancer types of the 24 considered (the remainder are shown in Fig. S10), ordered by the SPIN STS algorithm37 with slight modifications (see
Methods). ESGs are annotated with two colour-coded panels at the top: (1) Pearson correlations with estimates of tumour purity computed by ABSOLUTE38; and
(2) comparison of expression levels in tumours versus in cell lines, where positive numbers indicate higher expression in tumours than in cell lines. Heatmaps below
the co-expression matrices show the relative expression levels of ESGs in individual CAFs (bottom rows) and cancer cells (top rows) in the relevant scRNA-seq
dataset. Selected ESGs are labelled at the side of each co-expression matrix. Source data are provided as a Source Data file. b Table of cancer types corresponding
to the TCGA disease codes. c Summary scatterplot of the deconvolution results for the 18 cancer types having accompanying scRNA-seq data, showing the
difference in average relative expression levels of the top 20 pEMT genes (X-axis) and the top 20 CAF genes (Y-axis) between cancer cells and CAFs. Positive
values indicate higher expression in cancer cells and negative values indicate higher expression in CAFs. d Summary scatterplot of the deconvolution results for all
24 cancer types examined, showing for each cancer type the average correlations among genes from the same cluster of ESGs (within-cluster, Y-axis) and between
genes from the two different clusters of ESGs (between-cluster, X-axis).
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explained by global differences between cancer types/subtypes but
instead is partially specific to the pEMT profiles (Fig. S12).
Interestingly, these three clusters were primarily, though not
exclusively, associated with gynaecological (breast, ovarian and
endometrial), squamous cell or “squamous-like” (HNSCC, lung
and bladder “basal-squamous”) and gastro-intestinal (colorectal,
stomach and pancreatic) carcinomas, respectively. Many of the
ESGs were differentially associated with pEMT between the three
clusters (Fig. 4c). For example, NOTCH2, WWTR1 (TAZ) and
MYH10 were preferentially associated with pEMT in the
gynaecological cluster, while TGFBI, ITGA5 and SNAI2 were
preferentially associated with pEMT in the squamous cluster. This
separation into three clusters suggests the existence of distinct

versions of pEMT that may reflect the cancer’s cell of origin and/
or the influence of its microenvironment.

Association of pEMT and CAFs with clinical features. Next, we
evaluated the statistical association between average expression of
pEMT and CAF signature genes and seven clinical features
available for TCGA samples, including lymph-node metastasis,
tumour grade, survival time and therapy resistance (Fig. 5, S13a).
Distant metastasis could not be included in this analysis due to
low sample number (see Methods), as primary tumours are
typically not surgically removed when distant metastases are
observed. In general, most clinical associations were not sig-
nificant, and there were no coherent associations across cancer
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Fig. 4 Variability of ESG association with cancer cells and CAFs across cancer types/subtypes. a Volcano plot showing each gene’s average pEMT-CAF
score (X-axis) and its significance (Y-axis, quantified as -log10(p-value) based on two-sided T-test, without adjustment for multiple comparisons). Shown
are all ESGs included in the TCGA deconvolution analysis, and selected ESGs are labelled. Source data are provided as a Source Data file. b Heatmap
showing hierarchical clustering of pairwise correlations between cancer types/subtypes based on their pEMT-CAF scores for the 100 genes most commonly
appearing in the inferred pEMT signatures, annotated by two coloured bars on each axis: (1) the silhouette of each cancer type with respect to the three
largest clusters; and (2) the final cluster assignments after identifying intermediates. c Heatmap of pEMT-CAF scores for the top 20 differentially expressed
pEMT genes in each of the three cancer type clusters. Both axes are ordered by hierarchical clustering. Source data are provided as a Source Data file.
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Fig. 5 Association of pEMT and CAF signatures with clinical features. a Heatmaps showing the significance (quantified as –log10(p-value) based on a
two-sided Wilcoxon rank-sum test, without adjustment for multiple comparisons) of the association of signatures for pEMT (top) and CAFs (bottom) with
seven clinical features (rows) reflecting worse prognosis, in 23 of the 24 cancer types (columns) passing quality control (the LUSC Secretory subtype is
absent due to low sample size). Positive and negative associations are depicted in purple and green, respectively. The cancer types are ordered by
hierarchical clustering of their pEMT-CAF scores, and coloured by their pEMT cluster assignments. b Volcano plots showing, for each of four clinical
features, the significance (Y-axis, defined as in a) of its association with pEMT signatures (red) and with CAF signatures (blue) against the effect size (X-
axis, quantified as the difference in signature score). Points are labelled with their corresponding cancer types if they pass an adjusted significance
threshold corresponding to an FDR of 0.05. Source data are provided as a Source Data file.
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types, suggesting that the clinical significance of pEMT (and
CAF) expression programs may be complex and highly context-
specific.

However, a few significant associations stood out. First,
consistent with previous work13, lymph-node metastasis, as well
as the related N-stage, had a highly significant association with
pEMT in the malignant-basal subtype of HNSCC. Surprisingly,
similar associations were not observed for other cancer types and
subtypes, suggesting that the extent of pEMT may be particularly
important for metastasis in HNSCC. We also observed an
unexpected negative association of pEMT with lymph-node
metastasis and N-stage in the classical subtype of HNSCC.
However, this association may be confounded by a broader
separation of the classical subtype into two groups, which differ
by pEMT as well as other expression programs (Fig. S13b).

Second, pEMT was also strongly associated with therapy
resistance in malignant-basal HNSCC. Third, the CAF signatures
also exhibited clinical associations. CAF associations were almost
entirely distinct from those of pEMT, but primarily involved
three clinical features associated with invasion or metastasis
(lymph-node metastasis, N-stage and lymphovascular invasion).
Such associations could previously have been misinterpreted as
reflecting pEMT, highlighting the importance of decoupling these
two sources of ESG expression.

Discussion
In this study, we developed an integrative approach to decouple
the stromal mesenchymal signature from true cancer-cell EMT
programs across many cancer types. The inferred EMT signatures
would benefit from orthogonal validation, such as in situ staining
of tumour sections. However, such methods have specific lim-
itations and are typically focused on individual genes rather than
on entire gene-set signatures.

Our analyses reveal several important properties of EMT that
should be accounted for in future research. Firstly, the EMT
signatures we derived from both single-cell and bulk expression
data are partial, with expression of classical EMT markers either
missing or more dominant in CAFs. In particular, with the
exception of SNAI2, the EMT TFs are typically expressed at
comparable or higher levels by CAFs and should not be used as
markers for pEMT in bulk expression profiles. Secondly, the
pEMT program is highly context-specific, in particular differing
between squamous-like, gastro-intestinal and gynaecological
cancer types. This serves as a warning against using any single
EMT signature for all cancer types. Additional work could help to
identify the potential physiological origin of these distinct pEMT
programs.

Thirdly, in most cancer subtypes, pEMT was not significantly
associated with any of the examined clinical features. Among the
few cases where the pEMT signature was associated with clinical
features, these features varied between lymph-node metastasis,
grade and therapeutic resistance. It is particularly striking that
association of pEMT with lymph-node metastasis is largely
unique to malignant-basal HNSCC. These findings suggest that
pEMT may not be the main bottleneck for metastasis, which
depends on many other properties. For example, the ability of
cells to adapt to new niches and seed new tumours, rather than to
attain the mesenchymal state required to reach the niche, may be
the true bottleneck for metastasis40. Further complicating this
picture is the idea that collective migration may be more effective
at seeding metastases than dissemination of lone cells41. It is also
possible that lymph-node metastasis is a poor approximation for
distant metastasis, and that the pEMT program may still be a
strong predictor for distant metastasis. Additionally, dissemina-
tion of cancer cells may occur very early in tumour

development42, even before diagnosis of the primary tumour,
such that the observation of pEMT in primary tumour samples
would be independent of the presence of metastases.

In this work we focused on decoupling ESG expression into
two main components that largely correspond to CAFs and
cancer cells. However, our analysis also points to significant
contributions of other cell types to mesenchymal expression
profiles, most notably endothelial cells and macrophages. More-
over, for any individual cell type there is considerable cellular
heterogeneity that is largely ignored by our approach. This is
certainly true for CAFs, which may exist in resting, myofibro-
blastic, inflammatory and antigen-presenting forms, and may
promote or inhibit tumour development43,44. These complica-
tions are expected to have a limited influence on the global
inference from co-expression patterns across hundreds of bulk
tumours, but they will have a larger influence when attempting to
infer the origin of ESG expression in individual patients. Thus,
while deconvolution of bulk samples provides a good starting
point to define pEMT patterns and their functional significance,
single cell approaches would ultimately be needed to provide a
more accurate and complete characterisation of individual
tumour ecosystems.

Even when ESG expression is known to reflect cancer cells
(rather than CAFs or other stromal cells) it is important to dis-
tinguish between two potential sources. A bulk EMT-like expression
profile may reflect a small subpopulation of cells that undergo
pEMT and differ from the majority of cancer cells in the same
tumour (that is, rare ESG expression). Yet, it may also reflect a
“baseline” expression, in which all or most cancer cells in the
tumour express ESGs (common ESG expression). Rare and com-
mon ESG expression would in turn lead to intra-tumour and inter-
tumour heterogeneity in ESG expression, respectively, and both of
these could contribute to the patterns we observe in bulk profiles.
ScRNA-seq data provides evidence for both rare and common ESG
expression. For example, many of the cancer cells in HNSCC
express SNAI2, while only few of those cells express a full pEMT
program that includes TGFBI, SERPINE1 and other ESGs, but not
higher SNAI2 levels13. Our observation of SNAI2, TGFBI and
SERPINE1 in the pEMT signatures of squamous-like cancer types
(Fig. 4c) suggests that these signatures reflect both inter-tumour and
intra-tumour heterogeneity. It is not clear which of these is most
relevant to cancer development and metastasis and future studies
would be needed to further evaluate this.

In summary, this study presents a pan-cancer characterisation
of pEMT signatures and their association with clinical features,
decoupled from stromal confounders. Our findings demonstrate
the predominantly partial nature of EMT, as well as its context-
specificity and its limited but varied connection with prognostic
features. These results help to explain the controversy and
ambiguity concerning EMT, while highlighting multiple avenues
for further research and providing guidance on where future
EMT work should focus.

Methods
All computational analysis for this study was performed using R version 3.6.3
(“Holding the Windsock”). The individual R package version numbers can be
found in the source code, which is available at https://github.com/m20ty/
decoupling_emt_stroma.

Preparation of scRNA-seq data. The 8 scRNA-seq datasets used in this study are
described in Table S1. These datasets were taken in their publicly available pro-
cessed forms. Gene names were mapped to the most up-to-date HGNC symbols
using either the limma or AnnotationDbi packages in R. Genes which could not be
unambiguously mapped in this way were removed. Following this, cells with fewer
than 1000 genes detected were removed. In the HNSCC dataset, only 10 of the 18
tumour samples were used in the analysis, namely those identified in the original
publication as having the most malignant cells13. For the main analysis, expression
levels were converted to log2(TPMi,j/10+ 1), where TPMi,j refers to the transcripts-
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per-million estimate for gene i in sample j. The TPM values were divided by 10 in
every dataset to reflect an upper bound estimate of 100,000 for the number of
transcripts in single-cell libraries. The same estimate was used for all datasets to
enable comparability between them. A parallel analysis was also performed on
three datasets normalised using the scran R package45, which demonstrated that
the analysis is robust to the normalisation method.

Inference of copy number alterations (CNAs). To infer CNAs from the scRNA-
seq data, we first defined putative non-malignant cells by using t-SNE to reduce the
data to two dimensions, then applying DBSCAN to define clusters of cells in the t-
SNE space. The clusters were assigned to cell types by examining the expression of
marker genes. CNAs were then computed via an approach described previously46,47,
using the infercna R package (https://github.com/tiroshlab/infercna). Briefly, genes
were ordered by their chromosomal location and a moving average of their relative
expression levels was computed, using a sliding window of 100 genes. The resulting
CNA values were then adjusted relative to those of the putative non-malignant cell
types identified as above. Note that only immune and endothelial cells were used as
reference cells to adjust the CNA values in this way. Putative CAFs were excluded
from the reference in order to avoid bias in later analysis distinguishing cancer cells
from CAFs.

Identification of cell types. Malignant cells were identified using CNA values in a
two-step process. Firstly, in each sample we applied hierarchical clustering to the
CNAs of all non-reference cells, and clusters having visibly high CNAs were
manually annotated as putative malignant cells. In samples with multiple distinct
clusters of high-CNA cells, these clusters were annotated as putative subclones.
Samples with no clear high-CNA cluster, or for which the high-CNA clusters
together contained fewer than 50 cells, were excluded from further analysis. Sec-
ondly, for each cell we defined the “CNA signal” as the mean of the squares of its
CNA values, and the “CNA correlation” as the Pearson correlation of its CNA
profile with the average CNA profile of the putative malignant cells identified in the
first step. Where relevant, the CNA correlation was calculated separately for each
subclone. For each tumour/subclone, we manually chose thresholds separating cells
with low CNA signal and correlation from those with distinctly higher values for
both measures. The former were designated as non-malignant and the latter as
malignant, and any intermediates were excluded from further analysis. We further
excluded cells for which our malignant/non-malignant classification disagreed with
the original publication from which the dataset was obtained, in order to arrive at a
consensus.

We next applied t-SNE and DBSCAN to the non-malignant cells to identify
clusters, which were assigned to cell types by examining expression of marker
genes. Where these cell type classifications broadly agreed with those from the
original publication, the latter were used in downstream analysis. Where there was
substantial disagreement, our own classifications were used. Cells which we were
unable to identify were excluded. Particular attention was paid to the CAFs: in
cases where multiple distinct clusters resembled CAFs, we used t-tests to identify
genes differentially expressed between them. If one such cluster preferentially
expressed genes not typically associated with CAFs, or genes associated with
pericytes, these cells were labelled as “potential CAFs”. These potential CAFs were
excluded from the main analysis, but were included as part of the CAF definition in
a parallel analysis that demonstrated the robustness of the approach to the precise
definition of CAFs. A final t-SNE was applied to all malignant and non-malignant
cells together, and any malignant cells appearing in a non-malignant cell cluster, or
vice versa, were excluded from further analysis.

Preparation of TCGA bulk expression data. The TCGA bulk RNA-seq datasets
for the cancer types considered in this study were downloaded from the Broad
GDAC Firehose website (http://gdac.broadinstitute.org/). The cancer types con-
sidered included all epithelial cancers having at least 100 samples. The expression
levels were defined as log2((Ei,j × 106) + 1), where Ei,j refers to the RSEM48 scaled
estimate for gene i in sample j. Briefly, the RSEM algorithm estimates transcript
abundances from RNA-seq reads using a directed graph model and the expectation
maximisation algorithm. The resulting estimates are returned both as transcript
“counts” (which are typically non-integer) and as “scaled estimates”, which are
scaled to the total number of transcripts in the sample and which, if multiplied by
106, measure the abundances in terms of TPM. Gene IDs were mapped to the most
up-to-date HGNC symbols using the AnnotationDbi package in R. Genes whose
IDs could not be mapped to symbols in this way were removed. Samples derived
from normal (non-tumour) tissue were excluded.

Selection of EMT signature genes (ESGs). The ESGs were obtained by com-
bining gene sets from three sources: the MSigDB Hallmarks “Epithelial-
Mesenchymal Transition” gene list34,35; the EMT signature genes from Tan et al.36

(the union of the signatures for tumours and those for cell lines); and genes that
correlate highly with the 6 classical EMT markers SNAI1, SNAI2, TWIST1, VIM,
ZEB1 and ZEB2 in bulk expression data from TCGA. The third approach is specific
to each cancer type and was undertaken as follows. For each cancer type and its
corresponding TCGA bulk RNA-seq dataset, we calculated the average correlation
of each gene in this dataset with the above 6 classical EMT markers. From the

distribution of these averages, the genes comprising the highest 1% were defined as
ESGs. For each cancer type, the former two gene lists were combined with the
third, cancer-type-specific list to define the set of all ESGs for that cancer type. To
define ESGs to be used in the analysis of an scRNA-seq dataset, the TCGA bulk
RNA-seq data for the corresponding cancer types was used (Table S1).

Definition of gene signature scores in scRNA-seq data. Scores for a given gene
signature were computed for individual cells to quantify the degree to which they
express the signature genes. These scores were defined using an approach described
previously47, in which the expression of each signature gene is measured relative to
a control gene set. These control gene sets are chosen to recapitulate the dis-
tribution of expression levels among the genes in the signature, while having no
coherent association with any particular cellular program. This method is designed
to alleviate the possible influences of complexity (that is, number of genes detected
per cell) on association of cells with a gene signature, since cells with higher
complexity would be expected to have high average expression of any set of genes.
It also lessens the impact of genes with especially high expression or variance,
which may otherwise dominate the signature score.

The method proceeds as follows. For a given scRNA-seq dataset and a given
subset of cells (e.g. the cells in a chosen tumour), we take the subset of genes
passing some criteria on minimal expression level (depending on the particular
analysis and dataset). These genes are ordered by their average expression levels
across cells and partitioned into m bins (each of which may contain some genes
from the signature of interest). For each gene Gj in the signature, a set of n genes
{G0

k}k=1,…,n is randomly sampled from the same expression bin as Gj (this sample
will contain mostly random genes, but may by chance also include some signature
genes). We then compute the relative expression level Gj

rel(i) of Gj in cell i as
Gj(i) – mean({G0

k(i)}k=1,…,n), and the score SC(i) for cell i as mean({Gj
rel(i)}j). The

parameters m and n vary depending on the particular analysis and dataset.

Analysis of expression of mesenchymal signature genes in scRNA-seq data.
For each scRNA-seq dataset, we selected a set of ESGs as described above and
applied additional filtering as follows. Firstly, for each annotated cell type, we
calculated the average expression of each ESG across cells of that type. We then
removed those ESGs whose average expression was highest in a cell type other than
cancer cells or fibroblasts, resulting in between 230 and 360 ESGs. Secondly, we
filtered the remaining genes by expression level, retaining only those genes with
average TPM value above a chosen threshold (depending on the specific dataset),
the average being taken across cancer cells and fibroblasts. This filtered ESG list,
comprising between 120 and 250 genes, is exactly the set of genes whose expression
levels are depicted in the heatmap for the corresponding cancer type in Fig. 1b, S4.
From this filtered ESG list, we chose an EMT signature to be used for cell scoring
by taking those genes with average TPM value above a stricter threshold
(depending on the dataset), the average being taken across only the cancer cells. We
scored the cancer cells and fibroblasts for this EMT signature as above, calculating
scores separately within each tumour to mitigate the effects of inter-tumour het-
erogeneity. We then ordered the cells in the heatmap by the resulting EMT score.
This ordering highlights the more mesenchymal cells, while controlling for the
effect of complexity.

Comparison of epithelial marker gene expression with EMT score. We defined
an initial set of epithelial marker genes consisting of CDH1, EPCAM, SFN, and all
keratins, then, in each scRNA-seq dataset, we retained only those from the initial
list having either: (1) average TPM value above a chosen threshold (depending on
the dataset); or (2) very high expression (defined as log2(TPM/10+ 1) ≥ 7) in at
least 1% of cells. These filtered epithelial marker lists were also used as signatures to
compute epithelial scores, as described above. These gene sets and the corre-
sponding scores are displayed in Fig. S5. The expression levels shown in these
heatmaps are relative expression levels, defined, for gene i and cell j, as Zi,j= [Ei,j –
mean({Ei,j}j)]/std({Ei,j}j), where std denotes the standard deviation. EMT scores
were calculated as before, with minor modifications. The correlations of epithelial
marker genes with these EMT scores were calculated separately within each tumour
and then averaged across tumours, in order to mitigate the effects of differences
between tumours.

Simulation of bulk expression profiles. Bulk expression profiles were simulated
by aggregating expression profiles for single cells in scRNA-seq datasets. The cells
to be aggregated were sampled randomly from the dataset, with counts for each cell
type depending on the desired cellular composition of the simulated tumour. To
examine the relative contributions of the various cell types to the ESG signal, we
simulated bulk profiles on a per-cell-type basis – briefly, the counts for one cell type
were drawn from a normal distribution with suitably chosen mean and standard
deviation, and those for the other cell types were chosen from a uniform dis-
tribution and scaled to give the desired proportion of the initial cell type. This
approach was utilised in spite of the proportions of different cell types occurring in
the scRNA-seq datasets and the cellular compositions of the samples, as biases
associated with capture of particular cell types during the scRNA-seq protocol
preclude an accurate estimation of the true cell type proportions.
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For each dataset, we chose a threshold for minimum cell type count, and for cell
types having counts below this threshold, we changed their annotations to a combined
“rare cell types” category to avoid their overrepresentation in simulated tumours.
(Note the cell types in this “rare” category differ between datasets.) For each cell type
Ci (except the “rare cell types” category), and for each proportion qj in the set Q=
{0.1, 0.2, …, 0.8}, we simulated 100 tumours having approximately proportion qj of
this cell type. We did this by first sampling 100 counts from a normal distribution
with mean µj= µqj/max(Q) and standard deviation σj= 0.2µj, where µ is manually
chosen to represent a reasonable maximum average cell type count (based on the cell
type counts in the data). For each such count Ni, we then chose counts {Nk}k ≠ i for the
remaining cell types {Ck}k ≠ i (including the “rare cell types” category) by sampling
values {Nunif

k}k ≠ i from a uniform distribution with minimum 0 and maximum µ,
scaling these values by a factor λ so that Ni/(Ni+ λ ∙∑k ≠ i Nunif

k) = qj, then rounding
the resulting values to their nearest integers: Nk= round(λNunif

k). For each of the
resulting counts, cells of the corresponding cell type were sampled (with replacement)
at random from the dataset.

The selected ESGs for each cancer type were filtered as before based on having
highest average expression in either cancer cells or fibroblasts, resulting in between
230 and 360 genes per cancer type. The contribution of the initial cell type Ci to the
overall ESG signal was then defined as the fraction of the total expression of ESGs
in the cells sampled for cell type Ci out of the total ESG expression in all
sampled cells.

A similar approach was used to simulate bulk expression profiles for
deconvolution, but here, only the cancer cells were used as an “initial” cell type to
be sampled from a normal distribution. For each proportion q in the set Q
consisting of the 40 values spaced equally in the range 0.1 to 0.9 (inclusive), we
sampled 25 counts using a normal distribution as before, assigning these counts to
the cancer cells. For each such count, we then chose counts for all other cell types
(including the “rare cell types” category) by sampling values from a uniform
distribution and scaling as above so that the proportion of cancer cells in the
resulting tumour would be equal to q. For each of the resulting counts, cells of the
corresponding cell type were sampled at random (with replacement) from the
dataset. The simulated bulk tumour profile was then defined as the vector of
elements log2(∑m TPMl,m/10+ 1), where TPMl,m refers to the transcripts-per-
million estimate for gene l in cell m.

Deconvolution of cancer and CAF ESG expression from bulk expression
profiles. Estimates of tumour purity by ABSOLUTE were obtained from several
sources38,49,50, and duplicate estimates for any given sample were averaged. For
each cancer type, we took the subset of the TCGA bulk RNA-seq data consisting of
those samples for which we had obtained purity estimates. If CCLE or scRNA-seq
data were available for this cancer type, we took the intersection of the corre-
sponding cancer-type-specific ESG list (chosen as above) with the sets of genes
appearing in these additional datasets. Tumour subtype assignments were obtained
from various sources12,50–56.

Since we wished to focus on the ESG signal from cancer cells and CAFs, in some
cancer types we further filtered the ESG list to alleviate the possible confounding
effects of other cell types of the TME on the deconvolution result. The cell types we
considered included B cells, B plasma cells, dendritic cells, endothelial cells,
macrophages, mast cells, myocytes and T cells. For each cell type Ci from this list,
we manually curated a set of marker genes for Ci and used these to compute a
weight Wi reflecting the overall correlation of Ci with ESGs and thus its likelihood
of confounding the separation of ESGs into cancer and CAF components.
Specifically, for each ESG g and each cell type Ci, we computed the average
correlation ρg,i of g with marker genes for Ci. We then defined Wi as a quantile q of
the distribution of these average correlations across the ESGs considered. The
choice of q is a tuneable parameter which could be chosen individually for each
cancer type according to the suspected influences of the TME on the ESG signal,
which are expected to vary between cancer types. In a few cases, when a particular
cell type was suspected of strongly confounding the deconvolution result, this
procedure was overridden by manually assigning a weight of 1 to the suspected cell
type and 0 to all others in order to maximise the priority given to this cell type in
the filtering process. Following definition of these weights Wi, each ESG g was
assigned a score defined as SCg= -∑i ρg,i ∙Wi. An ESG will thus have a low score if
it correlates highly with many cell type marker genes, indicating that it may
primarily reflect other cell types besides cancer cells and CAFs. Conversely, genes
which correlate with few marker genes are given a high score. We order the ESGs
by these scores and take the top n. This n is a further tuneable parameter which
may be increased or decreased to reflect greater or lesser leniency towards potential
confounders, which is also expected to vary between cancer types. Due to their
particular interest, any of the classical EMT markers SNAI1/2, TWIST1, VIM,
ZEB1/2 that were removed during this process were manually added back into the
filtered ESG list.

Relative expression was then defined for the ESGs as follows. For each sample j,
we computed the sum Sj=∑g Eg,j of the expression levels for this sample across the
filtered ESG list, where Eg,j denotes the expression level of ESG g in sample j. The
expression levels of each ESG g were then replaced with the residuals of a linear
regression g= αS+ β of g against the vector of sample sums S= (Sj)j. The purpose
of this was to reduce the influence of those ESGs which correlated highly with a
large number of other ESGs, and which are thus unlikely to be highly specific to

either cancer cells or fibroblasts. With these relative expression levels, a gene-gene
Pearson correlation matrix was constructed and its axes ordered using the SPIN
Side-To-Side algorithm37, the distance measure being 1 minus the correlation
coefficient. This ordering was refined by computing, for each ESG g, the average
correlation of g with the top 20 genes in the SPIN-ordered list, and similarly for the
bottom 20. Denoting these averages (σg,1, σg,2), ESGs for which sign(σg,1) = sign
(σg,2) were removed (except for SNAI1/2, TWIST1, VIM and ZEB1/2), while the
remainder were re-ordered by the values max(σg,1, σg,2) ∙ (1, −1)[which.max(σg,1,
σg,2)]. The final filtered ESG lists used in our analysis consisted of between 130 and
260 genes.

We next calculated the validation measures to use in annotating the ESG clusters
as cancer- and CAF-derived. First, for each sample j, we computed centred
expression levels Eʹg,j= Eg,j – μj, where μj denotes the mean of (Eg,j)g. For each ESG
g, we then computed the correlation between the vector of relative expression levels
(E'g,j)j and the vector of sample purity estimates. The values displayed in Fig. 2b and
Fig. 3 are the running averages of these correlation coefficients (with window size
30). Secondly, for those cancer types for which cell lines data was available from
CCLE, we fitted a local regression model of the average expression levels of all genes
in TCGA versus in CCLE bulk RNA-seq data, using the loess function in R with
degree = 1, span = 0.25 and family= ‘symmetric’. The tumours vs. cell lines
comparison score for each gene was then defined as the predicted value for this gene
according to this model minus the expression level observed in the TCGA data.
These scores were then centred and divided by the maximum absolute value of their
running averages (with window size 30), which are thus bounded by −1 and 1.
These running averages are displayed in the relevant figures. Thirdly, for each
cancer type with an available scRNA-seq dataset, we computed the relative
expression of each ESG in individual cancer cells and CAFs as follows. We
calculated the average expression of each ESG separately in cancer cells and in
CAFs, and centred each gene’s expression vector relative to the average of these two
values. We next centred each cell’s ESGs expression vector and computed its
running average with window size 30. These running averages are displayed for all
cancer cells and CAFs in the relevant figures. The pEMT and CAF clusters were
annotated based on the combined evidence from these validation measures. HNSC
Atypical and LUSC Basal were excluded because the purity correlations exhibited
the opposite pattern from the other two measures. HNSC Classical was retained
despite weak support from the pattern of purity correlations, because of the strong
agreement with scRNA-seq data, which we consider the most reliable measure. A
similarly weak pattern of purity correlations was observed in ESCA Squamous,
which was excluded due to the absence of an additional validation by scRNA-seq.

Robustness of the deconvolution results. To identify cases where, despite our
strict filtering method for the ESGs, there remained evidence of confounding by
other cell types, we estimated the association of the identified pEMT and CAF
clusters with these cell types using the marker gene lists used earlier. For each ESG g
and each cell type Ci, we computed the average correlation ρg,i of g with marker
genes for Ci, as before. We then constructed a linear regression model ρg,i= αirg+ βi
for each Ci, where rg is the position of gene g in the SPIN-ordered ESG list, scaled to
the range [0, 1]. Simply speaking, this model measures the change in correlation
with Ci over the ordered ESG list. We conservatively excluded cancer types/subtypes
for which the minimum regression slope mini(αi) was less than or equal to −0.1,
indicating a change in correlation of at least 0.1 from the CAF cluster to the pEMT
cluster for at least one cell type.

To quantify the overall strength of the separation into pEMT and CAF clusters,
we defined within-cluster correlation by the average of the correlations for the top
30 genes in each cluster (excluding the correlation of each gene with itself), and
between-cluster correlation by the average correlation of the top 30 pEMT genes
with the top 30 CAF genes. To quantify the agreement of the separation with the
available validation measures, we defined the between-cluster difference for a given
measure by the difference between its average values for the top and bottom third
of genes in the ordered gene list. The differences for each measure were divided by
the mean across cancer types to aid comparison.

Association of ESGs with pEMT and CAFs across cancer types. We defined a
global ESG list by taking the union of the cancer-type-specific filtered ESG lists
across those cancer types/subtypes which survived the quality control process. We
assigned scores to each of these genes as follows. Firstly, for each cancer type/
subtype, we transformed the expression data for the global ESG list using linear
regression against the sample sums for the cancer-type-specific ESG list, as
described earlier. The score for each ESG was then defined by the difference
between its average correlations (in the transformed space) with the top 20 genes in
the pEMT and CAF clusters. These scores were then divided by 3 times their
standard deviation (across all genes, per cancer type/subtype). Any of the resulting
scores which were greater than 1, respectively less than −1, were compressed to 1,
resp. −1, for display in the heatmaps in Fig. 4c and Fig. S11. The significance of the
association of each ESG with the pEMT and CAF clusters was measured as a p
value computed via a t-test on the distribution of scores for that gene.

We further defined a rank for each gene g in the global ESG list to reflect its
average position in the ordered cancer-type-specific ESG lists, giving lower weight
to genes which rarely appeared in these lists. For each cancer type, if g was present
in the cancer-type-specific ESG list, the rank of g was defined as its position in the
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ordered list divided by the total number of genes in this list. If it was not present, it
was assigned a rank 0.5. For each ESG, we then calculated the 25th percentile of its
ranks. We defined the top n most common pEMT genes as the n ESGs with the
highest such percentiles. The top n most common CAF genes were defined
similarly, using the 75th percentile.

Cancer types were clustered by first computing pairwise correlations between
cancer types based on the pEMT-CAF scores for the 100 most common pEMT genes,
then applying hierarchical clustering with average linkage to the resulting correlation
matrix. We then cut the dendrogram into three clusters, computed each cancer type’s
silhouette with respect to these three clusters, and defined as intermediates those
cancer types whose silhouette was less than or equal to 0.2. Removing these
intermediate cancer types resulted in three distinct clusters {Si}i = 1,2,3. ESGs
characterising cluster Si were chosen by ranking the ESGs by the difference between
their average scores among cancer types/subtypes in Si and those not in Si. To
compare the pEMT clusters with overall differences between cancer types, we defined
the global similarity between cancer types as follows. We computed the mean and the
variance of each gene in the TCGA bulk RNA-seq dataset for each cancer type and
identified the 5,000 genes with highest variance. For each pair of cancer types, we took
the intersection of their respective sets of highly variable genes and calculated the
correlation between their mean expression levels. These correlation values are shown
in Fig. S12.

Correlation of pEMT and CAFs with TCGA clinical annotations. We included 7
clinical features in this analysis, and for each one, we partitioned the tumours into
two discrete groups having worse or better prognosis, respectively. We then used a
Wilcoxon rank-sum test to compare signature scores (computed as in scRNA-seq
data, with tumours taking the place of individual cells—see above) for the top 20
pEMT genes, and likewise the top 20 CAF genes, between tumours of each of these
two groups. The comparisons for the examined clinical features were as follows.

– Lymph node metastasis: tumours with at least 2 metastatic lymph nodes versus
those with none.

– N stage: tumours with N stage 2 or 3 versus those with N stage 0 or 1.
– Lymphovascular invasion: tumours in which lymphovascular invasion was

present versus those in which it was absent.
– Grade: tumours with grade 3 or 4, or labelled “high grade”, versus those with

borderline grade, grade 1 or 2, or labelled “low grade”.
– T stage: tumours with T stage 3 or 4 versus those with T stage 0, 1 or 2.
– Reduced survival: tumours with associated number of days to death lower than

the 40th percentile versus those with days to death higher than the 60th

percentile.
– Therapy resistance: tumours which recurred after follow-up treatment versus

those showing complete remission/response after follow-up treatment.

Cancer types/subtypes having fewer than 10 annotated samples for a given
clinical feature were excluded from analysis of that feature. In particular, the LUSC
Secretory subtype is absent from this analysis as there were too few annotated
samples for all examined features. We initially included M stage in our analysis, but
since most cancer types/subtypes had fewer than 10 samples annotated for M stage,
and since those few with 10 or more showed no significant correlations with this
feature, it was excluded from later analyses. Significance thresholds to control the
false discovery rate (FDR) at 0.05 were computed according to the Benjamini-
Hochberg procedure, either per feature in the case of Fig. 5b or across all features
for Fig. S13a.

To further examine the observed negative correlation of pEMT with lymph
node metastasis in HNSC Classical tumours, we computed the pairwise
correlations between these tumours across the 2000 most variable genes in the
TCGA data, and ordered the resulting correlation matrix via the SPIN side-to-side
algorithm37. The tumours were then scored as above for the pEMT program
(using the inferred pEMT signature for this cancer subtype) and for an
oxidative phosphorylation (OXPHOS) signature. The OXPHOS signature was
identified using a Gene Set Enrichment Analysis (GSEA) test comparing
HNSC Classical tumours with at least 2 lymph node metastases to those with
none, using the R package clusterProfiler57. For visualisation purposes, the
pEMT and OXPHOS scores were divided by 2 times their respective standard
deviations.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
This study involved re-analysis of published datasets, including scRNA-seq datasets
available through the original studies, as described in Table S1, and bulk tumour datasets
from TCGA, available at http://gdac.broadinstitute.org/.
The breast and ovarian cancer datasets of Qian et al.30 are available in the

ArrayExpress database under accession code E-MTAB-8107.
The colorectal cancer dataset of Lee et al.33 is available in the NCBI Gene Expression

Omnibus (GEO) database under accession code GSE132465.
The head and neck cancer (HNSCC) dataset of Puram et al.13 is available in the GEO

database under accession code GSE103322.

The liver cancer dataset of Ma et al.26 is available in the GEO database under accession
code GSE125449.

The lung adenocarcinoma dataset of Kim et al.28 is available in the GEO database
under accession code GSE131907.

The lung cancer dataset of Qian et al.30 is available in the ArrayExpress database under
accession codes E-MTAB-6149 and E-MTAB-6653.

The pancreatic cancer dataset of Peng et al.29 is available in the Genome Sequence
Archive database under accession code CRA001160.

The TCGA datasets were downloaded from http://gdac.broadinstitute.org/. For each
cancer type, the corresponding bulk RNA-seq dataset was downloaded by selecting the
‘illuminahiseq_rnaseqv2-RSEM_genes’ link, and the clinical dataset by selecting
‘Clinical_Pick_Tier1’.

The MSigDB Hallmark EMT gene set is available on the GSEA-MSigDB website [http://
www.gsea-msigdb.org/gsea/msigdb/cards/HALLMARK_EPITHELIAL_MESENCHYMAL_
TRANSITION.html].

The remaining data are available within the Article, Supplementary Information or
available from the authors upon request. Source data are provided with this paper.

Code availability
The source code for all analyses in this study is available in a Github repository58, https://doi.
org/10.5281/zenodo.4553528, URL: https://github.com/m20ty/decoupling_emt_stroma.
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