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Abstract

Assessment of efficacy in important subgroups – such as those defined by sex,

age, race and region – in confirmatory trials is typically performed using sepa-

rate analysis of the specific subgroup. This ignores relevant information from

the complementary subgroup. Bayesian dynamic borrowing uses an informative

prior based on analysis of the complementary subgroup and a weak prior distri-

bution centred on a mean of zero to construct a robust mixture prior. This com-

bination of priors allows for dynamic borrowing of prior information; the

analysis learns how much of the complementary subgroup prior information to

borrow based on the consistency between the subgroup of interest and the com-

plementary subgroup. A tipping point analysis can be carried out to identify

how much prior weight needs to be placed on the complementary subgroup

component of the robust mixture prior to establish efficacy in the subgroup of

interest. An attractive feature of the tipping point analysis is that it enables the

evidence from the source subgroup, the evidence from the target subgroup, and

the combined evidence to be displayed alongside each other. This method is

illustrated with an example trial in severe asthma where efficacy in the adoles-

cent subgroup was assessed using a mixture prior combining an informative

prior from the adult data in the same trial with a non-informative prior.
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1 | INTRODUCTION

Analysis by key subgroups is an important aspect of assessing the results of confirmatory trials. When there is evidence
of an overall effect of treatment, there are important questions about whether the effect shown applies to subgroups
defined by demographic factors of sex, age and race and whether the effect applies in regions across the world. The need
to examine these specific subgroups is described in regulatory guidance, for example, the FDA require summaries of
efficacy and safety by demographic subgroups1 and for a multi-regional trial an evaluation of consistency of treatment
effects across regions is required by ICH E17.2 A related problem is identifying and estimating potentially meaningful
treatment effects in subgroups in settings where the estimated overall effect is small. This is due to averaging a large
value in a target subgroup and a small value in a much larger complementary subgroup.
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An initial approach to such questions is to present results separately by subgroups and this is often supplemented
with statistical tests of interaction. Sample size typically limits the ability to convincingly show evidence of a treatment
effect when a subgroup is considered in isolation. Interaction tests cannot be used to show consistency of effect since a
non-significant p-value does not provide evidence of no effect and therefore may not rule out differences in efficacy that
are of clinical interest. Formal methods for defining consistency of effect based on requiring a subgroup to show a given
level of effect (e.g., that the effect size that is at least positive or that the effect size is at least some percentage of the
overall effect) are problematic.3

When assessing the evidence for treatment effect in a subgroup, there is clear value in using information from sub-
jects outside the subgroup. These subjects in the same study provide data that is relevant to the assessment of efficacy
in the specific subgroup of interest. The use of data from subjects not in the specific subgroup has been referred to as
extrapolation.4 However, the term ‘extrapolation’ on its own implies use of data only from subjects outside the sub-
group; the term partial extrapolation5 encompasses the situation described in this article where limited data exists for
the subgroup of interest.

One technique for using data from outside the subgroup is Bayesian shrinkage.6 In the Empirical Bayes approach,7

subgroup estimates are obtained by taking a weighted average of the estimate in the subgroup and the overall effect,
with weights determined by the ratio of variability within subgroup to the between subgroup variability. Subgroup esti-
mates are shrunk towards the overall effect. More shrinkage occurs as the within subgroup variability increases (i.e., as
precision of the subgroup estimates decreases) and/or as heterogeneity between subgroups decreases (i.e., as similarity
of individual subgroup point estimates increases), and the data decide how much borrowing is done. The Bayesian
shrinkage approach therefore depends on these estimates of relative variability.

Fully hierarchical Bayesian shrinkage methods have also been proposed for subgroup estimation.8 One challenge
with both empirical and hierarchical Bayes shrinkage estimation is to obtain reliable estimates of the between-subgroup
heterogeneity variance when the number of subgroups is small. In this case, inference about the subgroup-specific treat-
ment effects can be sensitive to assumptions made about the heterogeneity.

2 | BAYESIAN DYNAMIC BORROWING

Bayesian dynamic borrowing9,10 represents a novel approach to the problem of assessing the evidence for efficacy in
a specific subgroup, alongside an overall positive effect. In this approach, the results from the complementary sub-
group (the ‘source’ subgroup) are used to construct an informative prior for the treatment effect θ in the subgroup of
interest (the ‘target’ subgroup). This informative prior is combined with a weak prior distribution, assuming no
knowledge of treatment effect in the target subgroup, to construct a robust mixture prior. The motivation for inclu-
sion of the weak prior is to introduce scepticism about the relevance of the data from the source subgroup. This com-
bination of priors allows for dynamic borrowing of prior information; the analysis learns how much of the source
subgroup prior information to borrow based on the consistency between the target subgroup and the source
subgroup.

The use of a mixture prior in Bayesian dynamic borrowing has some similarities to use of ‘lump-and-smear’ (also
known as ‘spike-and-slab’) priors to do variable selection in regression (e.g., Spiegelhalter et al,11 section 5.5.4). How-
ever, in the case of dynamic borrowing, the aim is not to evaluate the probability that a true interaction exists and there
is no variable selection. When using ‘lump-and-smear’ priors, a high probability is placed on a single value of no effect,
while here the informative prior represents a range of values reflecting results in the source subgroup.

The robust mixture prior method has an important interpretation as a model averaging technique.12 In this context,
the informative and weak components of the mixture can be thought of as two alternative models or assumptions about
the relationship between the treatment effects in the source and target subgroup:

• Model Msource bases the prior for the target subgroup treatment effect on the estimated effect in the source subgroup
(e.g., by setting the target subgroup prior equal to the posterior distribution of the source subgroup treatment effect).
This model represents the belief that the treatment effects in the source and target subgroups are similar; if the
source posterior is used directly as the prior, the resultant posterior for the target subgroup under this model will be
equivalent to pooling the information from the source and target subgroups.

• Model Mweak specifies a weak (vague) prior for the target subgroup treatment effect. This model represents the belief
that the treatment effects in the target and source subgroups are independent, and hence that the source subgroup
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provides no relevant information about the target subgroup effect; the resultant posterior for the target subgroup
under this model will be based on the data from the target subgroup only.

Each model is given a prior probability, where p(Msource) � (0, 1) is the prior belief that the treatment effects in the source
and target subgroups are similar, and p(Mweak) = 1-p(Msource) is the prior belief that the treatment effects in the source and
target subgroups are independent. The robust mixture prior is then equivalent to the marginal prior for the treatment effect θ:

π(θ) = p(Msource) π(θ j Msource) + p(Mweak) π(θ j Mweak).

Given the observed data in the target subgroup, the conditional posteriors under each model are updated separately
to give π (θ j Msource, y) and π (θ j Mweak, y). Similarly, the prior model probabilities are updated via Bayes theorem to
obtain posterior model probabilities:

p Msourcej yð Þ= f y jMsourceð Þp Msourceð Þ
f y jMsourceð Þ p Msourceð Þ+ f y jMweakð Þ p Mweakð Þ ð1Þ

where f (y j Mi), i � (source, weak) is the marginal likelihood of the data y under model Mi.
Posterior inference about the target subgroup may then proceed by adopting a model averaging approach; the poste-

rior distribution of the target subgroup treatment effect is then a weighted average of the posterior distributions under
each model, weighted by their respective posterior model probabilities:

π(θ j y) = p(Msourcej y) π(θ j Msource, y) + p(Mweakj y) π(θ j Mweak, y).

The model probabilities p(Msource) and p(Mweak) correspond to the prior weights on the informative and weak com-
ponents, respectively, in the robust mixture formulation, and for notational convenience we will denote these by w and
(1 − w). Inspection of Equation (1) reveals how the dynamic borrowing property of robust mixture priors works. When
the mixture prior is combined with the observed data from the target subgroup of interest, w is updated according to
how consistent the data in the target subgroup are with the source subgroup. The more consistent they are, the larger
will be the marginal likelihood of the target subgroup data under the informative prior model, leading to an increase in
the posterior weight w* (i.e., the posterior probability for model Msource) relative to the prior weight w and hence greater
the borrowing from source to target subgroup. Conversely, as prior-data conflict increases, the marginal likelihood of
the target subgroup data under the informative prior model reduces, and when the conflict is sufficiently large it
becomes lower than the marginal likelihood of the data under the weak prior (i.e., f (y j Msource) < f (y j Mweak)). This
results in w* being lower than w, so that the informative prior is down-weighted and posterior inference is based more
heavily on the observed data in the target subgroup.

The choice of prior probability (weight) to place on the informative component is a subjective judgement that
should reflect the scientific plausibility of the similarity assumption. This could be pre-specified. Alternatively, in a ret-
rospective subgroup analysis, a tipping point analysis can be carried out to identify the minimum prior weight (w = p
(Msource)) that needs to be placed on the source subgroup component of the robust mixture prior in order for the esti-
mate of efficacy in the target subgroup to show statistically significant evidence of treatment benefit. The scientific cred-
ibility of this tipping point as a lower bound on the strength of prior belief in the similarity assumption can then be
assessed. In a Bayesian framework, a posterior probability of at least 97.5% that there is a treatment benefit is a criteria
that can be used to represent statistically significant evidence of efficacy.

If the observed treatment effects in the two subgroups are very similar, then even a low prior weight on the informa-
tive component will be updated to a much higher posterior weight. This will result in the posterior estimate of treat-
ment effect in the target subgroup borrowing strongly from the source subgroup. On the other hand, if there is conflict
between the observed subgroup effects, then the posterior weight will not increase as much and may decrease if there is
sufficiently strong conflict. Therefore, crucially, the tipping point is not just driven by the gain in precision from bor-
rowing more when there is a higher prior weight, but it also reflects the observed evidence of conflict/consistency
between the subgroups in the data.

For computational convenience and ease of generalisation, the data from a given source can be summarised follow-
ing the approach used by Spiegelhalter et al.11 (section 2.4), an approach often used in aggregate-level meta-analysis.
Specifically, the data likelihood is approximated by a Normal distribution with mean and variance equal to the point
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estimate and squared standard error of the target parameter (usually the treatment effect on a suitable transformed
scale) obtained from a standard regression analysis of the data. This enables the Bayesian analysis to be carried out in
two stages: (a) regression analysis is carried out using standard software, and results summarised to generate an approx-
imate Normal likelihood for each data source; (b) the Normal likelihoods can then be used to construct prior and poste-
rior distributions using conjugate Bayesian calculations, as outlined below. Note that use of conjugate likelihoods and
priors is not a general requirement of the method however, and the robust mixture prior approach can be implemented
using MCMC for non-conjugate models.

3 | CASE STUDY USING DYNAMIC BORROWING TO ASSESS A SUBGROUP
TREATMENT EFFECT

3.1 | Trial details

An example of this Bayesian dynamic borrowing modelling approach is provided by a post hoc analysis of
the MENSA trial of mepolizumab in severe asthma.13 This randomised, placebo-controlled, double-blind, par-
allel group trial compared mepolizumab 100 mg SC (n = 194) and mepolizumab 75 mg IV (n = 191) with
placebo (n = 191), given every 4 weeks for 32 weeks in patients with severe asthma with an eosinophilic phe-
notype who had a history of at least two asthma exacerbations in the previous year while receiving treat-
ment with high dose inhaled steroids and at least 3 months of treatment with an additional controller. The
trial was funded by GlaxoSmithKline (ClinicalTrials.gov number: NCT01691521). The primary endpoint was
the rate of clinically significant exacerbations, which were defined as worsening of asthma such that the
treating physician elected to administer systemic steroids for at least 3 days or the patient visited an emer-
gency department or was hospitalised. Analysis was performed using a negative binomial generalised linear
model with a log link function.14 The model included a categorical covariate for age group (12–17 years old,
≥18 years old) and the interaction of age group with treatment group, with additional adjustment for base-
line covariates (oral corticosteroid [OCS] use, region, exacerbations in the previous year and baseline %
predicted FEV1).

The trial included 25 adolescent (ages 12–17) and 551 adult subjects (aged ≥18). In the overall population the trial
showed strong evidence of a reduction in the rate of exacerbations. The rate of exacerbations was reduced by 47% (95%
CI: 28–60) among patients receiving 75 mg IV mepolizumab and by 53% (95% CI: 36–65) among those receiving 100 mg
SC mepolizumab, as compared with those receiving placebo. The two active treatment arms provided similar reductions
in exacerbation rate compared to placebo and were therefore combined for the evaluation of subgroups; overall the
reduction with the two active treatments combined was 50% (95% CI: 35–61).

There was interest in assessing the treatment effect in adolescents but due to the low incidence of severe asthma
with an eosinophilic phenotype in adolescents, the conduct of a separate study was considered impractical and there
were insufficient adolescent subjects in the MENSA study to show statistical significance when this subgroup was
analysed separately. A Bayesian dynamic borrowing approach allowed assessment of the degree of belief needed in the
relevance of the adult data to conclude that there was evidence of efficacy in the adolescent subgroup.

A standard Bayesian analysis of the observed efficacy response data for the adolescent subjects would use the adult
data as a prior distribution. The resulting posterior estimate of adolescent efficacy is then equivalent to the efficacy esti-
mate based on the original analysis of the full data (i.e., adults and adolescents combined). This therefore assumes that
the treatment effect in adolescents is the same as that in adults.

As described above, the standard Bayesian analysis was extended to incorporate a robust mixture prior distribution9

which allows for ‘dynamic borrowing’ of prior information – that is, the analysis learns how much of the adult prior
information to borrow based on the consistency between the adolescent data and adult prior.

3.2 | Informative prior component

The informative component of the mixture prior was given by the posterior distribution of the log rate ratio of exacerba-
tions on mepolizumab versus placebo estimated from the adult study, assuming an initial vague prior. Using the Nor-
mal approximation to the adult data likelihood described above, this is equivalent to a Normal distribution with mean
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and variance equal to the point estimate and squared standard error of the log rate ratio obtained from negative bino-
mial regression of the observed exacerbation counts in adults. This gave an informative prior component of Normal
(mean = −0.694, variance = 0.017; Figure 1A).

3.3 | Weak prior component

The weak prior was constructed to be a unit-information normal distribution centred at a mean of zero. This prior rep-
resents minimal prior information about the direction or magnitude of the adolescent treatment effect and was
included to acknowledge the possibility that there may be differences between adolescents and adults. It is not possible
to use a completely flat prior here because the robust mixture must be a so-called ‘proper’ distribution and have a
cumulative probability density of one. A unit-information prior is designed to be minimally informative; its variance is
scaled such that the information content of the prior is approximately equivalent to that provided by a single subject.
This variance was determined by taking the squared standard error of the log rate ratio obtained from the adolescent
data (which was 0.7032) and multiplying it by N, where N is the total adolescent sample size (Figure 1A). This gave a
weak prior component of Normal(mean = 0, variance = 12.4).

FIGURE 1 Prior distributions for the adolescent efficacy response: (A) informative (adult) and weak priors, (B) robust mixture prior

representing mixture of adult and weak priors, for differing choices of prior weight w on adult component
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3.4 | Robust mixture prior

The robust mixture prior was defined as a two-component weighted mixture of the informative adult prior and the
weak prior, with weights w and (1 − w) respectively (Figure 1B). The prior weight, w, assigned to the informative prior
component represents the prior degree of confidence that the adult data apply to the adolescent population and was
varied between 0 and 1 in increments of 0.05.

Robust mixture prior =w×Normal madult ,vadultð Þ+ 1−wð Þ×Normal mweak,vweakð Þ
=w×Normal −0:694,0:017ð Þ+ 1−wð Þ×Normal 0,12:4ð Þ

3.5 | Posterior distribution for adolescent efficacy

The robust mixture prior was updated with the adolescent data as follows. A normal approximation N(yadol, vadol)
was assumed for the adolescent data likelihood for the log rate ratio, where yadol and vadol are the point estimate and
squared standard error for the log rate ratio of exacerbations on mepolizumab versus placebo obtained from negative
binomial regression analysis of the adolescent data. This adolescent data likelihood was combined with the robust
mixture prior using standard conjugate Bayesian theory to obtain a posterior mixture distribution for the adolescent
treatment effect (log rate ratio):

Posterior mixture for adolescent log rate ratio = w� ×Normal m�
adult,v

�
adult

� �
+ 1−w�ð Þ×Normal m�

weak,v
�:
weak

� �
where:
m�

adult = v�adult
madult
vadult

+ yadol
vadol

� �
and 1

v�adult
= 1

vadult
+ 1

vadol

m�
weak = v�weak

mweak
vweak

+ yadol
vadol

� �
and 1

v�weak
= 1

vweak
+ 1

vadol

w* = Cadult ×w
Cadult ×w+Cweak × 1−wð Þ

Cadult =
exp −0:5 yadol−madultð Þ2= vadol + vadultð Þf gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vadol + vadultð Þ
p

Cweak =
exp −0:5 yadol−mweakð Þ2= vadol + vweakð Þf gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vadol + vweakð Þ
p

The posterior means and variances of each component are the usual means and variances obtained from conjugate
Bayesian updating of that individual prior component, and the posterior weight is a function of the prior weight and
coefficients Cadult and Cweak that are proportional to the marginal likelihood of the adolescent data under the adult and
weak priors respectively9; see also Equation (1).

3.6 | Tipping point analysis

Based on knowledge of the disease pathology in adults and adolescents and the mechanism of action of
mepolizumab, there is a strong rationale to believe that efficacy in adolescents should be consistent with that in
adults.

To assess the sensitivity to the strength of prior belief in the consistency assumption, a tipping point analysis
was carried out to identify how much prior weight (w) needed to be placed on the adult prior component of
the robust mixture prior in order for the posterior estimate of efficacy for adolescents to show evidence of treat-
ment benefit. In a Bayesian framework, this was defined as requiring the upper limit of the 95% posterior credi-
ble interval for the rate ratio of exacerbation on mepolizumab versus placebo to be below 1 (or equivalently,
greater than 97.5% posterior probability that the exacerbation rate is lower on mepolizumab than placebo). As an
additional summary of the tipping point analysis, the updated posterior weight (w*) assigned to the informative
adult prior was plotted against the prior weight (w) to identify how much prior confidence in the assumption of
similar efficacy was needed in order to result in (a) at least 80%, (b) at least 90%, and (c) at least 95% posterior
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weight on the adult prior (and hence on the similar efficacy assumption) once the adolescent data was taken into
account.

R code for implementing the tipping point analysis is provided in the Supporting Information.

4 | RESULTS

Results of the separate analysis of adolescent (n = 25) and adult (n = 551) data are shown in Figure 2. When analysed
separately, the point estimate for the relative rate in adolescents is 0.67, corresponding to a 33% reduction in exacerba-
tions on mepolizumab, but the confidence interval is wide (0.17–2.68), reflecting additional uncertainty due to the
smaller sample size in the subgroup. On the log rate ratio scale, this yielded an approximate Normal likelihood of Nor-
mal(−0.395, 0.730) for the adolescent data.

Figure 3 presents the posterior medians and 95% credible intervals for the estimated exacerbation rate ratio of
mepolizumab versus placebo in adolescents as a function of the prior weight given to the adult component in the robust

FIGURE 2 Analysis of rate of clinically significant exacerbations by age group

FIGURE 3 Posterior median and 95% credible interval (CrI) for the estimated rate ratio in adolescents against prior weight given to the

adult prior component
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mixture prior. Note that the adolescent treatment effect estimates based on prior weights of 0 and 1 correspond to standard
conjugate Bayesian analyses of the adolescent data using either the weak prior alone, or the adult prior alone, respectively.

Figure 3 shows that the tipping point occurs at a prior weight between 0.65 and 0.7 – that is, for prior weights of 0.7
or higher the upper limit of the posterior 95% credible interval for the rate ratio is below one, indicating a statistically
significant treatment benefit of mepolizumab in adolescents. For example, assuming a prior weight of 0.7 gives poste-
rior median and 95% credible interval for the relative rate in adolescents of 0.51 (0.37, 0.99; Table 1).

Figure 4 presents the posterior weight assigned to the adult information after accounting for the adolescent data,
plotted against the prior weight given to the adult component in the robust mixture prior. Various threshold posterior
weights are marked with horizontal reference lines. For example, if a value of around 0.45/0.65/0.8 is considered credi-
ble for the prior probability of similarity between adult and adolescent efficacy, then the observed concordance between
the adult and adolescent data is sufficient to increase this to a posterior probability of around 0.8/0.9/0.95 respectively.

In the mepolizumab example, observed reductions in exacerbations were similar between the adolescent subgroup
and the adult subgroup. In order to investigate the robustness of the Bayesian borrowing method, alternative hypotheti-
cal assumptions were made on the size of the effect in the adolescent subgroup to represent greater amounts of

TABLE 1 Posterior median and

95% credible interval (CrI) for the

estimated Rate Ratio of exacerbations in

adolescents against prior weight given

to the adult prior component

Prior weight on adult data Rate Ratio (95% CrI) (Mepo/Placebo)

0.00 0.68 (0.18, 2.64)

0.10 0.55 (0.20, 2.33)

0.20 0.53 (0.23, 2.07)

0.30 0.52 (0.25, 1.85)

0.40 0.51 (0.28, 1.64)

0.50 0.51 (0.32, 1.44)

0.60 0.51 (0.36, 1.23)

0.70 0.51 (0.37, 0.99)

0.80 0.51 (0.38, 0.74)

0.90 0.51 (0.39, 0.67)

1.00 0.50 (0.39, 0.65)

Note: Bold value of 0.70 for priorweight indicates smallest value of priorweight forwhich the credible interval
excludes 1.

FIGURE 4 Prior versus posterior weight on adult component of the robust mixture prior
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observed conflict between the adolescent and adult subgroup effects. The assumed hypothetical observed relative rates
(active/placebo) were set to be 2.0, 1.25, 0.9 and 0.3 – values which lie near to, or outside of, the 95% confidence limits
for the adult treatment effect. The behaviour of the prior and posterior weights, and the corresponding tipping point
under these different scenarios for the source and target subgroup effects are illustrated in Figure 5. If the observed ado-
lescent relative rate had been 2.0 or 1.25 (i.e., an observed result in favour of placebo), then a prior weight of 1.0 or 0.95
respectively would be required to confirm evidence of efficacy. That is, in these hypothetical cases, the adolescent data
would not have supported a conclusion of efficacy unless prior certainty, or near certainty, in the similarity of adult and
adolescent treatment effects could be justified. This provides reassurance that the method does distinguish cases of sub-
groups where additional information is needed.

5 | DISCUSSION

Examination of results of confirmatory trials by subgroup is increasingly emphasised. There is often imbalance in the
numbers of patients in each subgroup and when separate analysis is conducted for each subgroup, small numbers of
patients leads to large variability as reflected in wide confidence intervals for the observed effect. Importantly, trials are
typically designed to demonstrate significant treatment effects in the overall population and not within each individual
subgroup.

When there is a requirement to assess evidence of efficacy in a specific subgroup, Bayesian dynamic borrowing can
be a useful approach. In the example presented for the assessment of efficacy in an adolescent subgroup, the robust
mixture prior combines an informative prior based on adult data with an uninformative prior assuming no knowledge
of treatment effect. This robust mixture prior methodology reduces the impact of an over-optimistic informative prior
and down-weights or discounts this prior information in the case of increasing prior-data conflict. In the case of dis-
agreement between the observed data (likelihood) and specified mixture prior, the less-favoured component of the mix-
ture prior is wholly or partially rejected as the conflict becomes increasingly extreme. In this case study the available
efficacy data within adolescent subjects appear consistent with that observed in adults, with increases seen in the
updated posterior weight attached to the informative adult prior once the adolescent data were considered.

FIGURE 5 Hypothetical examples with different levels of conflict between subgroups
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A key challenge with the use of Bayesian dynamic borrowing is the determination of the choice of prior weight for
the informative prior. One approach to overcome this is to use a range of weights and determine the tipping point at
which there is a posterior probability of >97.5% that the effect of treatment is greater than zero. The more prior weight
required, the greater the amount of informative prior information that must be extrapolated before evidence of an effect
can be formally concluded. The case study above considered the full range of possible beliefs (prior weights w ranging
from 0 to 100%) regarding the relevance of the adult data when estimating the effect in adolescents. It showed that if
we are willing to assume prior odds of at least 2.5 to 1 in favour of the adolescent treatment effect being consistent with
the adult treatment effect, then, when this judgement is combined with the adolescent trial data, we can conclude there
is evidence of a reduction in exacerbations in adolescents.

The tipping point approach we have presented can be seen as a type of ‘analysis of credibility’ or ‘reverse-Bayes’
method. The aim of these approaches is to allow the extraction of the properties of the prior distribution needed to
achieve a certain posterior statement for the data at hand. Such approaches are increasingly used to assess the plausibil-
ity of scientific claims and findings.15 In particular, the approach described here closely mirrors the method of Mat-
thews.16 He proposed assessing the credibility of a statistically significant finding by determining how sceptical the
prior distribution for the effect of interest would need to be such that, when combined with the data from the study in
question, it results in a posterior distribution that is just non-significant at level α, that is, the 100(1-α)% posterior credi-
ble interval just covers the null value. Decision-makers can then assess whether such a sceptical belief is scientifically
reasonable, and hence whether or not a fair-minded sceptic would consider the finding of a statistically significant treat-
ment effect based on the study in question to be scientifically credible. Our approach follows a similar logic. The weight
corresponding to the tipping point represents the minimum prior belief in the relevance of the source data needed to
find the evidence from the target subgroup data convincing. Any prior belief more sceptical than this would not be able
to conclude a positive treatment effect in the target population on the basis of the evidence from the target subgroup
data. This tipping point approach thus allows a range of decision-makers, who may hold different prior beliefs, to assess
the credibility of the evidence in the target subgroup. If the evidence is sufficient to convince even a reasonable sceptic,
then the finding of a subgroup treatment effect may be considered robust.

An attractive feature of the tipping point analysis, whether conducted post-hoc or as part of a pre-planned sensitivity
analysis, is that it enables the evidence from the source subgroup, the evidence from the target subgroup, and the com-
bined evidence to be displayed alongside each other. This facilitates a visual, as well as quantitative, assessment of the
consistency of these pieces of information, and satisfies an important principle in the regulatory assessment of clinical
trials articulated by Weber et al,17 which is ‘to assess each piece of information separately before combining the inde-
pendent pieces for decision-making’.

Simon and co-authors18,19 have also described a Bayesian approach to subgroup analyses based on averaging the
effect in the target subgroup with the effect in the complementary subgroup. The two components are weighted by the
a priori estimate of the likelihood of qualitative treatment by subgroup interaction. However, this is achieved by placing
a prior distribution on the variance of treatment by subgroup interaction. The weight used depends on the sample size19

and the weight is not updated by the observed data.
The example given here was a post hoc analysis of subgroup data collected as part of the overall study. The method

can also be applied to a prospectively designed trial in a subgroup where potential exists to borrow data from another
external source. An example of successful regulatory use of the method is the FDA approval of belimumab in children
with systemic lupus erythematosus.20 The approval was supported by a randomised, controlled trial (NCT01649765)
that evaluated belimumab vs placebo in 93 paediatric patients. Determination of efficacy was supported by Bayesian
borrowing of the established efficacy of belimumab from two phase III adult studies. Pre-specifying the prior weight for
the primary analysis adds credibility to the analysis, even if a tipping point analysis is also conducted as a sensitivity
analysis.

One potential concern is whether use of Bayesian borrowing results in an increase in type I error. If the type I error
is defined by considering only the sampling distribution of the observed results from the target subgroup under the null
hypothesis, then use of additional information from the source subgroup notionally increases this type I error. How-
ever, as Campbell observes, ‘if the prior data makes the null hypothesis more unlikely, it may be no surprise that the
type 1 error probability calculated under the unlikely null hypothesis is inflated… Then extremely stringent type 1 error
probability control does not make as much sense since there is already evidence that the null is not true’.21

A more reasonable definition of type I error is based on considering the target subgroup data and the prior (source
subgroup) data together. Then, provided the weight applied to the source data is justified, there is no increase in the
type I error of incorrectly concluding an effect in the subgroup when none exists.22
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An alternative is to consider the average type 1 error rate of a Bayesian borrowing design, in which the usual
frequentist type 1 error is integrated with respect to a ‘null prior distribution’ for the treatment effect (for example, the
source subgroup prior density conditioned on the null hypothesis being true).23 Further experience of the practical
application of average type 1 error is needed.

A paediatric development plan is mandatory in the United States and in the EU for a new medicine and clinical
studies are generally expected unless the disease only affects the adult population.24,25 Placebo controlled efficacy stud-
ies in a vulnerable population such as paediatrics are difficult to conduct since recruitment is typically challenging and
minimising the requirements of clinical trial participation is highly desirable from a patient perspective. When efficacy
has been demonstrated in adults and the disease is similar between the adult and paediatric populations, then it is
important to incorporate this knowledge from adults in the assessment of efficacy in paediatrics. In this situation, the
Bayesian dynamic borrowing approach provides an appropriate method to evaluate evidence of effect in a paediatric
population. A similar Bayesian approach to incorporating adult clinical data into paediatric clinical trials has been
advocated by Ye and Travis.26

Further subgroups that may be suitable for use of this dynamic borrowing approach include those subgroups of spe-
cific regulatory interest, for example, sex, race, region. For these subgroups, it is often required to show evidence of
effect alongside an overall positive effect. A separate analysis of the subgroup in question does not take account of the
information on the effects of treatment in the complementary subgroup. A Bayesian statistical approach is one natural
quantitative method to explicitly borrow information from the complementary subgroup to provide inferences on the
subgroup under evaluation.
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