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ABSTRACT

Objective: We aim to reduce overfitting and model overconfidence by distilling the knowledge of an ensemble

of deep learning models into a single model for the classification of cancer pathology reports.

Materials and Methods: We consider the text classification problem that involves 5 individual tasks. The base-

line model consists of a multitask convolutional neural network (MtCNN), and the implemented ensemble

(teacher) consists of 1000 MtCNNs. We performed knowledge transfer by training a single model (student) with

soft labels derived through the aggregation of ensemble predictions. We evaluate performance based on accu-

racy and abstention rates by using softmax thresholding.

Results: The student model outperforms the baseline MtCNN in terms of abstention rates and accuracy, thereby

allowing the model to be used with a larger volume of documents when deployed. The highest boost was

observed for subsite and histology, for which the student model classified an additional 1.81% reports for sub-

site and 3.33% reports for histology.

Discussion: Ensemble predictions provide a useful strategy for quantifying the uncertainty inherent in labeled

data and thereby enable the construction of soft labels with estimated probabilities for multiple classes for a

given document. Training models with the derived soft labels reduce model confidence in difficult-to-classify

documents, thereby leading to a reduction in the number of highly confident wrong predictions.

Conclusions: Ensemble model distillation is a simple tool to reduce model overconfidence in problems with

extreme class imbalance and noisy datasets. These methods can facilitate the deployment of deep learning

models in high-risk domains with low computational resources where minimizing inference time is required.
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LAY SUMMARY

One of the goals of the Surveillance, Epidemiology, and End Results (SEER) program is to estimate incidence, prevalence,

and mortality of all cancers. To that end, cancer registries across the country maintain a massive database of cancer pathol-

ogy reports which contain rich information to understand cancer trends. However, these reports are stored in the form of

unstructured text, and human annotators are required to read and extract relevant information. In this article, we show that

existing deep learning models for automating information extraction from cancer pathology reports can be significantly

improved by using ensemble model distillation. We found that by training multiple predictive models and transferring their

knowledge to a single, low-resource model, we can reduce the number of highly confident wrong predictions. Our results

show that our implemented methods could save 1000s of manual annotation hours.

BACKGROUND AND SIGNIFICANCE

The American Cancer Society (ACS) estimates 1.9 million new can-

cer cases will be diagnosed in 2022.1 Because cancer is a reportable

disease, states rely on population-based registries to maintain a data-

base of cancer pathology reports. Information contained in these

documents is key to identifying new reportable cancers and their

characteristics across the country.

Electronic pathology reports are stored as unstructured text, and

current information extraction relies almost completely on manual

processing by trained personnel, which is expensive, time-

consuming, and prone to error. In the last few years, researchers

have reported promising results when training deep learning (DL)

models to automate the information-extraction process for pathol-

ogy reports.2–5

Data noise is a serious issue when training DL models for classi-

fying cancer pathology reports. Documents often describe multiple

specimens and biopsies that involve different organs analyzed for

diagnosis. Manual annotators read the results of each biopsy and

assign a specific cancer site label for the entire report. Although this

is a standard way to annotate data, this process leads to a large vol-

ume of data noise because large portions of pathology reports focus

on the analysis of specimens that are associated with a different site

and are not relevant to the context of their ground-truth label. Path-

ology reports also include information (eg, names and addresses)

that contributes to additional noise. Training neural networks with

noisy data can yield models that learn spurious correlations and

shortcuts.6,7

Label noise presents additional challenges. Annotators are tasked

with selecting a class out of hundreds of options. Tasks such as can-

cer subsite and histology determination involve the identification of

specific classes that often share similarities (eg, “overlapping lesion

of other and unspecified parts of mouth,” “mouth not-specified”).

Human annotation errors will naturally occur when working with a

large number of similar classes and documents in which multiple

specimens associated with different classes are reviewed. In addition,

errors can derive from data processing. For example, labels are

defined at the cancer/tumor/case (CTC) level. CTC is a data entity

that encapsulates all diagnostic, staging, and treatment for a report-

able neoplasm. Consequently, pathology reports created during

diagnosis are assigned labels based on the CTC—even if these docu-

ments analyze specimens associated with different labels.

Extreme class imbalance combined with data noise can lead

to serious overfitting issues. The cancer subsite and histology

coding tasks consist of 326 and 639 classes, respectively. Some of

the classes in these tasks are extremely common. For example, in the

subsite task for breast cancer, upper-outer quadrant of breast consti-

tutes 8.9% of the data, whereas for the top class in histology,

adenocarcinoma, NOS corresponds to 21.7% of the data. On the

other side of the spectrum, there are cancer types that rarely appear.

There are 16 classes in subsite and 127 classes in histology with less

than 10 instances. When few samples are available during training,

DL models tend to memorize specific patterns that do not generalize

well.8,9 Thus, overfitting is a major challenge when classifying can-

cer pathology reports.

During classification, it is often desirable to keep only the predic-

tions produced with high confidence. For example, cancer registries

from Kentucky, Utah, New Jersey, Washington, and New Mexico

(Section III-A) currently require machine learning models to achieve

97% accuracy on a standard test dataset before deployment. The

high accuracy imposed on models is necessary to limit potentially

costly mistakes in processing healthcare records. Like other high-

risk fields such as self-driving cars and medical diagnosis, the goal is

to minimize error and maximize coverage. Previous investigators

have referred to this research area as selective classification,10–12

prediction with a reject option,13 and model abstention.14

The literature on selective classification for traditional machine

learning is extensive, with one of the first papers published in the

1950s.13,15,16 However, few papers have discussed model abstention

in the context of DL.10 Previous work in this area focused mostly on

deriving an optimal softmax threshold given a certain cost/risk con-

straint. Because softmax layers are common in DL architectures, the

softmax thresholding framework is a simple and convenient rejec-

tion rule that can be applied to most models, including pretrained

networks.

Model overconfidence deteriorates the efficiency of abstention

mechanisms that are based on softmax thresholding. Previous

researchers have hypothesized about the source of model overconfi-

dence. They pointed out that using one-hot (hard) labels during

training leads to overconfidence because it encourages the model to

produce predictions with 100% confidence.17,18 From an overfitting

perspective, overconfidence is the result of overfitting the negative

log-likelihood loss, which encourages the model to produce outputs

with low entropy.19 In addition, hard labels do not allow for degrees

of truth, and assigning 100% confidence to noisy documents that

mention specimens associated with numerous classes may not accu-

rately represent the input. Model overconfidence leads to a larger

volume of highly confident but wrong predictions, and that has a

direct negative impact in abstention mechanisms that are based on

softmax thresholding.

One could train models with soft labels to reduce overconfidence

and provide accurate input representation. However, creating accu-

rate soft labels imposes several challenges. Manual creation of soft

labels would involve assigning probabilities to each class, which can

be subject to the annotator’s interpretation and is often not feasible

owing to time constraints.
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A simple way to derive soft labels is label smoothing. Given

some constant, a, with a 2 ð0;1Þ, this method assigns a 1� a to the

ground-truth class and splits a equally among the rest of the classes

(ie, 0 becomes a
K�1, where K is the number of classes). However,

label smoothing does not introduce any information about the

underlying class hierarchies or knowledge related to the quality of

the input. In addition, although label smoothing can potentially

reduce model overconfidence that does not imply improved absten-

tion performance when choosing a softmax threshold. In fact, we

hypothesize that this method is likely to deteriorate abstention rates

because it is prone to shorten the distribution of model predictions

(ie, from ½0; 1� to ½0; a�), thereby making it more difficult to find a

softmax threshold that separates between right and wrong predic-

tions.

Ensemble learning is a simple solution to reduce overfitting. The

benefits of ensembles in the context of overfitting have been quanti-

fied extensively by previous researchers.20,21 Highly parallelizable

ensemble methods are especially attractive because they can be

implemented and tested quickly. However, cancer registries across

the country have limited computing resources, thereby making

ensemble methods unfeasible in the deployment/inference phase.

Ensembles also require additional testing time because a single pre-

diction often requires the output of every single model in the ensem-

ble. Thus, ensembles remain a computationally expensive technique

and that limits their utility and prevents their deployment in numer-

ous environments.

Model distillation is a promising, low-resource solution that lev-

erages the benefits of ensembles without using hard labels. The idea

behind model distillation is to transfer and compress the knowledge

of a larger model (teacher) into a smaller (student) network. In the

context of ensemble model distillation, researchers have attempted

to transfer the combined knowledge of a group of models into a sin-

gle, low-resource network.22 Thus, they aim to maintain the high

performance of the ensemble while enjoying the computational flex-

ibility of a single model. One intuitive way to perform ensemble

model distillation is to train a student model with soft labels

obtained through the aggregation of the ensemble predictions. That

is, training the student model using ensemble predictions instead of

the annotated labels. This method permits automatic derivation of

soft labels that contain information about the variability within the

ensemble and avoids the use of hard labels.

Previous work explored model abstention for ensemble learn-

ing.23,24 Existing work focused on deriving rejection boundaries

based on the statistics of the ensemble predictions. The downside of

these studies is that they focused on simple binary problems, and

more complex classification tasks, such as the ones we have

described for electronic pathology report information extraction,

are not considered. To the best of our knowledge, the effect of

ensemble model distillation in the context of selective classification

remains an understudied research area.

OBJECTIVE

The objective of this study was to investigate the feasibility of

ensemble model distillation as a low-resource alternative for the

deployment of DL models for cancer pathology report classification.

We hypothesized that ensemble model distillation would allow us to

enjoy both the overfitting reduction benefits of the ensemble and a

reduction of model overconfidence caused by hard labels. Perform-

ance was quantified as accuracy and abstention rates by using soft-

max thresholding tuned to yield 97% accuracy. We provided

additional analysis of the benefits of ensemble model distillation on

data and label noise. These findings may provide solutions to other

machine learning researchers working in high-risk domains with

limited computational resources where low-error rates are required.

MATERIALS AND METHODS

Dataset
Classifying electronic cancer pathology reports consists of 5 individ-

ual tasks. That is, each pathology report must be labeled with a spe-

cific site, subsite, laterality, histology, and behavior. The number of

classes in each task is shown in Table 1.

For this study, we used datasets from the Louisiana Tumor

Registry (LTR), Kentucky Cancer Registry (KCR), Utah Cancer

Registry (UCR), New Jersey State Cancer Registry (NJSCR), Seattle

Cancer Registry (SCR), and New Mexico Tumor Registry (NMTR).

The sizes of the 6 individual datasets are listed in Table 2. To satisfy

deidentification requirements, we used integers instead of the actual

names to represent each of the datasets.

The dataset exhibits extreme class imbalance. For example, the

top 2 histology classes (ie, adenocarcinoma, NOS and ductal carci-

noma) constitute 41.0% of the dataset. In the subsite task, the top 2

classes (ie, upper-outer quadrant of breast and prostate gland) corre-

spond to 17.3% of the data. It is not uncommon to see fewer than

10 instances for rare cancer types.

Experimental setup
We aimed to develop experiments that would simulate real-world

deployment. To achieve this, we implemented a leave-one-registry-

out approach in which we first combined 5 registries for training

and validation. Once the model was trained, we deployed the model

by predicting the left-out (out-of-distribution) dataset. We expected

the left-out dataset to contain natural variations not observed during

training.

This experimental setup simulates real-world deployment and

allows us to evaluate the generalizability of the classifier. In a pre-

vious study,25 we quantified the performance disparity between a

test dataset, which was taken from the same distribution as the

training and validation data, and a completely unseen (left-out)

registry. In that study, we observed that R4 exhibited the largest per-

formance drop. Therefore, for this study, we used R4 as our left-out

dataset. Leaving out R4 and combining the rest of the registries

leads to a total of 1 525 545 pathology reports for training and vali-

dation and 441 732 (size of R4) documents for testing.

DL models were trained using early stopping as a standard over-

fitting prevention practice. We set the patience parameter to 5, so if

the validation loss does not decrease for 5 consecutive epochs, then

Table 1. Number of classes in each task

Task Site Subsite Laterality Histology Behavior

Classes 70 326 7 639 4

Table 2. Size of individual registries

Registry R1 R2 R3 R4 R5 R6

e-Path

Reports

85 789 577 094 137 135 441 732 360 375 365 152
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training stops, and the model recovers the best set of weights. Fig-

ure 1 shows an overview of our training pipeline.

Multitask TextCNN
The base model for our experiments is the TextCNN. We use this

specific DL model because: (1) in our previous publication involving

pathology report classification, we showed that the TextCNN

model performs about the same or better than transformer-based

models,5 (2) we can train ensembles of multitask convolutional neu-

ral networks (MtCNNs) in parallel since it is a computationally

cheap model (in terms of memory and speed), and (3) the low com-

putational requirements of the MtCNN makes it accessible to cancer

registries across the country, allowing for rapid deployment.

We used a specific version of the TextCNN known as the

MtCNN, which has been implemented in numerous previous studies

involving cancer pathology report classification.2,4,25–28 The

MtCNN simultaneously outputs predictions for all 5 tasks. The

input to the MtCNN first passes through an embedding layer, in

which each word token is mapped to a 300-dimensional word-

embedding vector. The resulting matrix passes through 3 parallel

convolutional layers with filter sizes of 3, 4, and 5 consecutive

words; each of the convolutional layers contains 300 filters. The

output of the convolutional layers is then concatenated and sent to a

global max pooling over time layer. Finally, the resulting vector goes

through 5 parallel dense layers (one for each of the 5 classification

tasks), and the 5 predictions are produced.

Ensemble learning
Ensemble learning is a machine learning method that utilizes multi-

ple models to obtain better predictions. Several ensemble learning

algorithms are available, including bootstrap aggregation (bag-

ging),29 boosting,30 and a mixture of experts.31

Previous studies have noted that training deep neural networks

with more data led to better performance, and bagging can hurt per-

formance because models only see �63% of the data.32,33 These

studies showed that using the entire training dataset is more efficient

than bagging approaches, which sample the training dataset with

replacement. Therefore, in this study, we trained 1000 MtCNN

models using the entire training dataset but different random initiali-

zation seeds. Our method is highly parallelizable and simple to

implement.

The ensemble inference was derived by normalizing the summa-

tion of the outputs from the multiple models: DðxÞ ¼
PT

i¼1 diðxÞ,

where x is some document input, di is the prediction vector for

model i in the ensemble, and T is ensemble size (T¼1000). Then we

applied the softmax function to the ensemble output D to infer the

ensemble decision.

Notably, to obtain a prediction for a given document, x, one must

first use all T models for the prediction and then aggregate their pre-

dictions to obtain the final output. This can be time-consuming and

computationally demanding. Therefore, ensemble learning is often a

nonviable method for several real-world applications.

Distillation
In a typical supervised learning setting, a neural network is trained

with data in the form (x, y), where in our case, x is a pathology

report, and y is the associated label depending on the task (eg, can-

cer site, subsite). This type of learning uses hard labels, which means

y is a one-hot encoded vector that contains binary information:

either y belongs to a certain class or it does not (ie, [0,0,1]). Alterna-

tively, one could train a model with data in the form of ðx; y! Þ, where

y
!

could be interpreted as the probability that x belongs to each class

(ie, [0.1,0.1,0.8]). This paradigm is known as soft labeling.

To distill the knowledge of the ensemble, we trained a single

MtCNN using the ensemble predictions (aggregated vectors) as the

class labels for the respective documents. Thus, the student model

was trained with the same training documents, X, but with the soft

labels derived from the ensemble instead of the original hard labels.

Notably, our distillation implementation uses the categorical cross-

entropy loss function: CEðy; byÞ ¼PK
k¼1 y � log by where y is the soft

label, by if the softmax prediction vector, and K is the number of

classes. The following list describes the steps we took to distill the

knowledge of the ensemble model:

• Train 1000 MtCNN models.
• Extract the softmax prediction vector of the 1000 MtCNNs for

each document in the training set.
• Aggregate the prediction vectors by summing and normalizing.

This will form a new set of y
!

labels, where the labels are vectors

(soft labels).
• Train a single MtCNN using the original pathology reports, X,

but with the soft labels y
!

instead of the original ground-truth

labels.

By using the soft labels of the ensemble as the truth labels, we

hypothesized that the model would identify the same features that

the ensemble used to produce the classification probabilities.

Figure 1. Overview of our training pipeline with a hypothetical example in which 3 different models classify a pathology report as stomach, esophagus, and colon.

Our actual implementation consists of 1000 teacher models.
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Selective classification with softmax thresholding
In numerous applications such as ours, low error rates are tolerated.

In these problems, abstention mechanisms are implemented so that

only models with highly confident predictions are used. In this

study, we seek to maintain an error rate below 3% based on the con-

sensus of state cancer registry partners.

To accomplish this, we implemented a straightforward version of

model abstention that can be used with any trained model. Our goal

was to satisfy the requirements by finding a softmax threshold that will

yield 97% accuracy. The specific procedure is described as follows:

• Create a list of potential thresholds from 0 to 1 with a step size

of 0.001 (ie, [0.001, 0.002, . . ., 0.999]).
• Using the validation dataset, find the smallest threshold so that

when predictions are filtered out with a softmax below this

threshold, the accuracy is �0.97.
• Use this threshold as a rejection rule. At test time, discard predic-

tions that have a confidence below the selected threshold.
• Compute the percentage of documents that remain in the dataset

after abstention and measure accuracy of that subset of the data.

Although the abstention rate refers to the proportion of docu-

ments left out during testing, in this study, we report results in terms

of retention proportions: RP ¼ bXX where bX is the number of predic-

tions made with confidence higher than the rejection threshold, and

X is the size of the dataset. Also note that RP ¼ (100% � abstention

rate). Ideally, one will retain a large percentage of the data (high

coverage) and obtain an accuracy of �0.97 on these documents.

Statistical significance
We wanted to analyze if the student model performance was statisti-

cally better than a standard MtCNN model trained with hard labels.

To account for natural variation, we used the 1000 MtCNN models

that we trained for the ensemble to derive 95% confidence intervals.

Model overconfidence
We analyzed model overconfidence by focusing on wrong predic-

tions. We first determined the distribution of prediction confidence

(softmaxes) for all wrong predictions. In this analysis, we compared

the baseline MtCNN with the student model to understand the

extent to which the student model can reduce the number of wrong

predictions with high confidence.

In our second analysis of model overconfidence, we analyzed the

number of highly confident but wrong predictions for different

ensemble sizes. In particular, we quantified the number of wrong

predictions made with a confidence of >0.97. Our choice of a 0.97

threshold is based on the consensus of the cancer registries’ error tol-

erance. This analysis was performed by averaging multiple samples

obtained by bootstrapping MtCNNs from the pool of 1000 models

and then creating ensembles of the respective sizes.

Data and label noise analysis
We hypothesized that data and label noise were both issues when

training models for classifying cancer pathology reports. We investi-

gated the effects of model distillation on data and label noise by

examining the distribution of ensemble predictions and inspecting

individual reports.

We first verified that the ensemble predictions could effectively

fix noisy labels. To that end, we inspected documents in which a

wrong prediction was made with 100% agreement between the

1000 models.

Our analysis of data noise was based on the assumption that the

amount of noise contained in the input will manifest itself in the dis-

tribution of votes across the ensemble. Traditional majority voting

uses Equation 1 to infer the ensemble predictions,34 where dt;j ¼ 1 if

model t of the ensemble T predicts class j and dt;j ¼ 0 otherwise.

Here, we were interested in cases where the number of votes was

split almost equally between 2 or 3 classes, meaning that there is not

a clear winner. For cases in which half of the ensemble predicts class

y1, and the other half predicts y2, we expected to observe a report

that contained lexical patterns common to both classes.

max
1� j� k

XT

t¼1

dt;j: (1)

The distribution of ensemble votes has a direct impact on the

derived soft labels. For example, given a pathology report about the

gum, half of the ensemble may predict upper gum, and the other

half may predict lower gum. Naturally, the resulting soft label for

such input is expected to represent such a division (ie, [0.5,0.5,0,

. . .] ¼ [lower gum, upper gum, . . .]). Thus, we wanted to visualize

what aspect of the input drives this type of predictive pattern and

how that relates to the derived soft label.

RESULTS

Selective classification
Table 3 presents the results in terms of retention proportions (ie, the

percentage of documents that would be classified when deploying

the models). As expected, when combining predictions from multi-

ple classifiers, the ensemble model yielded the best overall perform-

ance. We also observed that the student model outperformed the

baseline MtCNN for all tasks except for behavior (the task contain-

ing only 4 classes). We note that the major boost in performance

was observed for subsite and histology, for which the absolute

increase in coverage was �1.81% and �3.33%, respectively. These

are the 2 most difficult tasks because they are characterized by a

large number of classes and severe class imbalance.

Using the percentages from Table 3 and the size of the test data-

set (R4: 441 732), one can translate these values into the number of

pathology reports. For example, in subsite, the MtCNN and the stu-

dent model classify 152 485 and 160 481 of the 441 732 reports,

respectively. This indicates that the student model can be used to

classify an additional 7996 documents. A similar calculation for the

histology task showed that the student model can predict an addi-

tional 14 710 pathology reports (ie, 120 151�105 441 ¼ 14 710).

Table 4 lists the accuracy scores obtained among the nonab-

stained documents. Although the individual softmax thresholds

were tuned with the validation dataset to yield a 97% accuracy, we

still observed accuracy below our target performance in all tasks

except for behavior. This type of drop was expected owing to the

natural distribution shifts when applying models to new registries,

and in practice, this drop can be easily mitigated by using a higher

target accuracy. Notably, the baseline MtCNN exhibits perform-

ance well below the 97% target (see subsite and histology in

Table 4). The student model alleviates the performance drop, but it

still fails to reach the target.

Wrong prediction confidence
When implementing a softmax-threshold abstention mechanism,

minimizing the number of highly confident but wrong predictions is

essential. That is because having too many highly confident wrong

JAMIA Open, 2022, Vol. 5, No. 3 5



predictions pushes the softmax threshold toward 1, thereby leading

to higher abstention percentages (ie, less coverage). We compared

the prediction confidence distributions of the wrong predictions for

histology (Figure 2) and subsite (Figure 3). For both tasks, the stu-

dent model generated fewer wrong predictions with softmaxes

above 90%, and this difference was particularly noticeable in the

histology task. These plots illustrate the effects of training models

with hard and soft labels and their impact on selective classification

scores.

Figure 4 shows the effects of ensemble sizes on the number of

wrong predictions made with a confidence >0.97. We observed that

the number of wrong predictions decreased as the ensemble sizes

increased, but this trend converges after an ensemble size of approxi-

mately 200 models. We also note that most of the improvement

occurs with the addition of the first few models. That is, the ensembles

with between 2 and 10 models exhibit the highest performance boost.

Data and label noise analysis
We analyzed the effects of ensemble model distillation in terms of

label noise by manually reading pathology reports that were classi-

fied incorrectly with 100% ensemble agreement. In every document

we inspected, we found that those documents were mistakenly anno-

tated. As an example, we deidentified one of the documents that

was annotated as stomach but was classified as esophagus by every

model (Figure 5). This was a case in which a pathology report dis-

cussed the biopsy of only one specimen, and lexical patterns tend to

be consistent with the predicted class. Notably, in cases in which

there is a 100% agreement within the ensemble, the associated soft-

max approximates the hard label (eg, the predicted class contains a

value close to 1).

We also analyzed data noise by examining individual pathology

reports based on particular ensemble prediction patterns. Intuitively,

we expected that when the ensemble votes were split across multiple

sites, the pathology report would discuss specimens and biopsies

that were associated with each of the predicted sites. As an example,

we deidentified a pathology report in which the ensemble votes were

split into 3 equivalent-size groups for the predictions of stomach,

esophagus, and colon (Figure 6). This is an example where the input

contained lexical patterns related to all 3 classes (see sections path

comments and nature of specimens in Figure 6), and this misled the

models’ predictions.

DISCUSSION

This is the first study to quantify the abstention performance of

ensemble model distillation by using softmax thresholding for the

Table 3. Retention proportions results

Model Site Subsite Laterality Histology Behavior

MtCNN 90.62 34.52 87.83 23.87 99.46

(90.61, 90.63) (34.48, 34.56) (87.82, 87.85) (23.77, 23.97) (99.45, 99.46)

Student 91.10 36.33 88.49 27.20 99.98

Ensemble 92.17 39.00 89.60 34.16 99.42

Notes: The numbers shown represent the percentage of document remaining after abstention (higher percentage means more coverage). Intervals represent

95% confidence intervals.

MtCNN: multitask convolutional neural network.

Table 4. Accuracy results

Model Site Subsite Laterality Histology Behavior

MtCNN 96.06 94.43 96.05 95.12 97.69

(96.06, 96.07) (94.42, 94.45) (96.04, 96.05) (95.10, 95.14) (97.69, 97.70)

Student 96.27 94.82 96.19 95.84 97.60

Ensemble 96.19 94.55 96.10 95.78 98.00

Note: Intervals represent 95% bootstrap confidence intervals.

MtCNN: multitask convolutional neural network.

Figure 2. Histology Task. Distribution of softmaxes for the wrong predictions.

Figure 3. Subsite Task. Distribution of softmaxes for the wrong predictions.

6 JAMIA Open, 2022, Vol. 5, No. 3



classification of electronic cancer pathology reports. Our results

indicate that soft labels derived through ensemble model distillation

can effectively improve abstention performance. Therefore, in real-

world settings where inference resources are limited, our proposed

distillation method yielded considerable improvements while main-

taining the computational cost of a single model.

We measured performance by calculating the percentage of

documents kept in the dataset after abstention and the accuracy of

those documents. We observed that the student model outperformed

the baseline MtCNN under both metrics and for 4 of the 5 tasks.

The most substantial improvements occurred in the 2 most difficult

tasks (subsite and histology), which contained the highest number of

classes (326 for subsite and 639 for histology). Thus, we showed

that ensemble model distillation can help increase the DL models’

coverage when deploying models in the real world, thereby allowing

practitioners to use AI systems in a larger volume of documents and

reduce the cost and time associated with manual annotation.

Although the performance increase obtained with the student

model may seem small, these improvements become substantial at a

large scale. For the subsite and histology tasks, the student model

increases coverage by �1.81% and �3.33%, respectively. These val-

ues represent 7996 and 14 710 pathology reports using our current

test dataset. However, given the ACS predicts that 1.9 million new

cancer cases could be diagnosed in 2022,1 and it takes �2 min to

read each report, these percentages could represent 10 000þ pathol-

ogy reports and 1000s of hours of manual annotation saved.Figure 4. Wrong histology predictions made with confidence >0.97.

Figure 5. Incorrectly annotated pathology that was fixed during the distillation process. Some sentences were removed to conserve privacy.

Figure 6. Pathology report in which the ensemble prediction votes were split into 3 equivalent groups. This report includes results of 3 analyzed specimens

related to the stomach, esophagus, and colon. Some sentences were removed to ensure privacy.
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Analyzing the distribution of ensemble votes and their resulting

soft labels yielded additional insight into data noise in pathology

reports. During cancer diagnosis, it is common to analyze multiple

samples from tissues outside of the diseased organ. The result is mul-

tiple pathology reports from numerous biopsies. We argue that data

noise is a serious issue in these reports because they contain lexical

patterns commonly associated with classes outside of their assigned

ground-truth label. When analyzing the ensemble vote distribution,

we found that these particularly confusing pathology reports can be

identified by inspecting documents in which the ensemble votes are

split into equivalent-sized groups (Figure 6). In these cases, assigning

a soft label allows for degrees of truth to indicate that the word pat-

terns and context of the input do not belong exclusively to one class

but to a group of classes. Conversely, when inspecting documents

with high ensemble agreement (ie, cases in which soft labels approx-

imate hard labels), we found clear pathology reports that focus on

one specific class (Figure 5). The importance of this ensemble agree-

ment and soft-label relationship is that we can guide the student

model to make highly confident predictions for documents with lit-

tle noise while lowering confidence for documents that involve mul-

tiple sites.

An additional benefit of ensemble model distillation is alleviating

label noise. When predicting with 1000 models, one can naturally

expect that a 100% agreement in predictions is likely to correspond

with correct predictions. When inspecting pathology reports that

were wrongly classified with 100% ensemble agreement, we found

that these reports were actually incorrectly annotated (Figure 5).

Consequently, ensemble model distillation is a useful tool to reduce

label noise issues and is particularly beneficial in domains with a

high number of highly related classes. This result is consistent with

previous work that used ensembles for label correction.35,36

Notably, developing efficient abstention mechanisms is still an

open area of research. In this study, we implemented softmax

thresholding, which is a common abstention mechanism compatible

with most DL models. We used the validation dataset to identify a

threshold that would yield a 97% accuracy. However, we observed

that when using this threshold in the holdout dataset, the resulting

accuracy can be as low as 94.42% (see subsite in Table 4). We

hypothesize that this performance disparity is amplified because of

our leave-one-registry-out experimental setup, and it may be a sign

of further overfitting. The discrepancy observed between the valida-

tion and test dataset highlights the need for future research that

focuses on more efficient abstention techniques.

Our results yielded insight into the effect of ensemble size on

model overconfidence. In this study, we implemented an ensemble

of 1000 models. However, our results indicated that even an ensem-

ble with between 4 and 100 models can reduce the number of wrong

predictions made with high confidence. This highlights the accessi-

bility of our methods because DL practitioners who have limited

computational resources can still benefit from the overconfidence

reduction obtained through ensemble model distillation.

The methods presented in this study are simple and highly paral-

lelizable. The literature on model ensembles and distillation is exten-

sive and includes a large variety of implementations. One can easily

experiment by combining distillation with a particular ensemble

technique such as boosting37 or bagging.29 In this paper, we focused

on a simple implementation that involves training multiple versions

of our current classifier with different initializations. Previous work

has shown that the training models with distinct random seeds can

infuse diversity in terms of the inductive biases learned by the net-

works.38 We hope that the simplicity of our method can provide a

convenient solution for other DL practitioners who intend to reduce

the number of highly confident but wrong predictions for the

deployment of DL models in high-risk domains.

CONCLUSION

Extreme class imbalance together with data and label noise leads to

serious overfitting issues when training DL models for the classifica-

tion of electronic cancer pathology reports. Ensemble methods are a

simple solution to alleviate these issues, but these methods are com-

putationally expensive and unsuitable for deployment by cancer

registries across the country. Thus, this study quantified the use of

ensemble model distillation as a low-resource alternative. The soft

labels derived through model aggregation contain information about

the variability in ensemble predictions. We showed that training a

student model with the derived soft labels can reduce the number of

highly confident but wrong predictions, thereby leading to a boost

in abstention rates when using softmax thresholding. The imple-

mented methods provide a simple and highly parallelizable solution

for researchers working in high-risk domains. Our ensemble model

distillation code is available on Github (https://github.com/kevin-

deangeli/EnsembleDistillation/).
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