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Abstract

FasL expression on human immune cells and cancer cells plays important roles in immune homeostasis and in cancer
development. Our previous study suggests that polymorphisms in the FasL promoter can significantly affect the gene
expression in human cells. In addition to the functional FasL SNP -844C.T (rs763110), three other SNPs (SNP -756A.G or
rs2021837, SNP -478A.T or rs41309790, and SNP -205 C.G or rs74124371) exist in the proximal FasL promoter. In the
current study, we established three major FasL hyplotypes in humans. Interestingly, a transcription motif search revealed
that the FasL promoter possessed two consensus T-cell factor (TCF/LEF1) binding elements (TBEs), which is either
polymorphic (SNP -205C.G) or close to the functional SNP -844C.T. Subsequently, we demonstrate that both FasL TBEs
formed complexes with the TCF-4 and b-catenin transcription factors in vitro and in vivo. Co-transfection of LEF-1 and b-
catenin transcription factors significantly increased FasL promoter activities, suggesting that FasL is a target gene of the b-
catenin/T-cell factor pathway. More importantly, we found that the rare allele (-205G) of the polymorphic FasL TBE (SNP
-205C.G) failed to bind the TCF-4 transcription factor and that SNP -205 C.G significantly affected the promoter activity.
Furthermore, promoter reporter assays revealed that FasL SNP haplotypes influenced promoter activities in human colon
cancer cells and in human T cells. Finally, b-catenin knockdown significantly decreased the FasL expression in human SW480
colon cancer cells. Collectively, our data suggest that b-catenin may be involved in FasL gene regulation and that FasL
expression is influenced by FasL SNP haplotypes, which may have significant implications in immune response and
tumorigenesis.
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Introduction

FasL (Fas ligand or CD95 ligand) is a type II membrane protein

and a member of the TNF ligand superfamily. FasL is mainly

expressed in activated T cells, NK cells, macrophages, and various

cancer cells. FasL triggers cell death and/or cell activation by

binding and clustering Fas (CD95). Fas-mediated apoptosis or

activation induced cell death (AICD) plays important roles in

maintaining peripheral immune tolerance [1]. In mouse models,

the gld and lpr mice containing the loss-of-function mutations in the

FasL (gld mice) and Fas (lpr mice) genes develop spontaneous

autoimmunity as a result of defective lymphocyte apoptosis [2,3].

The FasL/Fas system promotes immune tolerance through the

deletion of auto-reactive T cells, B cells, and macrophages [4–6].

In humans, autoimmune lymphoproliferative syndrome (ALPS or

Canale-Smith syndrome) is caused by the inherited loss-of-

function mutations in Fas or FasL [7-9]. FasL also initiates cell

activation and cell differentiation by engaging Fas, which

promotes chronic inflammation and inflammatory responses

[10,11]. Furthermore, FasL has a critical role in the pathogenesis

of AIDS and in the induction of pulmonary silicosis [12–14].

The FasL/Fas system is essential to establish and maintain

immune privilege for organs or tissues [15,16]. Most notably, FasL

is widely expressed in various human cancers such as melanoma,

hepatocellular carcinoma, lung cancer, astrocytoma, esophageal

carcinoma, gastric adenocarcinomas, ovarian carcinoma, and

colon adenocarcinomas [17–29]. FasL-expressing tumor cells kill

the tumor-infiltrating lymphocytes (TILs) through Fas-mediated

apoptosis, which is considered as the most important tool that

cancer cells use to counterattack the human immune system [30].

Furthermore, the Fas/FasL system was found to have a growth-

promoting role during tumorigenesis, highlighting that the cancer

cells expressing both FasL and Fas may have the growth

advantage through autocrine signaling [31]. Several studies

demonstrated that FasL expression on cancer cells facilitates the

establishment of tumor metastases [29,32,33]. Accumulating

genetic evidence also supports a role for FasL in cancer

development because the polymorphisms in FasL or Fas are
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associated with cancer risks [34]. Collectively, FasL seems to play a

critical role in tumorigenesis and tumor metastasis [19–

27,30,35,36].

The expression of FasL is tightly controlled in humans.

Numerous transcription factors are involved the regulation of

the FasL gene. NF-kB, NF-AT, Egr-3, and IRF-1 have been

implicated in regulation of human FasL gene [37–43]. Previously,

we reported that a polymorphic C/EBPb element in the FasL

promoter region is involved in the regulation of FasL expression

[44]. In the current study, we characterized two TCF/LEF-1

binding elements (TBEs) in the FasL promoter region. We

demonstrate that FasL TBEs are involved in the regulation of

promoter activity. Additionally, we show that FasL SNP

haplotypes affected the promoter activities in human cells.

Furthermore, our data support that b-catenin is involved in the

regulation of FasL expression in cancer cells. Our study provides

new insight into the genetics of human FasL and the mechanisms

of FasL gene regulation in human immune cells and cancer cells.

Results

FasL SNPs and SNP haplotypes
Four SNPs (-844C.T, -756A.G, -478A.T, and -205C.G)

were identified in the FasL promoter region (Fig. 1A). We were

able to construct six FasL promoter haplotypes by using PHASE

software (www.stat.washington.edu/stephens/software.html) based

on genetic data of 150 African American donors (Fig. 1B). We

further confirmed the FasL SNP haplotypes by sequencing

multiple genomic DNA clones from six heterozygous donors.

Three major FasL promoter haplotypes (FasL-1, FasL-2, and

FasL-3) were identified (Fig. 1B). FasL-2 (-844T/-756A/-478A/-

205C) is the most common haplotype with the allele frequency of

0.62. FasL-1 (-844C/-756A/-478A/-205C) is also a common

haplotype (allele frequency = 0.17). As the third major haplotype,

FasL-3 (-844T/-756G/-478A/-205G) has the allele frequency of

0.15. All the rare FasL haplotypes (FasL-4, FasL-5, and FasL-6)

have the gene frequencies less than 0.03 in the population (Fig. 1B).

Subsequently, we carried out transcription factor motif search to

look for the potential transcription elements near the FasL

polymorphic sites. Surprisingly, we found that a putative TCF/

LEF-1 binding element (TBE) is adjacent to the SNP -844C.T

and that the second putative TBE sits on the FasL SNP -205C.G

(Fig. 1C). For simplicity, we designated the putative TBE near the

SNP -844C.T as TBE1 and the TBE containing the SNP -

205C.G as TBE2 (Fig. 1C). Mutant FasL TBEs were generated

by site-directed mutagenesis in the wild-type TBEs of the promoter

reporter constructs (Fig. 1C).

Characterization of the distal TCF/LEF-1 binding element
(TBE1)

The TCF/LEF-1 transcription factor members belong to the

HMG (high mobility group) class of transcription regulators that

have a highly conserved consensus recognition core motif, 59-

CTTTG(A/T)-39 [45]. As shown in Fig. 1C, the nucleotide

sequence between position -838 and -833 (-838ACAAAG-833) has a

perfect match with the consensus T-cell factor (TCF/LEF-1)

binding element (59-CTTTGT-39) in the reverse orientation.

Therefore, the putative FasL TBE1 (the distal TBE) is located next

to the C/EBPb element and five nucleotides away from the SNP -

844C.T. To determine whether the putative distal TBE (TBE1)

could bind the specific transcription factors, we carried out

electrophoretic mobility shift assays (EMSA). As shown in Fig. 2A,

complexes were formed between the radio-labeled TBE1 probe

and proteins in SW480 nuclear extracts (Lane 1, 2, and 5). The

unlabeled TBE1 Specific Probe (cold SP) inhibited the complex

formation between the radio-labeled probe and the nuclear extract

(Fig. 2A, Lane 3). The anti-TCF-4 antibody significantly decreased

the specific complex formation between nuclear proteins and

TBE1 probe (Fig. 2A, Lane 4), providing evidence that TCF-4 is

one of the transcription factors that binds the TBE1. In addition,

cold Non-Specific probe (cold NP) failed to inhibit the complex

formation between the labeled TBE1 probe and nuclear proteins

(Fig. 2A, Lane 5) and the mutations within the putative TBE1

binding core sequence abrogated the binding of the transcription

factors (Lane 6).

In Wingless/Wnt signaling pathways, b-catenin could form

complexes with nuclear TCFs to regulate gene expression [46]. To

confirm whether the TBE1 probe is capable of forming super

complexes with TCFs and b-catenin, we performed EMSAs using

anti b-catenin antibody. Fig. 2B shows that radio-labeled TBE1

probe could form complexes with TCF-4 and b-catenin (Lane 1

and 4) and the unlabeled TBE1 probe inhibits the specific complex

formation (Lane 2). Furthermore, anti b-catenin antibody

dramatically decreased the formation of the probe-TCF-4-b-

catenin complexes (b-Cat arrow-pointed band, Fig. 2B, Lane 3).

Meanwhile, the probe-TCF-4 complex formation was notably

increased (TCF-4 arrow-pointed band, Fig. 2B, Lane 3),

confirming that super complexes could be formed between

TBE1 probe and TCF-4 plus b-catenin. Mutations within the

TBE1 core sequence disrupted the binding of both TCF-4 and b-

catenin (Fig. 2A, Lane 6 and Fig. 2B, Lane 5). Taken together, the

putative TBE1 adjacent to the SNP -844 is indeed a TCF/LEF-1

transcription factor-binding element.

EMSAs provided direct evidence for the physical interaction

between TCF-4 and the TBE1 probes in vitro. Next, we performed

chromatin immunoprecipitation assays (ChIP) to confirm the in

vivo interaction between the TBE1 and transcription factors (TCF-

4 and b-catenin). As shown in Fig. 2C, anti TCF-4 antibody was

able to specifically precipitate chromatin-DNA complexes con-

taining TBE1 DNA fragment (Lane 5). In addition, anti b-catenin

antibody was also able to precipitate chromatin-DNA complexes

containing TBE1 DNA fragment (Fig. 2D, Lane 5). The identity of

DNA fragments in the ChIP assay was further confirmed by direct

DNA sequencing (data not shown). Our data confirmed that

endogenous TCF-4 and b-catenin bound FasL TBE1 in vivo,

consistent with the in vitro results in Fig. 2A and 2B.

Effect of SNP -205 on the binding affinities for TCF/LEF-1
transcription factors

Multiple transcription factors (Egr-3, SP-1, and NF-AT) are

located near FasL SNP -205C.G [38-40,42]. In addition, as FasL

-205C allele is within the nucleotide sequence (59-C-205TTTGA-

39) that matches perfectly with the consensus TBE (59-CTTTGA-

39) and therefore, we speculated that the SNP -205C.G may be

within a functional TBE (Fig. 1C, TBE2). To examine whether the

putative TBE2 is able to bind TCF-4, we carried out EMSAs using

the double-stranded DNA probes. Fig. 3A shows that the labeled

wild-type TBE2 probe (TBE2, -205C allele) formed complexes

with the SW480 nuclear extract proteins (Fig. 3A, Lane 1, 2, 5,

and 6). The complex formation was abrogated by the addition of

unlabeled wild-type TBE2 probe (cold SP) (Fig. 3A, Lane 3), but

the cold non-specific probes (cold NP) were unable to inhibit

formation of the specific complexes (Fig. 3A, Lane 5 and 6),

validating that the binding of nuclear proteins to the labeled probe

was specific. Furthermore, the anti TCF-4 antibody dramatically

reduced the complex formation (Fig. 3A, Lane 4), verifying that

the transcription factor TCF-4 binds to the TBE2 probe.

Interestingly, there was no complex formation between the labeled
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TBE2 mutant probe (mTBE2 or-205G allele) and TCF-4 (Fig. 3A,

Lane 7), suggesting that function of the putative FasL TBE2 may

be affected by SNP -205 alleles.

We further determined whether the TBE2 probe can form super-

complexes with TCF-4 plus b-catenin. Besides the probe-TCF-4

complexes, we were able to detect probe-TCF-4-b-catenin super-

complexes (b-Cat arrow-pointed band, Fig. 3B, Lane 1 and 4).

Again, the unlabeled TBE2 wild-type probe (cold SP) inhibited the

specific complex formation (Fig. 3B, Lane 2). The anti b-catenin

antibody was able to disrupt the specific super-complexes

containing the labeled probe, TCF-4, and b-catenin (Fig. 3B, Lane

3). With the decrease of probe-TCF-4-b-catenin super-complexes,

the probe-TCF-4 complexes increased dramatically (TCF-4 arrow-

pointed band, Fig. 3B, Lane 3), verifying that the wild-type TBE2

probe (-205C allele) could form super-complexes with TCF-4 and b-

catenin. In contrast, the mutant TBE2 (mTBE2, -205G allele) probe

almost lost the ability to bind TCF-4 and b-catenin (Fig. 3B, Lane

5). Taken together, our data indicate that SNP -205C.G is located

in a bona fide TCF/LEF-1 transcription factor-binding element

and the SNP -205C.G in the TEB2 affect the binding capacity for

the transcription factors (TCF-4 and b-catenin). Subsequently, we

used chromatin immunoprecipitation assays (ChIP) to examine

whether TCF-4 and b-catenin bind to FasL TBE2 in vivo. As shown

in Fig. 3C, anti TCF-4 antibody was able to specifically precipitate

chromatin-DNA complexes containing TBE2 DNA fragment (Lane

5). In addition, anti b-catenin antibody was able to specifically

precipitate chromatin-DNA complexes containing TBE2 DNA

fragment (Fig. 3D, Lane 5). The identity of DNA fragments in the

ChIP assay was further confirmed by direct DNA sequencing (data

not shown). Our data confirmed that endogenous TCF-4 and b-

catenine bound FasL TBE2 in vivo, which is in agreement with the in

vitro results shown in Fig. 3A and 3B.

Up-regulation of FasL promoter activities by human
LEF-1 and b-catenin

The high mobility group (HMG) domain of TCF/LEF-1

transcription factor family members is responsible for the binding

to target genes in a sequence specific fashion while b-catenin

provides a domain for transcription activation. The transcriptional

activation of target genes occurs only when TCF/LEF-1

transcription factors are associated with b-catenin in cell nuclei.

Nuclei of human APC-/- colon cancer cells contain stable b-

catenin-TCF-4 complexes for target gene activation [47]. To

examine whether FasL TBEs are involved in the regulation of FasL

promoter activities, we carried out promoter reporter assays in

human colon cancer SW480 cells, which contain constitutively

high levels of active b-catenin in the nuclei [47]. As shown in

Fig. 4A, co-transfection of LEF-1 significantly increased promoter

activities of the FasL reporter construct containing two wild-type

TBEs in SW480 cells as compared with the vector control. To

further confirm that FasL promoter activities could be affected by

LEF-1 and b-catenin, we carried out the promoter reporter assays

Figure 1. FasL promoter SNP haplotypes and location of TCF/LEF-1 binding elements. A). Four SNPs (-844C.T, -756A.G, -478A.T, and
-205C.G) were identified in the FasL promoter region. B). PHASE program for haplotype reconstruction was used for haplotype analysis from 150
African American donors. The FasL promoter SNP haplotypes were verified from homozygous donors and further confirmed by sequencing genomic
DNA clones from heterozygous donors. The FasL haplotype frequencies were calculated according to the established haplotypes. C). Identification of
TCF/LEF-1 binding elements (TBEs) in the FasL promoter region. The core sequence of putative distal TCF/LEF-1 element (TBE1) is between nucleotide
position -838 to -833 while the core sequence of the putative proximal TCF/LEF-1 element (TBE2) is between nucleotide position -205 and -200. SNP
-205C.G is located within the TBE2 core sequence. The nucleotide changes (underlined) were the introduced mutations in the EMSA probes or in the
promoter reporter constructs.
doi:10.1371/journal.pone.0026143.g001
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in COS-7 cells. As shown in Fig. 4B, activities of FasL promoter

containing two wild-type TBEs (TBE1W/2W, left two bars) were

significantly increased when cotransfected with LEF-1 and b-

catenin. On the other hand, activities of FasL promoter containing

two mutant TBEs (TBE1M/2M) failed to respond to the co-

transfection of LEF-1 and b-catenin (right two bars, Fig. 4B).

These data suggest that FasL TBEs are involved in the regulation

of the FasL promoter in human cells and that mutations in FasL

TBEs affect FasL promoter activities.

Role of FasL TBEs in human colon cancer cells
Because the proximal FasL TBE (TBE2) contains the SNP -

205C.G, next we examined whether the SNP could affect

promoter activities. We carried out the promoter reporter assays

with the constructs containing either the triplicate wild-type TBE2

(3XTBE2W, -205C allele) or the triplicate mutant TBE2

(3XTBE2M, -205G allele). As shown in Fig. 4C, triplicate wild-

type TBE2 (-205C allele) increased reporter promoter activities four

folds in SW620 cells (APC-/- colon cancer cells) and twelve folds in

SW480 cells (APC-/- colon cancer cells) over the vector controls

respectively. In contrast, triplicate mutant TBE2 (-205G allele)

enhanced reporter promoter activities only by 1.3 folds in SW620

cells and by 2.9 folds in SW480 cells over the vector controls.

Therefore, wild-type TBE2 (-205C allele) serves as a much better

enhancer for FasL gene expression and that the SNP -205C.G may

affect the FasL promoter activities in human colon cancer cells.

APC-/- b-catenin-TCF signaling pathways specifically enhance

expression in genes containing the TCF/LEF-1 transcription

Figure 2. Binding of TCF-4 and b-catenin to the distal FasL TCF/LEF-1 binding element (TBE1). A). Radio-labeled wild-type TBE1 probe
(lane 1-5) and mutant TBE1 probe (lane 6) were incubated with 8 mg of SW480 cell nuclear extracts for 30 min. Competition experiments were
performed by preincubating with 200 fold molar excess of the unlabeled TBE1 probes (Cold SP, lane 3), or non-specific probe (Cold NP, lane 5).
Antibody binding experiments were carried out following the vendor’s instruction with anti-TCF-4 antibody (lane 4) and rabbit IgG as control (lane 1).
The arrow indicates the position of specific transcription factor complexes. Results shown were representative of four experiments. B). Radio-labeled
TBE1 (lane 1-4) and mutant TBE1 probes (lane 5) were incubated with 8 mg of Jurkat cell nuclear extracts for 30 min. Antibody binding experiments
were carried out with anti-b-catenin antibody (lane 3). The arrows indicate the position of specific transcription factor complexes. Results shown are
representative of four experiments. C). TCF-4 bound to the TBE1 of FasL promoter in a Chromatin Immunoprecipitation Assay (ChIP). ChIP assay was
performed as described in ‘‘Materials and Methods’’. Rabbit anti-human TCF-4 antibody was used to precipitate Jurkat T cell chromatin complexes
containing FasL promoter DNA fragment (lane 5). The appropriate positive (lane 2) and negative controls (lane 3 and 4) were included. Lane 1
contained DNA molecular weight marker (100 bp DNA ladders). D). b-catenin bound to the FasL promoter TBE1 in a ChIP assay. Mouse monoclonal
antibody against human b-catenin was used to precipitate Jurkat T cell chromatin complexes containing FasL promoter DNA fragment (lane 5). The
appropriate positive (lane 2) and negative controls (lane 3 and 4) were included. Lane 1 contained DNA molecular weight marker (100 bp DNA
ladders). The positive PCR products were shown as 163 bp DNA bands (pointed by arrow) in ChIP assays. The identity of DNA band was further
confirmed with DNA sequencing.
doi:10.1371/journal.pone.0026143.g002
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factor elements. To examine the role of TBEs within the FasL

promoter, we generated four promoter reporter constructs. As

shown in Fig. 4D, simultaneous mutations in both TBE1 and

TBE2 (TBE1M/2M) significantly decreased FasL promoter

activities in SW480 cells. However, FasL promoter constructs

containing either one mutant TBE (single mutant TBE1 =

TBE1M/2W or single mutant TBE2 = TBE1W/2M) failed to

affect promoter activities in SW480 cells (Fig. 4D), suggesting that

a single TBE (TBE1 or TBE2) may be necessary and sufficient to

support FasL promoter function in APC-/- colon cancer cells.

Effect of TBEs on FasL promoter activities in human T
cells
b-catenin is critical in the TCR signaling pathway which

mediates TCR2CD3-driven signals necessary for T cell differen-

tiation [48]. We speculated that TBE may be one of critical

transcription elements affecting FasL promoter function in human

T cells. In deed, as shown in Fig. 5A, FasL promoter carrying

mutant TBE1 and wild-type TBE2 (TBE1M/2W) had signifi-

cantly lower activities than that carrying both wild-type TBEs

(TBE1W/2W) in T cells at all conditions (P,0.01). Surprisingly,

FasL promoter carrying the wild-type TBE1 and mutant TBE2

(TBE1M/2W) failed to affect the FasL promoter activities in T

cells (Fig. 5A). Furthermore, although mutations in both TBE1

and TBE2 (TBE1M/2M) significantly reduced FasL promoter

activities in T cells, yet similar promoter activities were observed

between the FasL promoter carrying mutant TBE1 with wild-type

TBE2 (TBE1M/2W) and the FasL promoter carrying mutant

TBE1 with mutant TBE2 (TBE1M/2M). Collectively, our data

demonstrate that TBE1 is one of critical elements in FasL

Figure 3. Binding of TCF-4 and b-catenin to the proximal FasL TCF/LEF-1 binding element (TBE2). A). Radio-labeled wild-type TBE2 probe
(-205C allele, lane 1-6) and mutant TBE2 probe (-205G allele) (lane 6) were incubated with 8 mg of SW480 cell nuclear extracts for 30 min. Competition
experiments were performed with the unlabeled TBE2 probes (Cold SP, lane 3) or unlabeled non-specific probes (Cold NP, lane 5 and 6). Antibody
binding experiments were carried out by using anti-TCF-4 antibody (lane 4) and control rabbit IgG (lane 1). The arrow indicates the position of
specific transcription factor complexes. Results shown were representative of four experiments. B). Radio-labeled TBE2 probe (lane 1-4) and mutant
TBE2 probes (lane 5) were incubated with Jurkat cell nuclear extracts. Competition experiments were performed with the unlabeled TBE2 probe (Cold
SP, lane 2), or non-specific probe (Cold NP, lane 4). Antibody binding experiments were carried with anti-b-catenin antibody (lane 3). Arrows indicate
the position of specific transcription factor complexes. Results shown are representative of four experiments. C). TCF-4 bound to FasL TBE2 in a ChIP
assay. Anti-human TCF-4 antibody was used to immunoprecipitate Jurkat chromatin complexes containing FasL DNA fragment (lane 5). The positive
(lane 2) and negative controls (lane 3 and 4) were included. DNA molecular weight marker (100 bp ladders) was in Lane 1. D). b-catenin bound to the
FasL promoter TBE2 in a ChIP assay. Mouse monoclonal antibody against human b-catenin was used to precipitate Jurkat T cell chromatin complexes
containing FasL promoter DNA fragment (lane 5). The appropriate positive (lane 2) and negative controls (lane 3 and 4) were included. Lane 1
contained DNA molecular weight marker (100 bp DNA ladders). The positive PCR products were shown as 213 bp DNA bands (pointed by arrow) in
ChIP assays and the identity of DNA band was further confirmed with DNA sequencing.
doi:10.1371/journal.pone.0026143.g003
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promoter. On the other hand, FasL TBE2 may not be functionally

important in T cells (Fig. 5A).

Differential effect of FasL SNP haplotpes in colon cancer
cells and T cells

Single TBE1 mutation dramatically reduced FasL promoter

activities in human T cells and but not in human colon cancer cells

(Fig. 5A and Fig. 4D). Because lymphocytes (T cells) and epithelial

cells (colon cancer cells) express completely different sets of

transcription factors, we speculated that FasL promoter SNP

haplotypes may function differently in T cells and colon cancer

cells. In deed, as shown in Fig. 5B, FasL-3 haplotype (-844T/-

756G/-478A/-205G) had significantly reduced promoter activities

compared to FasL-1 (-844C/-756A/-478A/-205C) in colon cancer

cells (Fig. 5B, P,0.05). In contrast, the promoter activities were not

significantly different between FasL-3 and FasL-1 haplotypes in T

cells (Fig. 5C). On the other hand, FasL-1 (-844C/-756A/-478A/-

205C) always drives the highest promoter activities and FasL-2 (-

844T/-756A/-478A/-205C) the lowest among the three major

haplotypes in colon cancer cells and in T cells (Fig. 5B and 5C). Our

data indicate that SNP haplotypes might have different effects on

FasL expression in different cell populations.

Figure 4. Role of TBEs in FasL promoter. A). Human LEF-1 increases FasL promoter activities in SW480 cells. FasL promoter reporter construct
(0.5 mg) was co-transfected with human LEF-1 expression construct or vector control plasmid DNA (0.5 mg) into SW480 cells. LEF-1 significantly
increased FasL promoter activities compared to the vector DNA control in SW480 cells. Data represent means 6 SEM from three independent
experiments (*P,0.01). B). Functional TBEs are required for the enhancement of FasL promoter activity by LEF-1 and b-catenin. FasL promoter
reporter plasmid DNA (0.5 mg) was co-transfected with LEF-1 (0.5 mg) and b-catenin (1.0 mg) into COS-7 cells. Co-transfection of LEF-1 and b-catenin
significantly increased activities of FasL promoter containing functional TBEs (TBE1W/2W) in COS-7 cells (*P,0.01). Co-transfection of LEF-1 and b-
catenin failed to significantly increase activities of FasL promoter containing mutant TBEs (TBE1M/2M). Data represent means 6 SEM from three
independent experiments. C). Promoter reporter plasmid DNA (0.5 mg) containing either triplicate wild-type TBE2 (36TBE2W, -205C allele) or triplicate
mutant TBE2 (36TBE2M, -205G allele) was transfected into SW480 and SW620 cells as described in ‘‘Materials and Methods’’. The triplicate wild-type
TBE2 (36TBE2W) significantly increased the promoter activities compared to the triplicate mutant TBE2 (36TBE2M) in SW620 (4.3 folds for wild-type
TBE2 and 1.3 folds for mutant TBE2 over the vector control respectively) and in SW480 (12.7 folds for wild-type TBE2 and 2.9 for mutant TBE2 over the
vector control respectively). Data represent means 6 SEM from six independent experiments. The star symbol indicates that there are significant
differences between 36TBE2W and 36TBE2M (*P,0.001). D). Role of FasL promoter TBEs in SW480 cells. Mutation of either TBE1 (TBE1M/2W) or TBE2
(TBE1W/2M) failed to affect the FasL promoter activities compared to the wild-type reporter construct (P = 0.50 for TBE1W2M and P = 0.30 for TBE1M/
2M). Simultaneous mutations of TBE1 and TBE2 (TBE1M/2M) significantly reduced FasL promoter activities compared to the construct with wild-type
TBE1 and TBE2 (TBE1W/2W) in SW480 cells (*P,0.01). Data represent means 6 SEM from four independent experiments. Relative luciferase light units
(RLU) were standardized to Renilla luciferase activities (A and B) or standardized to b-galactosidase activities (C and D).
doi:10.1371/journal.pone.0026143.g004
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Role of b-catenin in the regulation FasL expression in
SW480 cells

To further examine whether b-catenin is involved in FasL

expression, we utilized b-catenin siRNA to knockdown expression

of b-catenin in SW480 cells. As shown in Fig. 6, b-catenin mRNA

expression decreased by 88% in SW480 cells transfected with b-

catenin specific siRNA as compared to the cells transfected with

scrambled control siRNA. Concomitantly, the expression of FasL

mRNA decreased by 42% in the cells along with the decreased b-

catenin mRNA. These data indicate that b-catenin promotes

expression of FasL.

Discussion

TCF/LEF-1 transcription factors are expressed in lymphoid

cells and cancer cells. TCF/LEF-1 transcription factor family has

four major members; TCF-1, LEF-1, TCF-3, and TCF-4, which

share homology in their DNA binding domain with members of

the HMG box transcription factors family [49]. TCF/LEF-1

family members were originally identified as lymphoid-specific

DNA-binding proteins that recognize the nucleotide sequence 59-

CTTTG(A/T)-39 (or in reverse orientation, 59-(A/T)CAAAG-39)

[50–52]. TCF/LEF-1 factors bind their target DNA sequences

within gene promoters through the HMG box DNA binding

domain. The HMG box not only mediates DNA sequence

recognition, but also induces a dramatic bend in the DNA to

facilitate assembly of functional nucleoprotein structures [53,54].

DNA binding by TCF/LEF-1 alone is not sufficient to cause

transcription activation. Promoter activation is accomplished only

after a functional bipartite transcription factor is created thorough

complex formation between TCF/LEF-1 transcription factor and

b-catenin [55]. Within the functional complex, TCF/LEF-1

contributes the DNA binding and b-catenin confers the transcrip-

tion activation [56]. Therefore, TCF/LEF-1 family factors serve as

Figure 5. Differential regulation of FasL promoter activities in human T cells and in human colon cancer cells. A). Effect of TBE
mutations on FasL promoter activities in Jurkat T cells. Promoter reporter construct DNA (2 mg) was transfected into Jurkat T cells as described in
‘‘Materials and Methods’’. FasL promoter containing mutant TBE1 (TBE1M/2W) had significantly lower activities than the wild-type FasL promoter
(TBE1W/2W) (*P,0.01). FasL promoter containing mutant TBE2 (-205G allele) (TBE1W/2M) did not significantly affect promoter activities compared to
the wild-type reporter construct (TBE1W/2W) in Jurkat T cells. FasL promoter carrying both mutant TBE1 and mutant TBE2 (TBE1M/2M) also had
significantly decreased promoter activity as compared with wild-type FasL promoter (TBE1W/2W) (*P,0.01). Data represent means 6 SEM from four
independent experiments. B.) FasL promoter activities of three major haplotypes in colon cancer cells. FasL promoter reporter constructs (0.5 mg)
were transfected into SW480 cells. Both the FasL-2 and FasL-3 haplotypes had significantly lower activities compared to that of FasL-1 in colon cancer
cells (*P,0.05). C). FasL promoter activities of three major haplotypes in human T cells. Promoter reporter construct DNA (2 mg) was transfected into
Jurkat T cells as described in ‘‘Materials and Methods’’. There were no significant differences in promoter activities between FasL-3 and FasL-1 in
Jurkat T cells under various conditions (basal and stimulations with anti-CD3 or PMA plus Ionomycin). FasL-2 had significantly lower promoter
activities compared to FasL-1 and FasL-3 in Jurkat T cells (*P,0.05). All relative luciferase light units (RLU) were standardized with b-galactosidase
activities.
doi:10.1371/journal.pone.0026143.g005
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repressor to suppress target gene expression in the absence of b-

catenin binding [57]. The functional transcription complexes of

TCF/LEF-1 transcription factors and b-catenin are formed as a

result of extracellular signal transduction in which TCF/LEF-1

factors act as molecular switches for the gene expression.

TCF/LEF-1 binds a set of target genes and programs their

transcriptional competence to respond to specific signaling for b-

catenin, a key down stream component of the Wnt signaling

pathway. In the presence of Wnt signals, the signaling cascade

leads to translocation of b-catenin into nuclei, where b-catenin

interacts with TCF/LEF-1 to generate transcriptionally active

multi-protein complexes [46,49]. b-catenin is also a target of TCR

signaling pathway as TCF/LEF-1 transcription factor members

play critical roles in the T cell development [51,58].

Colon cancers typically express high levels of FasL, which

presumably serves as a potent mediator of immune privilege [28].

Expression of FasL potentially enables colon tumors to counter-

attack Fas-sensitive anti-tumor immune effector cells through Fas-

mediated death. The high prevalence of expression of FasL in

various tumor cells suggests that FasL may be a general perhaps

essential factor in the inhibition of anti-tumor responses by cancer

cells [19–29,36]. Despite the tremendous attention to define FasL

expression in cancer cells, it remains unclear how non-lymphoid

cancer cells gain ability to express FasL and whether genetic

variations affect FasL expression in cancer cells. It is well

established that mutations in the adenomatous polyposis coli

(APC) tumor suppressor gene initiate the majority of colorectal

cancers. One consequence of this inactivation is constitutive

activation of b-catenin/TCF-mediated transcription [47,59–61].

Wnt pathway targets many genes critical for cell survival and

proliferation (list of target genes can be found at www.stanford.

edu/˜rnusse/pathways/targets.html). The c-myc oncogene has

been identified as a critical target gene in the Wnt signal pathway

and the expression of c-myc was regulated by two TCF/LEF-1

binding elements (TBEs) in c-myc promoter [62]. In the current

study, we identified two TCF/LEF-1 binding elements (TBE1 and

TBE2) in human FasL promoter. We demonstrated that both

TBE1 and TBE2 were capable of forming complexes with TCF-4

and/or TCF-4-b-catenin in vitro and in vivo. Additionally, the FasL

TCF/LEF-1 binding element could serve as an enhancer in colon

cancer cells carrying APC mutations. Mutational analysis and co-

transfection assays further confirmed that TBE1 and TBE2 were

involved in the regulation of FasL promoter activities in human

cells. Furthermore, b-catenin knockdown significantly decreased

FasL expression. Taken together, we propose that FasL is a target

gene in the APC pathway and that the FasL TBEs are the critical

transcriptional elements controlling FasL expression in cancer

cells. Accordingly, one can speculate that the constitutively active

b-catenin-TCF-4 pathways would either enhance FasL promoter

activities in human cancer cells or enable cancer cells to express

FasL through binding to FasL TBEs.

The identification of TCF/LEF-1 binding elements in the FasL

promoter will provide valuable information for the understanding

of FasL expression in human cancer cells. Interestingly, both

TCF/LEF-1 binding elements in the FasL gene are either

overlapped with or adjacent to known transcription factor binding

sites. The TBE1 is overlapped with C/EBPb binding motif while

TBE2 is situated close to an Egr3 binding element (59-G-

215TGGTGT-207-39) (Fig. 1C). FasL promoter region around

SNP -205C.G contains several critical transcription elements that

are essential for the optimal responsiveness to TCR-mediated

activation and confer cyclosporin A sensitivity [38-40,42].

Therefore, the SNP -205C.G may affect binding of multiple

transcription factors to FasL promoter and influence the promoter

activities. In the current study, we provided the direct evidence

that the SNP -205C.G (in the context of haplotype) significantly

affect the promoter activities in cancer cells. Additionally, SNP -

205C.G has been reported to significantly associate with

hemolytic anemia in lupus patients [63], suggesting that SNP -

205C.G is a functional polymorphism.

Because the ability of cancer cells to express FasL may play

important role in tumorigenesis, we also expanded the functional

study for polymorphic C/EBPb element (SNP -844C.T) in

human colon cancer cells. We observed that the SNP in C/EBPb
also significantly altered FasL promoter activity in colon cancer

cells in the context of SNP haplotypes (Fig. 5B). One can imagine

that the differences in promoter activities of SNPs and/or SNP

haplotypes may have a significant impact in the cancer

development because the levels of FasL may affect cancer cells

to establish immune privilege and metastasis. Hence, the

polymorphism of C/EBPb (-844T/C) of FasL promoter might

have significant implication in the prognosis of cancers that rely on

FasL for metastasis. In deed, SNP in FasL promoter was reported

to be significantly associated with susceptibility to esophageal

squamous-cell carcinoma and cervical cancer, underscoring the

functional importance of FasL SNPs in the cancer development

[64,65].

Cross-linking TCR (T cell receptor) on T cells is a potent signal

to upregulate FasL expression, which plays a critical role in AICD

of T cells [66,67]. It is possible that TCR signaling may upregulate

FasL expression through b-catenin/TCF pathway in view of the

fact that TCR signaling drives nuclear accumulation of b-catenin

in human T Cells [68]. Interestingly, b-catenin nuclear accumu-

lation also down-modulates the inhibitory isoforms of TCFs

(TCF1 and LEF-1) and alters the TCF isoform balance in favor of

the stimulatory TCFs that are capable of binding b-catenin in T

cells [68,69]. Consequently, TCR signaling may result in the

upregulation of b-catenin/TCF target genes, which is consistent

with the observations of increased FasL expression after TCR

stimulation [66,67] and consistent with the assumption that FasL is

b-catenin/TCF target gene.

Figure 6. b-catenin knockdown decreases FasL expression in
SW480 cells. SW480 cells were transfected with either the scrambled
control siRNA (open bars) or the b-catenin siRNA (black bars) as
described in ‘‘Materials and Methods). b-catenin and FasL mRNA level
were calculated by relative quantification using GAPDH as the control in
real-time RT-PCR assay. Introduction of b-catenin siRNA decreased 88%
b-catenin and 42% FasL mRNA expression in SW480 cells (*P,0.01).
Data were the average of three experiments.
doi:10.1371/journal.pone.0026143.g006
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Activation-induced cell death (AICD) is a major mechanism to

maintain immune homeostasis [66,67,70]. Consequently, the

inducibility and level of expression of FasL under basal and

induction conditions could be very crucial in maintaining immune

tolerance and homeostasis. The biological importance of FasL is

well established in TCR mediated AICD in lymphocyte

homeostasis, in the maintenance of immune privilege within

certain tissues, and in inflammations and infections. In this study,

we characterized the function of three major FasL haplotypes,

which affect the FasL promoter activities in human cancer cells

and T cells. The functional characterization of FasL SNP

haplotypes will certainly facilitate our understanding of the FasL

expression in various human diseases.

Materials and Methods

Donors
Anti-coagulated peripheral blood was obtained from healthy

normal volunteers. The human studies were reviewed and

approved by the institution review board of the University of

Alabama at Birmingham and all donors provided written informed

consent.

Nucleic acid isolation
Genomic DNA was isolated using the Puregene DNA isolation

kit (Gentra Systems, Minneapolis, MN).

Sequencing and amplification of FasL promoter region
The FasL promoter region was amplified from position -1032 to

+33 with the sense primer 59-TTA TGC CTA TAA TCC CAG

CTA CTC A-39 annealing to nucleotide position from -1032 to -

1008, and anti-sense primer 59-CTG GGG ATA TGG GTA

ATT GAA G-39 annealing to position from +12 to +33 (+1 site

corresponds to the A of the ATG translation start codon). The

PCR reaction was performed in a 9700 PCR System with 500 ng

of DNA, 300 nM of each primer, 200 mM of dNTPs, 1.5 mM of

MgCl2, and 2.5 U of Taq polymerase in a 50-ml reaction volume

starting with 95uC for 5 min, 35 cycles of denaturing at 94uC for

30 s, annealing at 58uC for 45 s, extension at 72uC for 1 min with

a final extension at 72uC for 7 min. All the PCR products

(1065 bp) were separated on 2.5% agarose gels and purified with

the QIAquick Gel Extraction Kit (QIAGEN, Valencia, CA). The

purified PCR products were sequenced from both directions using

BigDye terminator sequence kit on an ABI 377 Sequencer

(Applied Biosystems, Inc., Foster City, CA). All new data have

been deposited in GenBank SNP database as rs763110 for (SNP -

844C.T), rs2021837 (SNP -756A.G), rs41309790 (SNP -

478A.T), and rs74124371 (SNP -205 C.G).

Reagents
Rabbit anti human TCF-4 polyclonal IgG was from Santa Cruz

Biotechnology (Santa Cruz, CA). Mouse anti b-catenin mAb IgG

was obtained from Transduction Laboratories (Lexington, KY).

Transfection reagents DMRIE-C and Lipofectamine 2000 were

from Invitrogen. Reagents and vectors for luciferase assays were

from Promega (Madison, WI). Protease inhibitor cocktail was

obtained from Roche Diagnostics (GmbH, D-68305 Mannheim,

Germany).

FasL promoter reporter constructs
The FasL luciferase reporter constructs were generated by

cloning a Kpn I/Hind III-flanked FasL promoter DNA (1026 bp)

fragment into pGL3-Basic vector (Promega, Madison, WI). The

Kpn I/Hind III-flanked DNA products were generated by PCR

amplification with human genomic DNA using upper primer 59-

GGC GGA GGT ACC CTA TAA TCC CAG CTA CTC AG-39

(underlined and bold nucleotides are Kpn I cutting site, the primer

anneals at position from -1026 to -927) and lower primer 59-GTT

CCG AAG CTT GGC AGC TGG TGA GTC AGG C-39

(underlined and bold nucleotides are Hind III cutting site, the

primer anneals at position from -19 to -1). The successive changes

at nucleotide position -844, -756, -205 (TBE2), and TBE1 (-838C

and -833C) were generated on reporter constructs by using

QuikChange Site-Directed mutagenesis kit (Stratagene, La Jolla,

CA) following the vendor’s instruction. For -844T construct, sense

primer 59-AAA TGA AAA CAT TGT GAA ATA CAA AGC

AG-39 and anti-sense primer 59-CTG CTT TGT ATT TCA
CAA TGT TTT CAT TT-39 were used. For -756G construct,

sense primer 59-TTA ACC TGT AAG TTA TGG TGA TCG

GC-39 and anti-sense primer 59-GCC GAT CAC CAT AAC
TTA CAG GTT AA-39 were used. For -205G allele (mutant

TBE2, TBE2M) construct, sense primer 59-AGT GAG TGG

GTG TTT GTT TGA GAA GCA GAA-39 and anti-sense primer

59-TTC TGC TTC TCA AAC AAA CAC CCA CTC ACT-39

were used. For mutant TBE1 (TBE1M) construct, sense primer 59-

GCG AAA TCC AAA CCA GCT-39 and anti-sense primer 59-

AGC TGG TTT GGA TTT CGC-39 were used (underlined and

italic letters are either natural SNPs or intentional mutations).

Generation of the triplicate TBE2 promoter reporter
constructs

Four oligos were synthesized for the generation of triplicate

TBE2. For the triplicate wild-type (-205C allele) TBE2 promoter

reporter construct, the sense strand oligo (59-GGC GGA GGT
ACC GTG GGT GTT TC-205T TTG AGA GTG GGT GTT

TC-205T TTG AGA GTG GGT GTT TC-205T TTG AGA GGT
ACC TAA TGA-39) and the anti-sense strand oligo (59-TCA TTA

GGT ACC TCT CAA AG-205A AAC ACC CAC TCT CAA AG-

205A AAC ACC CAC TCT CAA AG-205A AAC ACC CAC

GGT ACC TAA TGA-39) (underlined nucleotides are Kpn I

cutting site and the italic nucleotide is -205G/C SNP site) were

annealed to form double-stranded DNA. The double-stranded

DNA was then digested with restriction enzyme Kpn I and cloned

into pGL3-Promoter reporter vector (Promega). Similarly, the

mutant (-205G allele) TBE2 construct was generated by using the

sense strand oligo (59-GGC GGA GGT ACC GTG GGT GTT

TG-205T TTG AGA GTG GGT GTT TG-205T TTG AGA GTG

GGT GTT TG-205T TTG AGA GGT ACC TAA TGA -39) and

anti-sense strand oligo (59-TCA TTA GGT ACC TCT CAA A-

C-205A AAC ACC CAC TCT CAA AC-205A AAC ACC CAC

TCT CAA AC-205A AAC ACC CAC GGT ACC TAA TGA-39).

Generation of the human LEF-1 and b-catenin expression
constructs

The human lymphoid enhancer factor-1 (LEF-1) expression

construct was generated by cloning the full length LEF-1 coding

region cDNA (1200 bps) into the pcDNA3.1/HisC vector

(Invitrogen). The BamH I/EcoR I-flanked LEF-1 cDNA fragment

was amplified with RT-PCR from human leukocyte cDNA

synthesized with the SuperScriptTM Preamplification System

(Invitrogen). The upper primer 59-CCG CGT GGA TCC ATG

CCC CAA CTC TCC GGA GGA-39 (underlined nucleotides are

BamH I cutting site) anneals at position from 655 to 675 and lower

primer 59-CAC GAT GAA TTC TCA GAT GTA GGC AGC

TGT CAT-39 (underlined nucleotides are EcoR I cutting site)

anneals at position from 1834 to 1854 (human LEF-1 GenBank

accession number: AF288571). The human b-catenin expression
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construct was generated by cloning BamH I/Not I-flanked b-

catenin coding region cDNA (2388 bps) into pcDNA3.1 (Invitro-

gen). The BamH I/Not I-flanked RT-PCR products were

generated with human cDNA using an upper primer (59-CGC

GGA GGA TCC GAA AAT CCA GCG TGG ACA ATG GCT

AC-39, underlined nucleotides are BamH I cutting site) annealing

at position from 197 to 222 and a lower primer (59-AAG GAA

AAA AGC GGC CGC CAG ACA ATA CAG CTA AAG GAT

GAT-39, underlined nucleotides are Not I cutting site) annealing at

position from 2561 to 2584 (human b-catenin GenBank accession

number: X87838). The RT-PCR reactions were carried out with

KOD HiFi DNA Polymerase (Novagen, EMD Biosciences, Inc.,

Madison, WI) for human LEF-1 or with Expand Long Template

PCR System (Roche Diagnostics GmbH, D-68305 Mannheim,

Germany) for human b-catenin by following vendors’ instructions.

The sequences and orientations of all cloned constructs were

verified by fluorescent automated DNA sequencing from both

directions on an ABI 377 Sequencer with ABI BigDye Terminator

Cycle Sequencing Kit.

Transient transfection and luciferase assays
Human colon cancer cell lines SW480 and SW620 with APC

mutations (APC-/-) were obtained from ATCC (Manassas, VA).

The cells were maintained in the L-15 medium supplemented with

10% fetal calf serum and L-glutamine (2 mM). The COS-7 cells

(ATCC) were maintained in the DMEM medium supplemented

with 10% fetal calf serum and L-glutamine (2 mM). The transient

transfections were carried out in a 6-well tissue culture plate

(Corning). The cells (26105 cells per well) were transiently

transfected with 4 ml of Lipofectamin 2000 reagent (Invitrogen),

0.5 mg reporter construct plasmid DNA, and 0.05 mg pRL-null

plasmid DNA (Promega) (or pCMV.SPORT-b-gal plasmid DNA,

Invitrogen)) by following vendor’s instruction. The transfected cells

were cultured for 20 hours before being washed twice with PBS

(pH 7.4). The cells were lysed in the wells with the addition of

500 ml of 16 lysis buffer for the Luciferase Assay Systems

(Promega, Madison, WI). The cell supernatants were used for

luciferase reporter assays by following vendor’s instruction

(Promega, Madison, WI).

The human leukemic T cell line (Jurkat clone E6-1, ATCC) was

maintained in RPMI with 10% fetal calf serum, penicillin (1000

units/ml), streptomycin (1000 units/ml), and glutamine (2 mM).

Each transient transfection experiment was carried out with 26106

Jurkat cells, 2 mg of reporter construct plasmid DNA plus 0.5 mg of

pCMV.SPORT-b-gal plasmid DNA, and 4 ml of DMRIE-C

reagent. Transfected cells were then cultured separately without

treatment (no treatment), with treatment of 50 ng/ml PMA plus 1

mM ionomycin (PMA+Iono), or with anti-CD3 treatment (aCD3)

for 18 hrs as previously described [44]. The harvested cells were

washed twice with PBS (pH 7.4) before being lysed in 300 ml of 16
lysis buffer. Cell debris was removed by centrifugation and the

supernatants were used in the luciferase reporter assay [44].

Relative luciferase light units, standardized to b-galactosidase

activities in luciferase assays or standardized to Renilla luciferase

activities in dual luciferase reporter assays, are reported as the

mean of triplicate samples.

Nuclear extract preparations
SW480 cancer cells were grown to monolayer and harvested by

treating with 0.25% trypsin and 0.02% EDTA. Jurkat cells

(3.56106/ml) were either stimulated with 10 mg/ml of LPS for

two hours or cultured on anti-CD3 mAb coated plates for 3.5 hours

before nuclear proteins were extracted as previously described [44].

Electrophoretic mobility shift assays (EMSAs)
For each binding reaction, 8 mg of nuclear extract was

incubated in 16 binding buffer (4% glycerol, 1 mM MgCl2,

0.5 mM EDTA, 0.5 mM DTT, 50 mM NaCl, 10 mM Tris-HCl,

pH 7.5, and 50 mg/ml poly(dI-dC).poly(dI-dC)) with 32P labeled

probes in a volume of 10 ml. Binding reactions were carried out at

room temperature for 30 min with 50,000 cpm (0.1–0.5 ng) of

double-stranded oligonucleotides end-labeled with [c-32P]ATP

using T4 polynucleotide kinase. Unlabeled specific (SP) or non-

specific (NP) competitor probes were used at 200-fold excess.

Protein/DNA complexes and unbound DNA probe were then

resolved on 5% non-denaturing polyacrylamide gel and visualized

by autoradiography. The following double-stranded oligonucleo-

tide probes were used in these experiments: 1) wild-type TBE1

(TBE1), 59-GCG AAA TAC AAA GCA GCT-39; mutant TBE1

(mTBE1), 59-GCG AAA TCC AAA CCA GCT-39 (the

underlined nucleotides are introduced mutations). 2) wild-type

TBE2 (-205C allele, TBE2), 59-GTG GGT GTT TCT TTG

AGA-39; mutant TBE2 (-205G allele, mTBE2), 59-GTG GGT

GTT TGT TTG AGA-39 (SNP -205 is underlined); nonspecific

probe (NP), 59-AAA ACA TTG TGA AAT ACA-39. Assays with

anti TCF-4 or anti b-catenin antibodies were carried out by

following vendors’ instruction (Santa Cruz, CA; Transduction

Laboratories, Lexington, KY).

Confirmation of the TBE/DNA bindability by the
chromatin immunoprecipitation (ChIP) assay

Chromatin immunoprecipitation (ChIP) assays were performed

with Chromatin Immunoprecipitation Assay Kit as described by

the vendor (Upstate, Lake Placid, NY). Briefly, Jurkat T cells

(16107) were washed twice with ice cold PBS. The cells were fixed

and cross-linked in 1% formaldehyde. The cells were then

centrifuged and washed twice with ice cold PBS containing 16
proteinase inhibitor cocktail (Roche Diagnostics GmbH, D-68305

Mannheim, Germany). Finally, the cells were lysed in SDS Lysis

Buffer for 10 minutes on ice. The lysates were sonicated to shear

DNA to lengths between 200 and 600 bps. The sonicated cell

supernatant was diluted 10 folds in ChIP dilution buffer and pre-

cleared with salmon sperm DNA/Protein A agarose beads for 30

minutes at 4uC with agitation. Anti human TCF-4 antibody was

added to the pre-cleared supernatant. Salmon sperm DNA/

Protein A agarose beads were used to collect the antibody/

transcription complexes. The DNA extracted from the precipitat-

ed complexes was used for PCR amplification by following the

vendor’s instruction. For TBE1 ChIP assay, upper primer 59-AAT

AAA TAA ACT GGG CAA ACA-39 (annealing from position -

883 to -863) and lower primer 59-AAC TAC CAT TTA CCC

TGA CCT-39 (annealing from position -741 to -721) were used.

For TBE2 ChIP assay, upper primer 59-CAG AAA ATT GTG

GGC GGA AAC TT-39 (annealing from position -291 to -269)

and lower primer 59-CGG GAC CCT GTT GCT GAC TG-39

(annealing from position -97 to -78) were used. The ChIP assay

PCR reactions were set up with 300 nM of each primer, 200 mM

of dNTPs, 1.5 mM of MgCl2, 2.5 U of Taq polymerase, and 2 ml

of the DNA template in a 50-ml reaction volume. The cycle

reaction was started with 95uC for 5 min, 40 cycles of denaturing

at 94uC for 30 s, annealing at 56uC for 45 s, extension at 72uC for

1 min with a final extension at 72uC for 7 min. The specific ChIP

DNA products were separated on 2.5% agarose gels along with the

100 bp DNA molecular weight marker (Invitrogen) and the

identities of PCR products of ChIP assays were further confirmed

with direct DNA sequencing.
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Haplotype determination
Haplotypes were deduced from homozygous donors and by

using the PHASE 2.0.1 program for haplotype reconstruction

[71,72]. Further confirmation of the FasL SNP haplotypes was

carried out by cloning FasL promoter genomic DNA (1065 bps)

from six heterozygous donors. The FasL promoter DNA fragment

was cloned into pGEM-T Easy Vector (Promega Cor., Madison,

WI) following vendor’s manual. At least ten clones from each

donor were sequenced on an ABI 377 Sequencer with ABI Dye

Terminator Cycle Sequencing Kit.

b-catenin knockdown and quantitative real-time RT-PCR
The human colon cancer cell line SW480 was maintained in

DMEM supplemented with 10% fetal calf serum and L-glutamine

(2 mM). Cells (56105) were plated in each well of 12-well plates.

Cells were transfected with 50 nM (final concentration in medium)

of siRNA corresponding to either b-catenin or a Scrambled

control siRNA (Dharmacon, SMARTpool siRNA, ThermoFischer

Lafeyette, CO) using Lipofectamine 2000 transfection reagent

(Invitrogen, Carlsbad, CA) after they reached 75% confluence

(approximately 24 hours after plating). Cells were harvested

48 hours after transfection and RNA was isolated using the

Qiagen RNAeasy isolation system (Qiagen, MD) according to

manufacturer’s instructions. Purified RNA samples were subse-

quently treated with RNAse-free DNAse I (Invitrogen) before

reverse transcription with Quantas qScript cDNA Supermix

according to manufacturer’s instructions (Quantas Biosciences,

MD). Real-time RT-PCR was performed using Ssofast EvaGreen

Supermix with low Rox (Biorad, CA) on a 7500 Real Time PCR

System with 7500 Software v2.0.1 (Applied Biosytems, Foster City,

CA). Melting curve analysis was performed to ensure that the

primers amplified the desired amplicons and that primer dimers

were absent. The following primers were used for our assay: b-

catenin-Forward (59-TCT TGC CCT TTG TCC CGC AAA

TCA-39), b-catenin-Reverse (59-TCC ACA AAT TGC TGC

TGT GTC CCA-39), GAPDH-Forward (59-CCT CAA CGA

CCA CTT TGT-39), GAPDH-Reverse (59-TGG TCC AGG

GGT CTT ACT-39), FasL–Forward (59- AAC CAA GTG GAC

CTT GAG ACC ACA-39), and FasL–Reverse (59-TTC ACA

TGG CAG CCC AGA GTT CTA-39). Fold change in mRNA

expression was calculated by relative quantification using the

comparative CT method with GAPDH as endogenous control.

The experiments were repeated three times with triplicate samples.

Data analysis
TESS (Transcription Element Search Software; http://www.

cbil.upenn.edu/tess/) and MatInspector (http://www.gsf.de/

biodv/matinspector.html) were used to search for candidate

transcription factors around the SNP sites. Differences in FasL

promoter activities of various constructs were analyzed by

Student’s t test. The null hypothesis was rejected at the 95%

confidence level (P,0.05).
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