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Abstract

Background: Fast, efficiently growing animals have increased protein synthesis and/or reduced
protein degradation relative to slow, inefficiently growing animals. Consequently, minimizing the
energetic cost of protein turnover is a strategic goal for enhancing animal growth. Characterization
of gene expression profiles associated with protein turnover would allow us to identify genes that
could potentially be used as molecular biomarkers to select for germplasm with improved protein
accretion.

Results: We evaluated changes in hepatic global gene expression in response to 3-week starvation
in rainbow trout (Oncorhynchus mykiss). Microarray analysis revealed a coordinated, down-
regulated expression of protein biosynthesis genes in starved fish. In addition, the expression of
genes involved in lipid metabolism/transport, aerobic respiration, blood functions and immune
response were decreased in response to starvation. However, the microarray approach did not
show a significant increase of gene expression in protein catabolic pathways. Further studies, using
real-time PCR and enzyme activity assays, were performed to investigate the expression of genes
involved in the major proteolytic pathways including calpains, the multi-catalytic proteasome and
cathepsins. Starvation reduced mRNA expression of the calpain inhibitor, calpastatin long isoform
(CAST-L), with a subsequent increase in the calpain catalytic activity. In addition, starvation caused
a slight but significant increase in 20S proteasome activity without affecting mRNA levels of the
proteasome genes. Neither the mRNA levels nor the activities of cathepsin D and L were affected
by starvation.

Conclusion: These results suggest a significant role of calpain and 20S proteasome pathways in
protein mobilization as a source of energy during fasting and a potential association of the CAST-
L gene with fish protein accretion.

Background that 15% to 25% of the energy consumed by growing ani-
Protein turnover is a major determinant in the conversion  mals is used for protein breakdown and re-synthesis. Con-
of feed into growth [1]. Young and others [2] reported  sequently, minimizing the energetic cost of protein
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turnover is a strategic goal for enhancing animal growth
and feed efficiencies.

Protein accretion is the net effect of protein synthesis and
degradation. When protein synthesis rates are similar, fac-
tors affecting protein degradation are critical in explaining
differences in growth efficiency of individuals [1,3].
Recently, we showed that fish muscle protein degradation
depends on activities of proteolytic enzymes that are
tightly controlled and regulated [4-7]. The major systems
involved in fish muscle proteolysis are 1) membrane-
bound lysosomal enzymes, 2) ubiquitin-proteasome
pathway enzymes, and 3) calcium-dependent calpain pro-
teinases.

Fish swiftly use proteins as oxidative substrates [8] and
proteins have traditionally been considered to be the
usual gluconeogenic precursors during starvation in fish
[9]. Rates of protein synthesis also fall during starvation
[10,11]. The primary objective of this study was to use
microarray technology to identify genes/pathways
involved in starvation-related protein turnover. These
genes could potentially be used as molecular biomarkers
to study protein turnover and select for germplasm with
improved protein accretion in rainbow trout (Oncorhyn-
chus mykiss).

Salmonids during their life cycle may face extended peri-
ods without food. Fish during starvation depends on body
energy reserves. An effective way to identify the relation-
ships between major metabolic pathways and body proc-
esses is to examine changes in metabolism during
starvation. The secondary objective of this study was to
use microarray to identify metabolic adaptations of liver
tissue during starvation in rainbow trout.

Our microarray experiments showed a synchronized
down-regulated expression of protein biosynthesis genes
in starved fish but no significant changes of gene expres-
sion in the major protein catabolic pathways were
observed. To further investigate the effect of starvation on
protein degradation, we used real-time PCR and enzyme
activity assays (more sensitive and accurate methods) to
measure the expression of genes and enzyme activities in
the major proteolytic systems. Our results suggest a signif-
icant role of calpain and 20S proteasome pathways in
rainbow trout protein turnover under fasting condition.

Results and discussion

We performed microarray experiments to evaluate the
changes in hepatic gene expression in response to starva-
tion in rainbow trout. Microarray analysis defined 202
down-regulated and 27 up-regulated unique transcripts in
starved fish (+ 1.5-fold change, P < 0.05). Expression of 5
randomly selected genes, identified by microarray as dif-
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ferentially expressed, was confirmed by quantitative real
time PCR analysis (Fig. 1, p < 0.05), indicating the relia-
bility of the microarray data. The expression trends of all
5 genes were similar in both microarray and real-time PCR
analyses. The differentially expressed genes were classified
according to the GO biological functions (Fig. 2).

Protein biosynthesis

Our microarray data showed that 28% of the differentially
expressed genes belong to the protein biosynthesis
machinery (Fig. 2). Almost all the protein biosynthesis
genes were down-regulated (Table 1). The list includes 47
cytoplasmic ribosomal protein genes (30 for large subunit
and 17 for small subunit) and 5 mitochondrial ribosomal
protein genes (2 for large subunit and 3 for small subu-
nit). Ribosomal proteins are essential for mRNA transla-
tion into protein [12], and they are integral components
of the ribosome. Ribosomal proteins stabilize the rRNA
structure and regulate translocation of mRNA and tRNA,
which is necessary for optimal translation [13]. The down-
regulated expression of the ribosomal proteins in starved
fish suggests a well-regulated decrease in rate of protein
synthesis at transcription. Control of gene expression at
transcription would allow rapid suppression of protein
biosynthesis when amino acids are deficient.

Starved fish exhibited up-regulated expression of eukaryo-
tic translation initiation factor 2C, 1, and S2, Translation
initiation factors are essential for protein synthesis [14]. A
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Quantitative real-time PCR confirmation of differential
expression for 5 randomly selected genes identified by
microarray as differentially expressed (Means + S.E., n =6, P
< 0.05). The expression trends for all 5 genes were similar in
both microarray and real-time PCR analyses. The average
fold changes detected by microarray for GADPH, C3, ATPS,
ACPS5 and FADS2 were -2.9, -2.7, -5.0, 5.7, and -9.5, respec-
tively.
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Figure 2

Summary of differentially expressed genes that have signifi-
cant tBLASTX identity with genes assigned to GO biological
function categories.

similar eukaryotic translation initiation factor (elF2a) is a
highly conserved adaptor to stress [15]. The upregulated
expression of the eukaryotic translation initiation factors
may be to keep the basal level of protein translation or as
a consequence of starvation stress. On the other hand, the
eukaryotic translation elongation factors 1 alpha, EEF1A1,
and beta, EEF1B2, were down-regulated. Jurss and cow-
orkers [16] reported that rainbow trout in vitro protein
synthesis-stimulating activity is reduced by food depriva-
tion and can be compensated by addition of elongation
factors EF1 and/or EF2. Consequently, availability of
eukaryotic translation factors, EF1 and EF2, may be a rate-
determining point for rainbow trout protein synthesis. In
addition, the biotinidase transcript, which catalyzes the
release of biotin from biocytin, was also down regulated
in starved fish. Theoretically, formation of translation ini-
tiation complexes may depend on biotin [17]. Expression
of the peptidyl-prolyl, cis-trans, isomerase A (Cyclophilin
A) declined in starved fish. This enzyme is ubiquitous and
encodes essential step in protein folding and post-transla-
tional modification. In addition, the beta subunit of
Sec61 protein, which is involved in the co-translational
protein transport system [18], was down-regulated in
starved fish suggesting impaired intracellular protein
transport.

Tripathi and Verma [11] reported a reduction in an overall
capacity for protein synthesis in starved catfish. Peragon
and colleagues [9] found that, during starvation, total
hepatic-protein and RNA contents decreased significantly,
and the absolute protein-synthesis rate also fell. Pace and
Manahan [19] reported that protein synthesis accounted
for 16+ 4% and 75+ 11% of metabolism in unfed and fed
sea urchin larvae, respectively. Protein synthesis accounts
for a high percentage of the individual's metabolic costs.
Consequently, regulation of protein synthesis is a promis-
ing means to limit energy expenditures under unfavorable
feeding condition. These reports are consistent with our
results showing highly regulated protein synthesis rates in
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fish liver in response to starvation. Less essential pathways
such as protein synthesis are reduced to minimize ATP
demands [20,21].

Mitochondrial functions and glucose metabolism

Several genes belonging to complexes of the mitochon-
drial electron transport pathway were down-regulated.
These genes include complex Il (Ubiquinol-cytochrome c
oxidoreductases), complex IV (Cytochrome c oxidase)
and complex V ATP synthase (Table 2). In addition, succi-
nyl-CoA synthetase alpha subunit of the citric acid cycle
was down-regulated in starved fish. Furthermore, several
members of the adenine nucleotide translocator that
transports ATP out of the mitochondrion matrix in
exchange for ADP produced in the cytosol were down-reg-
ulated. Similarly, a mitochondrial phosphate carrier,
which returns phosphate generated by ATP breakdown to
the mitochondrion, was down-regulated. An outer mito-
chondrial membrane translocase, TOMM7, which medi-
ates the translocation of preproteins into or across the
outer mitochondrial membrane, was down-regulated in
starved fish. Conversely, TOMM40 was up-regulated. The
vast majority of mitochondrial proteins are synthesized
from nuclear DNA as precursor proteins on cytosolic poly-
somes, and these proteins must be imported into the
mitochondria [22]. Our results point to impaired mito-
chondrial functions and an overall reduction in ATP pro-
duction capacity as a result of starvation. Maintenance of
high metabolic rates following the exhaustion of energy
reserves during starvation would compromise animals'
ability to survive [23].

On the other hand, energy production through anaerobic
mechanisms seems to be less sensitive than aerobic (mito-
chondrial) mechanisms in responding to an inadequate
supply of energetic compounds from food sources. Starva-
tion caused a decreased expression of a single glycolytic
pathway enzyme; GAPDH. Surprisingly, other members
of the glycolytic pathway, including the highly regulated
and rate-limiting enzymes, hexokinase, phosphofructoki-
nase and pyruvate kinase were not affected (Table 2).
Moreover, expression of ribose 5-phosphate isomerase A,
a member of the pentose phosphate pathway that is
responsible for 30% of the hepatic glucose oxidation [14],
was up-regulated in starved fish. The lack of a coordi-
nated, down-regulated expression of the glycolytic path-
way enzymes upon starvation support the notion of
altered regulation for carbohydrate metabolism in carniv-
orous fish such as rainbow trout as compared to mam-
mals [23,24]. To explain the low dietary glucose
utilization in rainbow trout, Wilson [24] hypothesized
the existence of dysfunctional regulation of hepatic glyco-
lysis and gluconeogenesis. No dietary requirement for car-
bohydrate has been demonstrated in fish. When
carbohydrates are not provided in the diet, other nutrients
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Table I: Differentially expressed genes of the protein biosynthesis
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Symbol Gene name ACC.# p value GO Term Fold
change
Mrpl36 Mitochondrial ribosomal protein L36 CB511228 7.8E-03 protein biosynthesis — GO:0006412 4.1
Mrpl44 Mitochondrial ribosomal protein L44 CK991088 3.6E-04 protein biosynthesis — GO:0006412 -5.8
MRPSI5 Mitochondrial ribosomal protein SI5 CB494646 3.6E-03 protein biosynthesis — GO:00064 12 -4.1
MRPSI7 Mitochondrial ribosomal protein SI17 CB504359 7.9E-03 protein biosynthesis — GO:0006412 -3.2
Mrps30 Mitochondrial ribosomal protein S30 CB492525 1.8E-04 protein biosynthesis — GO:0006412 -5.5
RPLIO Ribosomal protein L10 CA770456 4.7E-03 protein biosynthesis — GO:0006412 -3.3
RPLIOA Ribosomal protein L10a CB491051 1.3E-03 protein biosynthesis — GO:00064 12 -2.4
Rpll1 Ribosomal protein LI 1| CA052515 4.5E-03 protein biosynthesis — GO:0006412 -3.7
Rpl12 Ribosomal protein L12 CA044425 2.2E-03 protein biosynthesis — GO:0006412 -3.4
RPLI3A Ribosomal protein L13a CA052724 1.1E-02 protein biosynthesis — GO:0006412 -2.8
RPLI14 Ribosomal protein L14 CB493023 3.9E-03 protein biosynthesis — GO:0006412 -4.9
RPLI7 Ribosomal protein L17 CA062149 5.7E-03 protein biosynthesis — GO:0006412 -2.9
RPL2| Ribosomal protein L21 CA044118 1.0E-02 protein biosynthesis — GO:00064 12 -3.5
RPL23 Ribosomal protein L23 CA061476 4.9E-04 protein biosynthesis — GO:0006412 -4.5
RPL23A Ribosomal protein L23a CA052583 4.4E-03 protein biosynthesis — GO:00064 12 -3.2
Rpl24 Ribosomal protein L24 CA051932 1.5E-02 protein biosynthesis — GO:0006412 -2.5
Rpl26 Ribosomal protein L26 CB497727 3.6E-02 protein biosynthesis — GO:0006412 3.0
RPL27 Ribosomal protein L27 CA037570 1.0E-02 protein biosynthesis — GO:0006412 -5.4
Rpl28 Ribosomal protein L28 CB502045 4.1E-04 protein biosynthesis — GO:0006412 5.1
RPL3 Ribosomal protein L3 CB487027 1.5E-02 protein biosynthesis — GO:0006412 -5.6
Rpl31 Ribosomal protein L31 CK990835 5.7E-05 protein biosynthesis — GO:0006412 -4.2
Rpl32 Ribosomal protein L32 CB494481 3.7E-03 protein biosynthesis — GO:0006412 -3.2
RPL36 Ribosomal protein L36 CA046196 3.3E-03 protein biosynthesis — GO:0006412 -5.7
RPL36A Ribosomal protein L36a CB499948 8.5E-04 protein biosynthesis — GO:0006412 -4.8
Rpl37 Ribosomal protein L37 CB500526 1.7E-02 protein biosynthesis — GO:0006412 -3.7
Rpl39 Ribosomal protein L39 CB508357 9.0E-04 protein biosynthesis — GO:0006412 -3.7
RPL5 Ribosomal protein L5 CK991320 1.8E-02 protein biosynthesis — GO:0006412 -2.0
RPL7 Ribosomal protein L7 CK991334 8.3E-04 protein biosynthesis — GO:0006412 -3
RPL9 Ribosomal protein L9 CB492853 1.2E-02 protein biosynthesis — GO:0006412 -2.8
Rpsli2 Ribosomal protein S12 CA769642 2.5E-03 protein biosynthesis — GO:0006412 -34
RPS16 Ribosomal protein S16 CB492970 5.8E-04 protein biosynthesis — GO:0006412 -5.5
RPSI8 Ribosomal protein S18 CB498298 5.4E-03 protein biosynthesis — GO:0006412 -2.3
Rps2| Ribosomal protein S21 CA047151 6.5E-03 protein biosynthesis — GO:0006412 -3.5
Rps23 Ribosomal protein S23 CA042659 8.5E-04 protein biosynthesis — GO:0006412 -5.9
Rps24 Ribosomal protein S24 CA769405 2.3E-02 protein biosynthesis — GO:0006412 2.0
RPS25 Ribosomal protein S25 CA050917 2.9E-03 protein biosynthesis — GO:0006412 -3.2
Rps26 Ribosomal protein S26 CA061718 2.6E-02 protein biosynthesis — GO:0006412 -3.2
Rps27 Ribosomal protein S27 CK990906 6.1E-04 protein biosynthesis — GO:0006412 -3.7
Rps3 Ribosomal protein S3 CA058850 5.8E-03 protein biosynthesis — GO:00064 12 -2.3
Rps7 Ribosomal protein S7 CB504457 3.4E-03 protein biosynthesis — GO:0006412 -4.2
Rplp2 Ribosomal protein, large P2 CB506488 7.2E-05 translational elongation — GO:00064 14 -4.5
RPLPO Ribosomal protein, large, PO CA045397 6.9E-03 protein biosynthesis — GO:0006412 -2.0
Rplpl Ribosomal protein, large, Pl CB496672 6.0E-03 protein biosynthesis — GO:0006412 -3.7
LOC363753 Similar to 40S ribosomal protein SI17 CK991333 3.0E-03 protein biosynthesis — GO:0006412 -4.0
LOC667731 Similar to 40S ribosomal protein S2 CB498057 4.1E-03 protein biosynthesis — GO:00064 12 -2.0
LOC501619 Similar to 40S ribosomal protein S29 CK991092 3.9E-03 protein biosynthesis — GO:0006412 -6.0
LOC676999 Similar to 40S ribosomal protein S6 CB496987 1.8E-03 protein biosynthesis — GO:00064 12 2.7
LOC675647 Similar to 40S ribosomal protein S7 (S8) CB492855 2.5E-02 protein biosynthesis — GO:0006412 -24
LOC666546 Similar to 60S acidic ribosomal protein PI CB498269 2.1E-03 protein biosynthesis — GO:00064 12 -3.8
LOC498135 Similar to 60S ribosomal protein L18 CA061879 3.7E-02 protein biosynthesis — GO:0006412 -2.7
MGC72957 Similar to 60S ribosomal protein L18a CB496920 1.0E-02 protein biosynthesis — GO:00064 12 -3.6
LOC436164 Similar to 60S ribosomal protein L7a CK990919 1.0E-02 protein biosynthesis — GO:0006412 -2.6
RGD1309784  Similar to ribosomal protein L24-like CB509952 2.0E-03 protein biosynthesis — GO:00064 12 -2.8
EEFIAI Eukaryotic translation elongation factor | alpha | CB491069 1.5E-03 translational elongation — GO:00064 14 -5.4
EEFIB2 Eukaryotic translation elongation factor | beta 2 CB500560 1.8E-02 translational elongation — GO:00064 14 -2.5
EIF2CI Eukaryotic translation initiation factor 2C, | CA055479 1.2E-02 protein biosynthesis — GO:0006412 2.3
Eif2s2 Eukaryotic translation initiation factor 2, subunit 2 (beta) CB499647 3.4E-04 protein biosynthesis — GO:00064 12 35
BTD Biotinidase CB492660 2.7E-04 biotin metabolism — GO:0006768 -8.7
SEC6IB Sec6| beta subunit CK991330 1.0E-02 protein targeting — GO:0006605 2.7
PPIA Peptidylprolyl isomerase A (cyclophilin A) CK990970 3.6E-04 protein folding — GO:0006457 -4.8
Hsbpl Heat shock factor binding protein | CB508758 1.5E-05 protein folding — GO:0006457 -4.7
LOC290549 Heat shock protein CB494575 3.5E-02 protein folding — GO:0006457 -2.4
UBAS52 Ubiquitin A-52 residue ribosomal protein fusion product  CB496916 2.7E-03 protein biosynthesis — GO:00064 12 -3.7
Cog7 Component of oligomeric golgi complex 7 CA050633 2.2E-02 protein transport-GO:0015031 1.8
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Table 2: Differentially expressed genes of the mitochondrial functions and glucose metabolism

Symbol Gene name ACC.# p value GO Term Fold
change
UCRC Ubiquinol-cytochrome c reductase complex CA038364 2.0E-02  electron transport — -4.4
GO:0006118
CYBRDI Cytochrome b reductase | CK990761 2.0E-02  electron transport — -2.4
GO:0006118
COX4ll Cytochrome c oxidase subunit IV isoform | CK990997 5.2E-04  electron transport — -3.3
GO:0006118
COXe6BI Cytochrome c oxidase subunit Vib polypeptide | (ubiquitous) CA047209 7.9E-03  electron transport — -3.8
GO:0006118
COX7A2 Cytochrome c oxidase subunit Vlla polypeptide 2 (liver) CB511353 4.4E-02  electron transport — -3
GO:0006118
Coxéc Cytochrome c oxidase, subunit Vic CA044426 2.4E-03  electron transport — -43
GO:0006118
Cox17 Cytochrome c oxidase, subunit XVII assembly protein homolog CB507314 3.4E-02  electron transport — 2.2
GO:0006118
Similar to NP_008189.1 cytochrome c oxidase subunit Il CA768526 3.5E-03  electron transport — -2.2
GO:0006118
Similar to NP_536845.1 cytochrome c oxidase subunit | CB494005 2.0E-04  electron transport — -3
GO:0006118
Similar to NP_006917.1 cytochrome c oxidase subunit | CN442555 8.8E-03  electron transport — 2.4
GO:0006118
Similar to NP_536846.1 cytochrome c oxidase subunit || CN442553 4.3E-04  electron transport — -6.0
GO:0006118
ATP5GI ATP synthase, H+ transporting, mitochondrial FO complex, C| CK991109 1.3E-02  ATP synthesis — GO:0015986 -2.5
ATP5)2 ATP synthase, H+ transporting, mitochondrial FO complex, F2 CB493612 83E-03  ATP biosynthesis — -5.0
GO:0006754
Atp5I ATP synthase, H+ transporting, mitochondrial FO complex, g CB497057 3.5E-03  ATP synthesis — GO:0015986 -3.3
ATP5B ATP synthase, H+ transporting, mitochondrial FI complex, beta CK990869 1.7E-04  ATP synthesis — GO:0015986 -39
ATP6VIH ATPase, H+ transporting, lysosomal 50/57kDa, V1 subunit H CAO053755 9.7E-03  ion transport — GO:000681 | -2.4
Similar to mitochondrial ATP synthase epsilon chain CB496505 8.2E-04  ATP biosynthesis — -5.7
GO:0006754
SUCLGI Succinyl-CoA synthetase alpha subunit CB498701 1.4E-02  succinate-CoA ligase (GDP- 42
forming)-GO:0004776
Slc25a5 Mitochondrial carrier, adenine nucleotide translocator, member 5 CA058445 2.5E-02  transport — GO:0006810 -2.6
SLC25A6 Mitochondrial carrier; adenine nucleotide translocator, member 6 K990577 2.2E-02  transport — GO:0006810 -2.4
SLC25A25 Mitochondrial carrier; phosphate carrier, member 25 CA042906 3.1E-03  transport — GO:0006810 -3.9
TOMM7 Translocase of outer mitochondrial membrane 7 CB497943 1.0E-03  protein transport — -3.7
GO:0015031
TOMM40 Translocase of outer mitochondrial membrane 40 CB498734 2.4E-04  lipid transporter activity — 54
GO:0005319
GAPDH Glyceraldehyde-3-phosphate dehydrogenase CA050886 4.8E-03  GO:0003824 : catalytic activity -2.9
RPIA Ribose 5-phosphate isomerase A (ribose 5-phosphate epimerase) CB503502 1.2E-02  pentose-phosphate shunt — 1.8
GO:0009052
ST6GALNA  ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N- CA050762 24E-02  carbohydrate metabolism — -2.0
Cé acetylgalactosaminide alpha-2,6-sialyltransferase 6 GO:0005975
Fahd| Fumarylacetoacetate hydrolase domain containing | CB492598 1.5E-02  metabolism — GO:0008152 -2.2
Tat Tyrosine aminotransferase CA05638I 2.6E-02  amino acid and derivative -2.5
metabolism — GO:0006519
FUK Fucokinase CA040903 5.5E-04  fucokinase activity — 47
G0:0050201
Ces2 Carboxylesterase 2 A0392 4.3E-02  catabolism — GO:0009056 1.7
Cesé Carboxylesterase 6 CB496876 2.8E-02  carboxylesterase activity — 1.7
GO:0004091
SAT Spermidine/spermine N |-acetyltransferase CB488575 3.4E-03  diamine N-acetyltransferase 38

activity — GO:0004 145

such as protein and lipids are catabolized for energy [24].
The stabilized expression of most glycolytic pathway
enzymes may be to preserve the enzymatic machinery of
the gluconeogenesis. While the activities of most path-
ways are reduced during starvation, some pathways, such
as gluconeogenesis, may remain unaltered or become
enhanced [25,26] in vital tissues during the initial stages
of fish starvation. Glucose is needed for the continued
function of essential organs like brain. Another explana-
tion for the maintenance of glycolytic enzymes' expres-

sion is short duration of feed deprivation (3 weeks) used
in this experiment.

The antioxidant systems

In starved fish, reduced expression of a number of tran-
scripts related to maintenance of intracellular redox status
was observed. These transcripts include 4 glutathione S-
transferase (GST) transcripts and the glutathione peroxi-
dase (GPX) gene (Table 3). These genes encode for anti-
oxidants required to defend against reactive oxygen
species (ROS) generated during the aerobic metabolic
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activities. GPX breaks down hydrogen peroxide [27] and
GST conjugates reduced glutathione to xenobiotics or cel-
lular components damaged by ROS [28]. Another down-
regulated transcript is Hydroxyacid oxidase (Hao1) whose
expression has been shown to be liver-specific and tar-
geted to peroxisomes. Haol belongs to a family of
enzymes that convert a broad range of a-hydroxy acids to
o-keto acids and concomitantly reduce molecular oxygen
to H,0, [29]. Oxidative activities of mitochondria are a
primary endogenous source of the reactive oxygen species
(ROS). Consequently, we predict that, as the rate of ROS
generation is decreased as a result of reduced aerobic
metabolism in starved fish, the rate of the cellular antioxi-
dants generation is decreased as well.

Several members of the antioxidant systems that keep
intracellular redox homeostasis including thioredoxin,
glutaredoxin-like transcripts and disulfide reductases
exhibited decreased expression in starved fish (Table 3).
Jimenez and coworkers [30] reported that glucose depri-
vation reduced levels of thioredoxin-like protein. Con-
versely, its over-expression protects against glucose
deprivation-induced cytotoxicity. Consequently, our
results support the assertion that thioredoxin might be
involved in cellular response to starvation stress.

Lipid and prostaglandin metabolism

Fish use lipids as the major energy source in contrast to
mammals that depend primarily on carbohydrates [31].
Microarray analysis revealed a decreased mRNA accumu-
lation of the apolipoproteins including Apob, Apoal,
Apocl, Apoc2, Apoe, and Apoh in starved fish (Table 4).
Apolipoproteins are plasma lipoprotein complexes that
are synthesized mainly in the liver, bind to lipids, and
transport them to different tissues through circulation
[32].

Starved fish showed reduced mRNA accumulation of the
fatty acid binding proteins, FABP1 and FABP3 and the
retinol binding proteins, RBP1 and RBP2 (Table 4). FABPs
and RBPs are collectively referred to as the intracellular
lipid binding proteins. RBPs bind retinoids, which are
essential for growth, vision, reproduction, hematopoiesis
and immune function. FABPs play an important role in
the intracellular uptake and transport of long-chain fatty
acids through the aqueous cytoplasm to the site of their
oxidation in the mitochondria or peroxisomes [33].
FABPs concentration increases with treatments that
increase fatty acid metabolism, and it is positively corre-
lated with the ability of tissues to metabolize fat [34].
Down-regulated expression of FABPs suggests reduced
hepatic fatty acid metabolism that may contribute to the
aforementioned overall decrease in mitochondrial ATP
production in starved fish.

http://www.biomedcentral.com/1471-2164/8/328

The microarray data did not reveal any elevated expres-
sion of the liver fatty acid oxidation mechanisms in
starved fish suggesting that rainbow trout may mobilize
fat from extra-hepatic resources to fuel metabolism during
feed deprivation. Jeziersk and colleagues [35] reported
that upon starvation, visceral lipid contributed the most
to energy metabolism compared to muscle and liver fat
depots. The absolute amount of fat derived from the liver
was much smaller than that of muscle and viscera. Ras-
mussen and coworkers [36] reported that a 50% increase
in feed lipid content enhanced fillet lipid levels by 20%
and caused a 15-20% increase in the visceral fraction. Our
previous results, using microarray and proximate analy-
ses, did not reveal any significant modification of the
lipolysis pathways in atrophying rainbow trout muscle
[4,37]. Collectively, our results indicate that visceral fat is
the first to be mobilized and perhaps the most important
fat depot for energy in rainbow trout [35]. Liver and mus-
cle lipids may be less mobile than visceral lipid. Detailed
studies are needed to explore different mechanisms that
regulate lipid mobilization from visceral, liver and muscle
stores.

A significant decrease in mRNA accumulation of the fatty
acid desaturase 2 gene (FADS2) was observed in starved
fish (Fig. 1, Table 4). FADS2 is a terminal component of
the liver lipogenic microsomal stearyl-CoA desaturase sys-
tem that uses O ,) and electrons from reduced cytochrome
b5 to catalyze the insertion of a double bond into a spec-
trum of fatty acyl-CoA substrates, including palmitoyl-
CoA and stearoyl-CoA. The closely related desaturase,
FADS]1, is a key regulatory enzyme of unsaturated fatty
acid biosynthesis [38]. Jezierska and coworkers [35]
reported a decline in the hepatic percentage of the monoe-
noic fatty acid upon starvation of rainbow trout; whereas,
the saturates remained relatively constant and polyunsat-
urates increased. Smith and colleagues [39] reported that
monounsaturated fatty acids, 16:1n-7, 18:1n-9 and
18:1n-7, of the spiny lobster, Jasus edwardsii decreased
with starvation. These results indicate diet-dependent
adaptive shifts in fish relative fatty acid composition.
Unsaturated fatty acids are needed for their unique physi-
cal properties in biological membranes [40]. Neverthe-
less, unsaturated fatty acids are synthesized at
considerable energetic cost; approximately 10 ATP are
used for each desaturation and 2-carbon elongation. Con-
sequently, it may be advantageous to delay synthesizing
these costly molecules until feeding is resumed.

Starved fish exhibited reduced mRNA accumulation of
prostaglandin D2 synthase 2 (Ptgds2). Ptgds2 is the pre-
cursor of 15-deoxy-deltal2-14-prostaglandin J2 (15d-
PGJ2) that plays a critical role in fat cell differentiation,
inducing the expression of adipocyte-specific genes and
promoting the formation of mature, lipid-laden adi-
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Table 3: Differentially expressed genes of the antioxidant system

http://www.biomedcentral.com/1471-2164/8/328

Symbol Gene name ACC# p value GO Term Fold
change
GSTO2 Glutathione S-transferase omega 2 CA064086 2.9E-03 metabolism — GO:0008152 -3.8
GSTPI Glutathione S-transferase pi CA050452 1.0E-03 glutathione transferase activity — -7.1
GO:0004364
GSTZI Glutathione transferase zeta | CB492382 6.9E-03 L-phenylalanine catabolism — -4.5
(maleylacetoacetate isomerase) GO:0006559
MGST3 Microsomal glutathione S-transferase 3 CA061668 8.1E-03 lipid metabolism — GO:0006629 -5.3
GPX4 Glutathione peroxidase 4 (phospholipid CB510303 1.2E-02 phospholipid metabolism — -3.1
hydroperoxidase) GO:0006644
HAOI Hydroxyacid oxidase (glycolate oxidase) | CB502864 4.1E-02  fatty acid alpha-oxidation — -24
GO:0001561
TXN Thioredoxin CA057296 2.2E-05 electron transport — GO:00061 18 -6.8
LOC389207 Similar to glutaredoxin cysteine-rich | protein ~ CB496770 7.3E-03 electron transport — GO:00061 18 -3.0

pocytes [41]. In addition, adipose differentiation-related
protein (ADFP) expression was reduced in starved fish.
ADFP is associated with early stages of adipocyte differen-
tiation and may play a critical role in regulating the forma-
tion, turnover and metabolic consequences of fat
formation in mammalian extra adipose tissues [42]. Col-
lectively, gene expression data, relative to lipid metabo-
lism, suggest that the need to reduce metabolic energy
costs has slowed down mechanisms of lipid and fatty acid
synthesis, lipid binding and transportation and adipocyte
differentiation. More detailed investigations on fish may
add new insights into the molecular evolution of the
mechanisms regulating lipogenesis and lipolysis proc-
esses and should become the objective of further studies.

Blood function

Starvation reduced expression of many iron homeostasis
and blood function-related genes including oxygen carrier
hemoglobin (HB), alpha and beta; plasma iron transport
protein, transferrin; and the iron storing protein, ferritin
(Table 5). Heme binding protein 1 was up-regulated in
starved fish. Transcripts of blood coagulation proteins,
fibrinogen, plasminogen, thrombin receptor, and anti-
thrombin (SERPINC1) were down-regulated in starved
fish. Haptoglobin, which binds free HB leaking from red
blood cells under pathological conditions to protect
against its harmful oxidative effects [43], was also down
regulated. In addition, the important cardiovascular and
body fluid homeostasis gene, natriuretic peptide precur-
sor A [44] was down-regulated in starved fish. Collec-
tively, these data suggest that iron homeostasis functions
are compromised in starved fish. Head kidney is the main
hematopoietic tissue in fish [45], however, liver is a highly
vascularized tissue. Consequently, the contradictory
expression of the liver iron homeostasis transcripts may
be due to the red blood cells entering the liver.

Immune response

Several immune-relevant genes were down-regulated in
response to starvation (Table 6). The list includes 4 com-
ponents of the complement system, C3, C5, CFB and CFP;
2 transcripts of C-type lectins, and the aforementioned
transferrin, prostaglandin D2 synthase, glutathione perox-
idases and hepatoglobin genes. These transcripts were
identified by cDNA subtractive libraries as liver-made
defense molecules and members of the fish innate
immune system. These genes are inducible when fish are
challenged with bacterial infection [46,47]. Furthermore,
hepcidin, a potent antimicrobial peptide and important
member of the fish innate immune system [48], was
down-regulated, and transferrin, which is a positive acute
phase protein in rainbow trout [49] was also down-regu-

5 - HEE Capn1

2 Capn2

44 cpns

B CAST-S

B CAST-L

2 J| I Calpain activity

p=0.017

Relative fold change

p=0.012

Figure 3

Effect of starvation on rainbow trout liver mMRNA accumula-
tion of the calpain catalytic subunits (Capnl and Capn2), the
regulatory subunit (cpns), the calpain inhibitors (CAST-L and
CAST-S) and the corresponding calpain enzyme activity.
Only significant p values are shown (Means * S.E., n = 6).
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Table 4: Differentially expressed genes of the lipid metabolism
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Symbol Gene name ACC.# p value GO Term Fold
change
APOB Apolipoprotein B (including Ag(x) antigen) CB511166 1.7E-02  lipid metabolism — GO:0006629 -4.1
Apoal Apolipoprotein A-l CB510796 1.5E-03  lipid transport — GO:0006869 -3.0
Apocl Apolipoprotein C-I CA037557 I1.7E-03  transport — GO:0006810 -4.6
APOC2 Apolipoprotein C-Il CB496914 1.8E-02  lipid transport — GO:0006869 -24
Apoe Apolipoprotein E CB506103 2.3E-02  lipid transport — GO:0006869 -2.2
APOH Apolipoprotein H (beta-2-glycoprotein I) CB492833 1.3E-02  defense response — GO:0006952 -2.4
Similar to NP_000473.1 apolipoprotein A-IV CB496971 1.7E-02  lipid transport — GO:0006869 -3.0
precursor
FABPI Fatty acid binding protein I, liver CB509924 1.6E-03 fatty acid metabolism — GO:000663 | -5.0
Fabp3 Fatty acid binding protein 3, muscle and heart CB507515 3.1E-02  phosphatidylcholine biosynthesis — -2.1
GO:0006656
RBPI Retinol binding protein I, cellular CB492550 4.1E-04  vitamin A metabolism — GO:0006776 -4.5
RBP2 Retinol binding protein 2, cellular CB496593 85E-04  vitamin A metabolism — GO:0006776 -4.5
FADS2 Fatty acid desaturase 2 CB494661 3.1E-04  fatty acid desaturation — GO:0006636 -9.5
Ptgds2 Prostaglandin D2 synthase 2 CA038730 I.1E-02  prostaglandin biosynthesis — -2.7
GO:0001516
ADFP Adipose differentiation-related protein CB514104 9.5E-03 lipid metabolism — GO:0006629 -3.5

lated in starved fish. Transferrin, ferritin and hepcidin
modulate iron homeostasis [50]; hence, they may control
bacterial proliferation by limiting iron availability [51].
Down-regulation of the immune-relevant genes suggests
mechanisms by which starved fish may demonstrate
weakened pathogen resistance.

On the other hand, few immune-relevant genes showed
up-regulated expression in response to starvation (Table
6). Two transcripts belonging to the T cell receptor system
that is involved in adaptive (lymphoid) immune
responses [51] were up-regulated. In addition, starved fish
exhibited increased expression of the tartrate-resistant
acid phosphatase (ACP5) gene. Macrophages from mice
over expressing ACP5 showed increased capacity for kill-
ing bacteria [52]. Lymphoid cells entering liver from circu-
lation may be responsible for this change.

The immune response includes synthesis of potent anti-
oxidants to protect cells against oxidative damage [53].
Starved fish exhibited reduced expression of several genes
involved in managing oxidative stress, including glutath-
ione S-transferases and glutathione peroxidases. These
genes were consistently up-regulated in Piscirickettsia sal-
monis-infected macrophages of Atlantic salmon [51]. On
the other hand, cytochrome P450 CYP1A1 and CYP3A43,
which are components of the necessary detoxification
pathway [54], were up-regulated in starved fish.

Miscellaneous functions

Starved fish showed down-regulation of many transcripts
classified into various functions including transcriptional
housekeeping genes, transcription factors and regulators
and genes belonging to several signal transduction path-

ways. A complete list of the differentially expressed genes
is available at NCBI Gene Expression Omnibus (GEO)
database with the accession number: GSE6944 [55].

Proteolysis and amino acid metabolism

Fish swiftly use proteins as oxidative substrates [8]. Pro-
tein turnover is a crucial determinant in converting feed
into growth [2]. During starvation, fractional protein-deg-
radation rate increases significantly [9]. Protein degrada-
tion is a tightly controlled and regulated process that
depends on at least three major proteolytic enzyme path-
ways [4,5]. Consequently, gene expression of these
enzyme systems is expected to increase in starved fish.
However, starved fish showed reduced expression of a
number of transcripts related to amino acid and proteoly-
sis functions (Table 7). Two proteasome and 3 ubiquitin
transcripts were also down-regulated in starved fish.

Evaluation of protease gene expression using real-time
PCR and enzyme activity assays

Since the microarray approach did not show significant
changes of gene expression in protein catabolic pathways,
we decided to use real-time PCR and the enzyme activity
assays to measure the expression of genes and enzyme
activities in the major proteolytic systems.

As shown in Fig. 3, starvation did not affect the mRNA lev-
els for Capn1, Capn2, cpns and CAST-S (p > 0.05). How-
ever, a significant decrease in CAST-L expression (p =
0.012), with a corresponding increase in the calpain cata-
lytic activity, was observed in starved fish (Fig. 3, p =
0.017). Our results are consistent with a previous report
showing that during starvation, activity of the calpain sys-
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Table 5: Differentially expressed genes of the blood functions
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Symbol Gene name ACC.# p value GO Term Fold
change
HBAI Hemoglobin, alpha | CB500796 I.2E-04  oxygen transport — GO:0015671 -3.7
Hba-al Hemoglobin alpha, adult chain | CB497424 2.7E-04  oxygen transport — GO:0015671 -5.4
Hbb Hemoglobin beta CB498575 6.8E-04  oxygen transport — GO:0015671 -5.7
TF Transferrin CB496720 2.1E-02  iron ion transport — GO:0006826 -4.6
Hebpl Heme binding protein | CA043780 8.9E-04 heme metabolism — GO:0042168 43
FTHI Ferritin, heavy polypeptide | CB507396 I.3E-03  ferritin complex — GO:0008043 -4.9
F2R Coagulation factor Il (thrombin) receptor CB493471 2.9E-02  blood coagulation — GO:0007596 -2.1
SERPINCI  Serpin peptidase inhibitor, clade C (antithrombin), CA038790 2.7E-03  blood coagulation — GO:0007596 -3.1
member |
Fgg Fibrinogen, gamma polypeptide CA039531 5.1E-04  blood coagulation — GO:0007596 -3.1
Plg Plasminogen CA037954 7.4E-03  blood coagulation — GO:0007596 -3.9
HP Haptoglobin CB510638 7.1E-04  iron homeostasis — GO:0006879 -2.3
NPPA Natriuretic peptide precursor A BU965660 7.7E-03  blood pressure regulation — -6.1
GO:0008217

Hemtl Hematopoietic cell transcript | CB512520 I.8E-03  protein folding — GO:0006457 -2.8
Nargl NMDA receptor-regulated gene | CA063821 3.2E-03  angiogenesis — GO:0001525 23

tem in bovine skeletal muscle is controlled through
decrease in expression of CAST [56].

CAST is a specific and the only known endogenous inhib-
itor of the calpain system. Mammalian experiments
showed that p-adrenergic agonist administration
decreases protein degradation through increased expres-
sion of the CAST gene [57]. CAST is associated with the
muscle fractional degradation rate [58] and reduced mus-
cle wastage in experimental animals [59]. Studies on the
importance of CAST gene in fish are still limited. Previ-
ously, we reported that calpains play an important role in
muscle proteolysis fueling metabolism of rainbow trout
during starvation [6]. In addition, CAST-L and CAST-S
mRNA were positively associated with muscle growth and
firmness in rainbow trout [7]. The present results indicate
that the calpain pathway may be involved in mobilizing
hepatic proteins during starvation. The current study sup-
ports the importance of CAST gene in controlling fish pro-
tein turnover, and suggests that CAST-L may be a good
candidate as a biomarker for fish protein accretion. Data
collected recently in our lab indicated that the CAST-L and
CAST-S genes are polymorphic in rainbow trout strains/
crosses (unpublished data). More detailed studies to
determine the physiological roles of CAST and the associ-
ation of its polymorphisms with economically important
traits in farmed fish are needed and are being currently
conducted in our lab.

Real time PCR analyses revealed no significant difference
in expression of any of the studied proteasome genes
including subunit alpha 5, subunit beta 3, the regulatory
subunit 6, subunit N3 and poly-ubiquitin (Fig. 4C, p =
0.01). Unexpectedly, the corresponding 20S proteasome
activity was slightly but significantly higher in starved fish

(Fig. 4F, p = 0.039), suggesting a post-transcriptional reg-
ulatory effect of starvation on proteasome enzymatic
activity. The ubiquitin-proteasome pathway is primarily
responsible for proteolysis of normal mammalian muscle
[60]. However, studies on fish indicate that the ubiquitin-
proteasome proteolytic pathway is down-regulated in
liver and muscle of starved rainbow trout without affect-
ing mRNA of the proteasome N3 [61]. Our previous stud-
ies showed that the ubiquitin-proteasome system is not
up-regulated during spawning-induced muscle proteoly-
sis in rainbow trout [4,37]. Dobly and coworkers reported
that proteasome activity in liver, but not in muscle, was
negatively correlated with growth rates in rainbow trout
[62]. These contradicting results suggest that our current
observation of increased proteasome activity may repre-
sent a temporal change. Additional studies are needed to
characterize the role of the proteasome system in fish pro-
tein accretion.

The mRNA abundance for cathepsins D and L and their
corresponding enzyme activities were not affected by star-
vation as shown in Fig. 5 (p > 0.05). Our previous reports
indicated that lysosomal cathepsins, particularly cathep-
sin-L, are the key proteases in spawning-induced proteol-
ysis in rainbow trout [4,37]. In addition, we reported that
B-adrenergic agonist administration reduced rainbow
trout muscle cathepsin D activity [5]. The cathepsin path-
way appears to play a major role in mobilizing muscle
protein in salmonids, particularly when they cease feeding
during their prolonged spawning migration [63]. Guder-
ley found that, in Atlantic cod, hepatic contents of lyso-
somal proteases decreased with prolonged starvation,
whereas in white muscle, starvation doubled specific
activity of cathepsin D [27]. These results indicate that
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cathepsins may be less important in mobilizing hepatic
proteins than in muscular proteins.

Conclusion

The major responses of rainbow trout liver to starvation
are: 1) a generalized decline in gene expression associated
with a decrease in tissue metabolism, 2) an overall reduc-
tion in protein synthetic capacity, 3) impairment of mito-
chondrial (aerobic) ATP-biosynthetic functions while
maintaining liver glycolytic/gluconeogenic competence,
4) down-regulated expression in mechanisms associated
with hepatic lipid and fatty acid transport while maintain-
ing fatty acid oxidation mechanisms, 5) significant
increases in calpain and proteasome catabolic pathways,
6) fish may maintain tight-control on the mechanisms of
protein metabolism more than lipid or carbohydrate
under short term starvation condition and 7) extra-
hepatic tissues, especially visceral fat, may play a major
role in lipid metabolism upon starvation.

Maintenance of glycolytic expression may represent a
short term effect (3 weeks) and suggest that normal turn-
over of energy reserves may be sufficient to maintain
energy requirements during the initial stages of food dep-
rivation. Nevertheless, the overall decrease of expression
is indicative of a long-term metabolic response that aims
to conserve energy reserves and enhance the ability to sur-
vive until feed is available. The use of microarray
approach and enzyme activity measurements has allowed
us to follow more closely the metabolic changes occurring
during starvation. More detailed work is necessary to iden-
tify specific steps that control individual metabolic path-
ways and thereby determine energy use during starvation.
The CAST-L gene is an appealing candidate as a potential
biomarker for fish protein accretion. More detailed stud-
ies are needed to explore the physiological roles of the
CAST-L gene in fish growth.

Methods

Fish and tissue sampling

The rainbow trout (Oncorhynchus mykiss) used in this
study were from the National Center for Cool and Cold
Water Aquaculture (NCCCWA) strain [64]. Prior to the
study, the fish were reared under standard laboratory
practices, and were fed to apparent satiation daily. A typi-
cal commercial trout feed was used (Zeigler Gold, Zeigler
Bros. Inc, Garners, PA) with 42% crude protein and 16%
crude fat. For both treatments six fish were each reared in
a separate 10-liter tank for a total of 12 tanks. The fish
were acclimated to the individual rearing units for 2 weeks
prior to the study and all fish were feeding well at the ini-
tiation of the treatments. Water temperature was main-
tained at 14°C, and dissolved oxygen concentration was
maintained close to saturation. Initial weight of the fish in
the two treatments was not different (P > 0.37) at 193.0 +
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15.7 g. After 3 weeks the feed deprived fish weighed signif-
icantly less than the fed fish, 279.7 + 19.8 g versus 172.0
+ 10.6 g. For the final weighing, fish were anesthetized
one at a time with 0.1 mg/L MS-222. After weighing, a
piece of liver was rapidly removed and placed in 1.5-ml
test tubes, flash frozen in liquid nitrogen and then kept at
-80°C until sample preparation. All animal handling and
sampling procedures were reviewed and approved by the
NCCCWA Institutional Animal Care and Use Committee.

RNA preparation

Total RNA was isolated from each fish (6 fish/group)
using Trizol reagent (Invitrogen, Carlsbad, CA) according
to the manufacturer's instruction. Concentrations of iso-
lated RNA were determined by measuring absorbance at
260 nm. The integrity of RNA was determined by agarose
gel electrophoresis. Poly (A) mRNA was purified using
Oligotex mRNA Mini Kit (Qiagen, Valencia, CA) accord-
ing to the manufacturer's instruction.

Microarrays, cDNA labeling and hybridization

A salmonid microarray containing cDNAs representing
16,006 genes selected from Atlantic salmon and rainbow
trout expressed sequence tag databases [37,65] was used
in the study. The microarray has been validated as a useful
tool for rainbow trout studies [65]. A compete list of the
genes on the array is available at the database of Consor-
tium for Genomic Research on All Salmon Project [66].
Microarray slides were purchased from Dr. Ben Koop's
laboratory at the University of Victoria. Arrays were per-
formed on 4 independent fed and 4 independent fasted

E proteasome o 5
5 7| ez proteasome f 3
Proteasome N3
B2 proteasom reg.
E poly-UQ

3 - EEE 20S activity

Relative fold change

Figure 4

Effect of starvation on rainbow trout liver mMRNA accumula-
tion of the proteasome pathway genes (catalytic subunits
alpha 5, beta 3 and N3, the regulatory subunit and polyubig-
uitin) and the corresponding enzyme activity of the 20S pro-
teasome. Only significant p values are shown (Means £ S.E.,, n
=6).
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Figure 5

Effect of starvation on rainbow trout liver mRNA accumula-
tion of cathepsins D and L and their corresponding enzyme
activities. No significant difference was found (Means + S.E., n
=6).

liver samples (4 biological replicates). Fluorophors (Cy3
and Cy5) were randomly assigned to RNA from each of
the starved and fed fish to limit the dye effect. cDNA labe-
ling and microarray hybridization procedures were essen-
tially as we previously described [37,67]. Briefly, 0.4 ng of
mRNA from each rainbow trout tissue was used as a tem-
plate in reverse transcription reactions incorporating
amino-allyl dUTP into the cDNA using oligo-d (T) primer
and Superscript II reverse transcriptase (Invitrogen,
Carlsbad, CA). The synthesized cDNAs from each starved
and fed fish were differentially labeled using N-hydroxy-
succinate-derived Cy3 or Cy5 dyes (GE Healthcare, Piscat-
away, NJ). Labeled ¢cDNAs were purified using a PCR
purification kit (Roche, Indianapolis, IN) to remove unin-
corporated dyes. The Cy3 and Cy5 labeled cDNAs were
then combined and concentrated down to 20 pl using a
Vacufuge vacuum concentrator (Eppendorf, Westbury,
NY) followed by addition of 130 ul of Slidehyb 3 solution
(Ambion, Inc. Austin, TX). Microarray hybridizations
were performed on a Tecan HS400 automated microarray
hybridization station (Tecan US, Durham, NC). The slides
were placed on the machine at 60°C for 2 minutes fol-
lowed by pre-hybridization at 55°C for 30 minutes with
pre-hybridization solution (5 x SSC, 1% SDS, 1% BSA)
under medium agitation. After a brief washing at 60°C for
1 minute, differentially labeled cDNAs in hybridization
buffer (~145 pl) were injected into the hybridization
chamber. The hybridizations were carried out for 3 hours
at 60°C followed by another 13 hours at 55°C. Arrays
were washed twice in 2 x SSC, 01% SDS, followed by twice
in 0.1 x SSC, 0.1% SDS at room temperature. Following 2
more washes in 0.1 x SSC, the slides were rinsed in water
and dried by centrifugation.

http://www.biomedcentral.com/1471-2164/8/328

Microarray scanning and data analysis

ScanArray Lite® microarray scanner was used to scan arrays
and ScanArray Express® software (PerkinElmer, Wellesley,
MA) was used to process array images, align spots, inte-
grate robot-spotting files with the microarray images and
quantify spots as we previously described [37]. Pre-
processing and normalization of data were accomplished
using the R-project statistical environment [68] and Bio-
conductor [69] through the GenePix AutoProcessor
(GPAP) [70]. Data were pre-processed by: 1) Removing
data points where signal intensities in both channels were
less than a baseline threshold value of 200, 2) Calculating
and subtracting local background fluorescence values
from all feature intensities, 3) Log2-transforming the
background subtracted Cy3/Cy5 ratios, 4) Calculating
means of intensities within and across biological repli-
cates, and 5) Defining spots that are larger or smaller than
2 standard deviations from the mean as outliers and elim-
inating them from calculation of the final means of Log2
ratios within and across the biological replicate arrays. All
hybridizations were also subjected to manual review to
ensure flagging and exclusion of all unacceptable spots.
Following pre-processing, the expression results were nor-
malized using global LOWESS normalization to adjust
and balance individual signal intensities to reduce any
systematic or technical variations. Diagnostic box plots of
LOWESS normalized Log2 ratios were used to ensure that
biological replicate arrays were similar in range. For each
spot, t-statistic, P-value (probability), and fold change
were calculated. Spots with one and half-fold change or
more were considered differentially expressed using p
value < 0.05. Four experiments were conducted. Microar-
ray data were deposited (according to Microarray Gene
Expression Data Society Standards) in the NCBI Gene
Expression Omnibus with the series accession number:
GSE6944 [55].

Quantitative real-time PCR analysis

Quantitative real time PCR was used to confirm the
expression of 5 differentially expressed genes identified by
microarray experiments. In addition, real time PCR was
also used to measure the mRNA levels of genes pertinent
to 1) the calpain/calpastatin proteinase pathway [6,7]
including the catalytic subunits of p-calpain (Capn1) and
m-calpain (Capn2), the calpain regulatory subunit (cpns),
the calpastatin long isoform (CAST-L) and the calpastatin
short isoform (CAST-S), 2) the proteasome multicatalytic
pathway including proteasome subunits alpha 5, beta 3,
N3, regulatory subunit 6, and the poly ubiquitin gene, 3)
the cathepsin proteolytic pathway including cathepsins D
and L [4,5]. Total RNA4, isolated from liver samples (n = 6/
group) using Trizol reagent, was further purified using an
RNA clean-up kit according to the manufacturer's proto-
col (Zymo Research Corporation, Orange, CA). Two ng of
each RNA sample were converted to cDNA using Super-
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Table 6: Differentially expressed genes of the immune response
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Symbol Gene name ACC.H# p value GO Term Fold
change

C3 Complement component 3 CB514355 2.5E-03  inflammatory response — -2.7
GO:0006954

C5 Complement component 5 CB491279 2.8E-03  inflammatory response — -4.0
GO:0006954

CFB Complement factor B CB511435 1.9E-02  innate immune response — -2.9
GO:0045087

CFP Complement factor properdin CB498335 1.9E-03  complement activation — -4.1
GO:0006957

CLEC2B  C-type lectin domain family 2, member B CB492852 8.4E-03  antimicrobial humoral response — -85
GO:0019735

similar to C-type lectin-like receptor 2 CB496842 6.1E-04  antimicrobial humoral response — -6.1

GO:0019735

Hamp Hepcidin antimicrobial peptide CK991068 I1.6E-03  iron homeostasis — GO:0006879 -34

Terb-VI3  T-cell receptor beta, variable 13 CB491795 I.IE-04 T cell receptor signaling pathway — 3.9
GO:0050852

TRA@ T cell receptor alpha locus CB498619 2.2E-04  cellular defense response — 25
GO:0006968

ACP5 Acid phosphatase 5, tartrate resistant CB515428 2.8E-04  acid phosphatase activity — 5.7
GO:0003993

VIPRI Vasoactive intestinal peptide receptor | CB511922 4.4E-04  immune response — GO:0006955 -3.9

BANFI Barrier to autointegration factor | CB505698 1.0E-03  response to virus — GO:0009615 -3.7

IGSF4C Immunoglobulin superfamily, member 4C CA040781 6.6E-05  immunoglobulin complex — -3.3
GO:0019814

LECTI Leukocyte cell derived chemotaxin | CA037891 I.IE-03  proteoglycan metabolism — -6.5
GO:0006029

Edeml ER degradation enhancer, mannosidase alpha-like =~ CA063288 3.4E-02  response to unfolded protein- 23

| GO:0006986
SERPING  Serpin peptidase inhibitor, clade G (CI inhibitor), CA037346 5.4E-03  immune response-GO:0006955/ 1.5
| member | blood

script II reverse transcriptase (Invitrogen, Carlsbad, CA).
To ensure RNAs were free of genomic DNA, negative con-
trol cDNAs were prepared by reverse transcription reac-
tions without adding the reverse transcriptase. Real time
PCR primers were designed based on each gene sequence
(Table 8) using Primer3 software [71]. Quantitative PCR
was performed in duplicate for each cDNA sample on a
Bio-Rad iCycler iQ Real-Time PCR Detection System using
iQ™ SYBR® Green Supermix (Bio-Rad, Hercules, CA) in 25-
pl reaction volumes containing 300 nM of each primer
and cDNA derived from 0.2 pg of total RNA. The rainbow
trout B-actin gene (its expression was not affected by star-
vation as shown by microarray analysis) was chosen as an
endogenous control for normalization of the real time
PCR analysis. Standard curves for each gene and the
endogenous control were constructed using 10-fold serial
dilutions of the corresponding plasmid. Standard curves
were run on the same plate with the samples. Threshold
lines were adjusted to intersect amplification lines in the
linear portion of the amplification curve and cycles to
threshold (Ct) were recorded. For each sample, the
amount of target gene and endogenous reference was
determined from the appropriate standard curve. The
amount of the target gene was divided by the amount of
reference gene to obtain a normalized target value. Mean

differences in gene expression levels were determined by
t-test and reported as relative fold changes.

Calpain activity assay

Calpain activity was measured using the calpain activity
assay kit (Calbiochem, San Diego, CA) as described
[4,5,7]. Briefly, liver tissues were homogenized in sample
buffer. Cell lysates were incubated with the fluorogenic
substrate Suc-LLVY AMC together with activation buffer.
The release of the free AMC was measured at excitation
and emission wavelengths of 370-nm and 450-nm,
respectively. The change in proteasome activity was nor-
malized to sample protein concentration and expressed as
relative fluorescence fold change.

Proteasome activity assay

Rainbow trout liver tissues were homogenized in lysis
buffer (50 mM Tris pH 8.0, 0.1 mM EDTA, 1.0 mM 2p-
mercaptoethanol) at 4°C, followed by centrifugation at
20,000 g for 10 min, and the supernatant was retained.
The concentration of proteins was determined using BSA
as standard. Proteasome peptidase activity was measured
using the 20S proteasome assay kit as previously
described [4,5] and according to the manufacturer's pro-
tocol (Alexis Biochemicals, San Diego, CA). The activity
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Table 7: Differentially expressed genes of the proteolysis
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Symbol Gene name ACC.# p value GO Term Fold
change

Psmcé Proteasome (prosome, macropain) 26S CB518083 4.3E-02 protein catabolism — GO:0030163 -2.3
subunit, ATPase, 6

PSME2 Proteasome (prosome, macropain) CB491442 1.5E-02 protein catabolism — GO:0030163 -5.7
activator subunit 2

Ubc Ubiquitin C CA048031 9.6E-04 ubiquitin-dependent protein catabolism- -2.8

GO:000651 |
UCHL5 Ubiquitin carboxyl-terminal hydrolase L5 ~ CA053740 1.2E-02 ubiquitin-dependent protein catabolism- -7.1
GO:000651 |

UBEIC Ubiquitin-activating enzyme EI1C (UBA3 CA051243 4.6E-02 proteolysis — GO:0006508 -2.3
homolog, yeast)

Ubb Polyubiquitin CB500037 6.5E-04 protein ubiquitination — GO:0016567 : -4.4

FBXO38 F-box protein 38 CB509947 4.2E-04 ubiquitin cycle — GO:0006512 -7.0

RBXI Ring-box | CA062272 8.6E-03 protein ubiquitination — GO:0016567 -3.8

TRIM39  Tripartite motif-containing 39 CB514566 2.6E-02 protein ubiquitination — GO:0016567 -2.0

PITRMI Pitrilysin metallopeptidase | CA050901 7.5E-03 metalloendopeptidase activity-GO:0004222 -32

TIMP2 TIMP metallopeptidase inhibitor 2 CB492841 2.0E-02 enzyme inhibitor activity — GO:0004857 -4.0

ACYI Aminoacylase | CA054045 2.1E-02 amino acid metabolism — GO:0006520 -2.0

ITIH5 Inter-alpha (globulin) inhibitor H5 CA039272 3.6E-02 hyaluronan metabolism — GO:0030212 -2.8

Itih3 Inter-alpha trypsin inhibitor, heavy chain 3 CA037372 1.8E-02 hyaluronan metabolism — GO:0030212 -2.8

NUPRI P8 protein (candidate of metastasis |) CA043387 1.0E-02 induction of apoptosis — GO:0006917 -2.9

SQSTMI  Sequestosome | CB492474 1.8E-04 apoptosis — GO:0006915 -5.9

CASPIO0  Caspase 10, apoptosis-related cysteine CB498395 7.4E-03 induction of apoptosis — GO:0006917 -3.0
peptidase

PDCDé6  Programmed cell death 6 CB514639 1.1E-03 apoptosis — GO:0006915 3.1

Rilp Rab interacting lysosomal protein CB517236 2.2E-02 transport — GO:0006810 -2.6

Edeml ER degradation enhancer, mannosidase CA063288 3.4E-02 response to unfolded protein-GO:0006986 23

alpha-like |

was measured using Suc-Leu-Leu-Val-Try-AMC as a sub-
strate in a reaction mixture of 939 ul of 1 x reaction buffer,
10 ul of 3% SDS, 1 ul of 1000 x substrate solution and 50
ul of sample. Release of the fluorogenic reagent AMC was
determined at excitation and emission wavelengths of
380-nm and 460-nm, respectively. The change in proteas-
ome activity was normalized to sample protein concentra-
tion and expressed as relative fluorescence fold change.

Cathepsins activity assay

Cathepsin-L activity was measured using the synthetic
substrate Z-Phe-Arg-AMC essentially according to [4,5] as
described in the manufacturer's protocol (InnoZyme™
Cathepsin-L Fluorogenic Activity Kit, Calbiochem, San
Diego, CA). The release of the fluorogenic reagent AMC
(7-amido-4-methylcoumarin) was determined by meas-
uring fluorescence at excitation and emission wavelengths
of 380-nm and 460-nm, respectively, in a Cary Eclipse
fluorometer (Varian, Inc., Palo Alto, CA). Purified cathep-
sin-L and cathepsin-L inhibitor (kit supplied) were used
for positive and negative controls, respectively. Activity of
cathepsin-D was measured as described previously [4,5]
using Bz-Arg-Gly-Phe-Phe-Pro-4MeOBNA, HCI (Calbio-
chem, San Diego, CA) as substrate. The reaction mixture
contained 400 pul of 50 mM sodium acetate buffer, pH 4.0,
100 pl of 200 uM substrate solution and 40 pl of sample.

The release of the fluorogenic reagent 4-MeOBNA was
measured at excitation and emission wavelengths of 380-
nm and 425-nm, respectively. The change in activity was
normalized to the sample protein concentrations and
expressed as relative fluorescence fold change.

Statistical analyses

One-way analysis of variance (ANOVA) was performed on
mean gene expression levels or enzyme activities using
SigmaStat (version 3.11) software (Aspire Software Inter-
national, Leesburg, VA). When one-way ANOVA showed
significant effects, multiple mean comparisons were made
using the Holm-Sidak method.

Abbreviations

NCCCWA, National Center for Cool and Cold Water
Aquaculture; GEO, Gene Expression Omnibus; Capnl,
Catalytic subunits of p-calpain; Capn2, Catalytic subunits
of m-calpain; cpns, Calpain regulatory subunit; CAST-L;
Calpastatin long isoform; CAST-S, Calpastatin short iso-
form; GADPH, Glyceraldehyde-3-phosphate dehydroge-
nase; C3, Complement component 3; ATP5J2, ATP
synthase; ACP5, Acid phosphatase 5, tartrate resistant;
FADS2, Fatty acid desaturase 2.
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Table 8: Primers used for real time RT-PCR analysis

http://www.biomedcentral.com/1471-2164/8/328

Gene name Forward primer

Reverse primer

GenBank Acc. No./

TIGRTC
Capnl 5-GCCAAAACATTGCCTGTTATCTTAG-3 5-ATAGGAGGCCGTATCAAAATTCC-3 AY573919
Capn2 5-GATTCATCCAGAACGTGTAGG-3 5-GGTTAAACACTGGAGCGTGTC-3 AY573920
Cpns 5-GCTGCCTTCAAATCTGCATGT-3 5-TGTACCTGCGAGCGATCAACT-3 AF482696
CAST-S 5-ATGACAGAGCAGCTGTCCAATC-3 5-TGTTGAAGCAACATCACTGCAA-3 AY937408
CAST-L 5-ACGGCACCTTTCCTTTCCATTACCA-3 5-CGGGGGGAGCAGGAGACTTGGT-3 AY937407

5-GGTGTAGCGCTTCTCTTTGG-3
Proteasome 33 5-CCCATGGTGACAGAGGACTT-3
Proteasome N3~ 5-AAGTGAACGACAGCACCATTC-3
Proteasome Regulatory 6 5-CCGACCTCAGAGAAAAGGTG-3

Proteasome a5

Plyubigitin 5-CTGGAAGATGGTCGCACTCT-3
Cathepsin-D 5-GCCTGTCATCACATTCAACCT-3
Cathepsin L 5-TGAAGGAGAAGATGTGGATGG-3
GADPH 5-CTGAACGACCACTTCGTCAA-3

(K] 5-CTAACGAGGGCAAGCTCAAC-3
ATP5)2 5-GGGCGGATAAAAAGGCTAAT-3

ACP5 5-CAAGCAGTTCGACTGGATCA-3

FADS2 5-GTCCGTGCTTTGTGTGAGAA-3

B-Actin 5-GCCGGCCGCGACCTCACAGACTAC-3

5-ACTGGACAAAGGTGCCTGAT-3
5-TGTCTGGCTCCCAGAGAGAT-3

TIGR database TC78609
TIGR database TC87448

5-CCTCATCGATCACCATCTGTT-3 CA386652
5-AGAAGAGGTACTGGCGGACA-3 TIGR database TC87921
5-GATCTGCATACCTCCCCTCA-3 AF361365
5-CCACTCAGGCAGATGGTCTTA-3 U90321
S-TTCCTGTCTTTGGCCATGTAG-3 AF358668
5-TTACTCCTTGGTGGCCATGT-3 CB491826
5-GCCTCCAGAGTGAGAAGGTG-3 CB514355
5-GCCATTTATTGCCTGAAGGA-3 CB493612
5-ACCAATGGACCACACAGGAT-3 CB515428
5-TCAGAGACCCGACAACATCA-3 CB494661
5-CGGCCGTGGTGGTGAAGCTGTAAC-3 AJ438158
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