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Abstract. Rheumatoid arthritis (RA) is an autoimmune 
disease that causes chronic inflammation in synovial tissues. 
Hyperplasia of synovial tissues leads to the formation of 
pannus that invades the joint cartilage and bone, resulting 
in joint destruction. Fas ligand (FasL), which is a member 
of the tumor necrosis factor superfamily, contributes to the 
pathogenesis of autoimmune diseases, including RA. The 
current study attempted to identify genes whose expressions 
in rheumatoid fibroblast‑like synoviocytes (RA‑FLS) were 
regulated by FasL, using cDNA microarray. A total of four 
individual lines of primary cultured RA‑FLS were incubated 
either with recombinant human FasL protein or PBS as an 
unstimulated control for 12 h. Gene expression was detected 
using a microarray assay. The results revealed the expression 
profiles of genes in RA‑FLS regulated by Fas and investigated 
the functions of the genes that were regulated. Among the 
genes in this profile, the mRNA expression changes of the 
following genes were indicated to be of note using RT‑qPCR: 
Dual specificity phosphatase 6, epiregulin, interleukin 11, 
angiopoietin‑like 7, protein inhibitor of activated STAT 2 
and growth differentiation factor 5. These genes may affect 
the pathogenesis of RA by affecting apoptosis, proliferation, 
cytokine production, cytokine‑induced inf lammation, 
intracellular signaling, angiogenesis, bone destruction and 
chondrogenesis. To the best of our knowledge, the current 
study is the first study to reveal the expression profile of genes 
in RA‑FLS regulated by FasL. The data demonstrated that 

FasL may regulate the expression of a number of key molecules 
in RA‑FLS, thus affecting RA pathogenesis. Further studies 
of the genes detected may improve the understanding of RA 
pathogenesis and provide novel treatment targets for RA.

Introduction

Rheumatoid arthritis (RA) is an autoimmune disease that 
causes chronic inflammation in synovial tissues. Hyperplasia 
of synovial tissues leads to the formation of pannus, which 
invades joint cartilage and bone, resulting in joint destruction. 
Previous reports have indicated that a number of features 
of transformed long‑lived cells are observed in hyperplastic 
synovial tissues of patients with RA, such as oncogene 
expression, resistance to apoptosis, and the presence of 
somatic mutations (1‑3). Several explanations for resistance 
to apoptosis of rheumatoid fibroblast‑like synoviocytes 
(RA‑FLS) have been proposed, including deregulation of 
the Bcl‑2 family of proteins critical to the intrinsic apoptosis 
pathway, deregulation of NF‑κB signaling, p53 mutations, 
and low expression of PUMA; these are all found in RA 
synovium and FLS, which provides an explanation for the 
lack of p53‑induced FLS apoptosis (4). In addition, it has been 
reported that hyperproliferation of RA synovial cells involves 
the abnormal function of death receptors such as Fas and death 
receptor 3 (5,6).

Fas ligand (FasL)/TNFSF6, a member of the tumor 
necrosis factor (TNF) superfamily, is expressed by various 
cell types in arthritic synovium, including T cells, synovial 
fibroblasts, and macrophages (7), and can promote apoptosis in 
activated primary B cells, T cells, dendritic cells, and synovial 
fibroblasts through Fas  (8,9). Inhibition of the Fas/FasL 
pathway contributes to synovial hyperplasia of RA (10‑12). 
Apoptosis through the Fas/FasL pathway in RA synovial 
cells is inhibited by pro‑inflammatory cytokines present 
within the synovium (8). Meanwhile, the Fas/FasL system 
may have a pro‑inflammatory effect in RA (13,14). Audo et al 
demonstrated that membrane‑bound FasL induces apoptosis 
as well as proliferation, whereas soluble FasL stimulates 
only proliferation  (13). Moreover, soluble FasL activates 
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several signaling pathways in RA‑FLS, such as extracellular 
signal‑regulated kinase (ERK)‑1/2, phosphatidyl‑inositol 3‑ 
kinase, caspase 8, and c‑jun N‑terminal kinase (13). However, 
the mechanisms and cell targets for these effects are still 
poorly understood.

Decoy receptor 3 (DcR3)/TR6/M68/TNFRSF6b, a member 
of the TNF receptor superfamily, binds to 3 ligands belonging 
to the TNF superfamily: FasL, LIGHT, and TL1A  (15). 
Overexpression of DcR3 may benefit tumors by helping them 
avoid the cytotoxic and regulatory effects of FasL (16,17), 
LIGHT (18), and TL1A (19). In our previous studies, we demon‑
strated that DcR3 overexpressed in RA‑FLS and stimulated 
by TNFα protects cells from Fas‑induced apoptosis (20). We 
previously also reported that DcR3 could play a role as a ligand 
by binding to membrane‑bound TL1A in the pathogenesis of 
RA (21‑24).

Furthermore, the expression profiles of genes regulated by 
DcR3 and TL1A in RA‑FLS have been revealed by the use of 
cDNA microarrays in our previous studies (25,26), suggesting 
that signaling through DcR3 and its ligands is involved in 
the pathogenesis of RA. However, the contribution of FasL, 
another ligand of DcR3, to the pathogenesis of RA remains to 
be fully elucidated.

In the current study, we searched for genes whose expres‑
sions in RA‑FLS were regulated by FasL using a cDNA 
microarray. The gene expression profiles revealed a series of 
genes that may play a significant role in the pathogenesis of RA 
via the FasL‑Fas signaling pathway. Further study is needed to 
reveal the difference of the gene expression profiles among the 
ligands, which might result in better understanding the role of 
the FasL/TL1A/DcR3 signaling system in the pathogenesis of 
RA.

Materials and methods

Isolation and culture of synovial fibroblasts. RA‑FLS 
were obtained from ten patients (samples 1‑10) with RA 
who fulfilled the 1987 criteria of the American College 
of Rheumatology (formerly, the American Rheumatism 
Association) (27) during total knee replacement surgery from 
September 2014 to April 2019. Patients included one male 
and nine females aged 70.4±8.5 years old. Their C‑reactive 
protein levels and erythrocyte sedimentation rates were 
1.4±2.6 mg/dl and 25.6±14.0 mm/h, respectively. As for the 
drug therapy for RA, five patients were administered oral 
methotrexate (MTX) (average MTX dose, 8.8±4.6 mg/week), 
two were administered tacrolimus (1.5±0.5  g/day), two 
were administered salazosulfapyridine (1.0±0.0 g/day), and 
two were administered bucillamine (150.0±50.0  mg/day). 
Prednisolone (PSL) was used to treat three patients (average 
PSL dose, 4.7±0.6 mg/day). None of the patients had been 
treated with biological disease‑modifying anti‑rheumatic 
drugs (bioDMARDs) or Janus kinase inhibitors.

Synovial samples were collected from the patients, all of 
whom provided informed written consent to participate in 
this study in accordance with the World Medical Association 
Declaration of Helsinki Ethical Principles for Medical 
Research Involving Human Subjects. The protocol, including 
consent procedures, was approved by the Kobe University 
Graduate School of Health Sciences Ethics Committee 

(approval no.  308). Tissue specimens were minced and 
digested in Dulbecco's modified Eagle's medium (DMEM; 
Merck KGaA) containing 0.2% collagenase (Merck KGaA) 
for 2 h at 37˚C with 5% CO2. Dissociated cells were cultured 
in DMEM supplemented with 10% fetal bovine serum (Merck 
KGaA) and 100 U/ml of penicillin/streptomycin (Meiji Seika 
Pharma Co., Ltd.). Following incubation overnight and the 
removal of non‑adherent cells, adherent cells were further 
incubated in fresh medium. All experiments were conducted 
using cells from passages 3 to 4 (20).

Gene expression profiling. Four individual cell lines 
(samples 1‑4) of primary cultured RA‑FLS (2x106 cells/well) 
were incubated with 1,000  ng/ml of recombinant human 
FasL protein (R&D Systems) or were left untreated with 
OPTI‑MEM medium (Thermo Fisher Scientific, Inc.) as 
control for 12 h at 37˚C with 5% CO2. The concentration of 
FasL was determined by a preliminary experiment based of 
the previous reports using FasL  (28,29). After incubation, 
RNA was extracted with QIAshredder (Qiagen GmbH) and 
an RNeasy Mini kit (Qiagen GmbH) according to the manu‑
facturer's protocol. Extraction of total RNA was performed for 
each sample separately.

Gene expressions were detected by a microarray assay 
(Human Genome U133 Plus 2.0, GeneChip® 3' Expression 
Array; Thermo Fisher Scientific, Inc.). The labeling of RNA 
probes, hybridization, and washing were carried out according 
to the manufacturer's protocol.

RT‑qPCR analysis for mRNA expression of genes regulated 
by FasL. RA‑FLS (samples 5‑10) were cultured in six‑well 
plates at a density of 2x106 cells/well with 1,000 ng/ml of 
FasL or serum‑free medium only as a control. RNA was 
extracted using the QIAshredder and RNeasy mini kits 
according to the manufacturer's protocols. Oligo (dT)‑primed 
first‑strand complementary DNA (cDNA) was synthesized 
(2 µg total RNA) using a High Capacity cDNA Transcription 
kit (Applied Biosystems; Thermo Fisher Scientific). Relative 
expression levels of mRNA encoding DUSP6, EREG, 
IL‑11, ANGPTL7, PIAS2, and GDF5 were compared using 
TaqMan® real‑time PCR on a StepOne™ real‑time PCR 
system (Applied Biosystems; Thermo Fisher Scientific, Inc.). 
Pre‑designed primers and probes for DUSP6 (Hs04329643_
s1), EREG (Hs00914313_m1), IL-11 (Hs01055413_g1), 
ANGPTL7 (Hs00221727_m1), PIAS2 (Hs00915227_m1), 
GDF5 (Hs00167060_m1), and glyceraldehyde‑3‑phosphate 
dehydrogenase (GAPDH; Hs99999905_m1) were obtained 
from Applied Biosystems (Thermo Fisher Scientific, Inc.). 
Comparative analysis of each of these genes in individual 
patients was performed using StepOne™ 2.1 software 
(Applied Biosystems; Thermo Fisher Scientific, Inc.) 
according to the manufacturer's protocol. All amplifications 
were conducted in duplicate. The mRNA expression levels of 
each gene were calculated using the comparative threshold 
cycle (ΔΔCq) method as previously described (30).

Statistical analysis. Values are expressed as the mean ± stan‑
dard deviation unless otherwise indicated. As for the data 
analysis of the microarray assay, Avadis 3.3 Prophetic software 
(Strand Life Sciences) was used for statistical analysis (31). 
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Differentially expressed genes were extracted by a paired 
t-test, with P values <0.05 considered to indicate statistical 
significance and fold-change >2.0, and ordered into hierar‑
chical clusters using the Euclidean algorithm as the distance 
measure and the complete algorithm as the linkage method.

The data analysis of the RT‑qPCR assay was as follows. 
The Wilcoxon signed ranked test was used to evaluate the 
differences between mRNA expression levels of genes in the 
control group and FasL‑stimulated group. Statistical analyses 
were conducted using Statcel (version 3; OMS Publishing, 
Inc.). P<0.05 was considered to indicate a statistically signifi‑
cant difference.

Results

Microarray analysis (gene expression profiling of RA‑FLS 
stimulated by FasL). The microarray analysis used in the 
current study (Human Genome U133 Plus 2.0, GeneChip® 
3' Expression Array) was able to detect the expression of 
27,420 genes.

The microarray analysis revealed that FasL upregulates or 
downregulates the expressions of various genes in RA‑FLS. 
We used the NCBI's UniGene database (https://www.ncbi.nlm.
nih.gov/UniGene/clust.cgi?ORG=Hs&CID=55682) to identify 
the genes. Among the 1039 genes differentially upregulated 
by FasL, 806 were annotated in the database. Twenty of the 
806 genes upregulated by FasL are shown in Table I. Gene 

annotations of 1190 among the 1518 genes differentially 
downregulated by FasL were also in the database. Twenty of 
the 1190 downregulated genes by FasL are shown in Table II. 
Hierarchical clustering analysis was performed for genes for 
which expression changes were detected in at least 2 of the 
4 samples, which was 247 genes. The results of hierarchical 
clustering analysis for these 247 genes are illustrated in Fig. 1.

Functional annotation. The 246 genes regulated by FasL were 
classified into categories registered in the David Bioinformatics 
Database (https://david.ncifcrf.gov/) according to their biolog‑
ical functions. The most significant 10 functional categories 
were as follows: Transcriptional activator activity, positive 
regulation of metabolic process, positive regulation of cellular 
metabolic process, positive regulation of macromolecule 
metabolic process, positive regulation of nitrogen compound 
metabolic process, regulation of phosphorylation, positive 
regulation of biological process, regulation of phosphate 
metabolic process, regulation of MAPK cascade, regulation of 
multicellular organismal process (Table III).

mRNA expression detected by RT‑qPCR. Based on the 
microarray assay, we confirmed the mRNA expressions of 
genes by real‑time PCR. Fig. 2 shows the mRNA expression 
levels of the 3 most upregulated genes. DUSP6 was upregu‑
lated 21 times by FasL compared to the control, EREG was 
upregulated 24 times by FasL compared to the control, and 

Table I. The 20 genes most upregulated by FasL. P‑values were detected by a paired t‑test.

Gene abbreviation 	 P‑value	 FC (abs)	 Gene name

DUSP6	 0.000018	 34.61	 Dual specificity phosphatase 6
EREG	 0.019622	 29.23	 Epiregulin
IL‑11	 0.007275	 25.28	 Interleukin 11
ANGPTL4	 0.002853	 23.50	 Angiopoietin‑like 4
SLCO4A1	 0.002094	 20.39	 Solute carrier organic anion transporter family, member 4A1
TNFSF11	 0.006236	 18.48	 Tumor necrosis factor (ligand) superfamily, member 11
BDKRB1	 0.000004	 14.39	 Bradykinin receptor B1 
OTTHUMG00000172357//	 0.000002	 14.12	 NULL//NULL
RP11‑475A13.2	
AREG//AREGB	 0.030537	 13.77	 Amphiregulin//amphiregulin B
LIF	 0.000498	 13.53	 Leukemia inhibitory factor
IFNA8	 0.000039	 12.09	 Interferon, α 8 
OTTHUMG00000175763//	 0.000716	 11.73	 NULL//NULL
RP11‑744D14.2	
HBEGF	 0.014773	 11.34	 Heparin‑binding EGF‑like growth factor
PPP4R4	 0.023739	 11.03	 Protein phosphatase 4, regulatory subunit 4
NDP	 0.008832	 10.67	 Norrie disease (pseudoglioma)
NR4A3	 0.000432	 10.59	 Nuclear receptor subfamily 4, group A, member 3
EGLN3	 0.028458	 9.95	 Egl nine homolog 3 (C. elegans)
BMP2	 0.000082	 9.92	 Bone morphogenetic protein 2
UBR2	 0.007847	 9.91	 Ubiquitin protein ligase E3 component n‑recognin 2
SLC38A10	 0.001400	 9.34	 Solute carrier family 38, member 10 

FasL, Fas ligand.
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IL‑11 was upregulated 9  times by FasL compared to the 
control. Fig. 3 shows the mRNA expression levels of the 
3 most downregulated genes. ANGPTL7 was downregulated 
0.15  times by FasL compared to the control, PIAS2 was 
downregulated 0.58 times by FasL compared to the control, 
and GDF5 was downregulated 0.11 times by FasL compared 
to the control.

Discussion

Genome‑wide gene expression cDNA microarrays provide a 
powerful technique to investigate the pathophysiology of a 
variety of diseases, including tumors (32‑34), immune‑mediated 
diseases (35,36), and inflammatory diseases (37‑39). Using 
microarray assays, we previously revealed the expression 
profiles of genes in RA‑FLS regulated by DcR3 (25) and 
TL1A (26). Subsequently, based on the profile regulated by 
DcR3, we investigated the significance of IL‑12B p40 (22), 
tryptophan hydroxylase  1  (24), and centrosomal protein 
70 kDa (23) as regulated by DcR3 in RA‑FLS in detail. The 
profile regulated by TL1A included the following noteworthy 
genes: Spectrin repeat‑containing nuclear envelope 1, Fc 
receptor‑like 2, PYD (pyrin domain)‑containing 1, cell 
division cycle 45 homolog, signal transducer and activator of 
transcription 5B, and interferon regulatory factor 4 (26).

To the best of our knowledge, this is the first study to 
reveal the expression profiles of genes in RA‑FLS regulated 

by FasL. Among the genes in this profile, the following 
genes were of note: Dual specificity phosphatase 6 (DUSP6), 
epiregulin (EREG), interleukin 11 (IL‑11), angiopoietin‑like 7 
(ANGPTL7), protein inhibitor of activated STAT 2 (PIAS2), 
and growth differentiation factor 5 (GDF5); these genes were 
all highly regulated by FasL.

DUSP6 regulates CD4+ T‑cell activation and differen‑
tiation by inhibiting T‑cell receptor dependent ERK 1/2 
activation (40). It has been reported that DUSP6 promotes 
endothelial inflammation through the inducible expres‑
sion of TNF‑α‑induced intercellular adhesion molecule‑1 
via nuclear factor‑κB, which is independent of ERK 
signaling (41).

Epiregulin is a growth regulator that belongs to the 
epidermal growth factor (EGF) family and mediates the 
dose‑dependent increase in proliferation of primary mouse 
keratinocytes (42). EREG is increased in patients with RA 
and is associated with the development of IL‑6 amplifier 
activation  (43). EREG triggers the temporal regulation of 
growth factors such as amphiregulin, betacellulin, trans‑
forming growth factor (TGF)‑α, fibroblast growth factor 2, 
placental growth factor 2, and tenascin C, contributing to the 
early phase of inflammation; each growth factor reciprocally 
regulates EREG in affected tissue during the late phase of 
inflammatory disease development (44). Secretion of vascular 
endothelial growth factor‑A and EREG from RA‑FLS was 
inhibited upon treatment with the aryl hydrocarbon receptor 

Table II. The 20 genes most downregulated by FasL. P‑values were detected by a paired t-test.

Gene abbreviation 	 P‑value	 FC (abs)	 Gene name

ANGPTL7	 0.000283	 11.61	 Angiopoietin‑like 7
PIAS2	 0.001099	 11.34	 Protein inhibitor of activated STAT, 2
LINC00310	 0.000038	 11.30	 Long intergenic non‑protein coding RNA 310
GDF5	 0.004260	 11.12	 Growth differentiation factor 5
TBX22	 0.000755	 11.11	 T‑box 22
DCAF4L1	 0.000734	 10.64	 DDB1 and CUL4 associated factor 4‑like 1
KRT16	 0.013331	 10.62	 Keratin 16 
OTTHUMG00000180314//	 0.003726	 10.31	 NULL//NULL
RP1‑193H18.2	
TAS2R40	 0.000202	 10.14	 Taste receptor, type 2, member 40
HEPACAM2	 0.001656	 9.93	 HEPACAM family member 2
CSMD1	 0.000096	 9.87	 CUB and Sushi multiple domains 1
IQCA1	 0.009692	 9.63	 IQ motif containing with AAA domain 1 
LOC100996810//	 0.003182	 9.26	 Uncharacterized LOC100996810//
LOC283861	  		  uncharacterized LOC283861
FGFR2	 0.029699	 9.25	 Fibroblast growth factor receptor 2
WDR65	 0.000045	 9.21	 WD repeat domain 65
LOC253573	 0.001556	 9.18	 Uncharacterized LOC253573
PHLDB2	 0.001030	 9.06	 Pleckstrin homology‑like domain, family B, member 2
PCDHAC2	 0.017711	 9.01	 Protocadherin alpha subfamily C, 2
LOC100506629	 0.002936	 8.72	 Uncharacterized LOC100506629
FAM66C	 0.003647	 8.68	 Family with sequence similarity 66, member C 

FasL, Fas ligand.
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antagonist GNF351, resulting in attenuation of RA‑FLS cell 
migration, along with cytokine‑induced RA‑FLS cell prolif‑
eration (45).

IL‑11 signaling appears to be initiated by the binding of 
IL‑11 to IL‑11 receptor α chain (IL‑11Rα), which then binds 

gp130, the signaling unit of the IL‑6 cytokine family (46). IL‑11 
attenuates the inflammatory response through downregulation 
of proinflammatory cytokine release and nitric oxide produc‑
tion (47,48). IL‑11 contributes to RA angiogenesis directly and 
indirectly. IL‑11 promotes endothelial cell migration and tube 

Figure 1. Heat map showing the result of hierarchical clustering. The heat map illustrates the expression values mapped to a color gradient from low (blue) to 
high expression (red). The horizontal dendrogram illustrates the similarity of functions between neighboring genes. The vertical dendrogram shows similarities 
in gene expression between neighboring samples.
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formation mediated through IL‑11Rα ligation. Vascular endo‑
thelial growth factor and IL‑8 produced from IL‑11‑treated 
RA‑FLS contribute to the indirect effect of IL‑11 on angio‑
genesis (49). In addition, IL‑11 plays a key role in osteoclast 
formation via the gp130/Jak signaling pathway (50).

ANGPTL7 is a member of angiopoietin family that exerts 
pro‑angiogenic activities on endothelial cells. ANGPTL7 
expression has been identified in some cancer cells induced by 
hypoxia (51). ANGPTL7 induces proinflammatory responses in 
macrophages, including the induction of immune gene expres‑
sion, the promotion of proinflammatory cytokine secretion, 
enhanced phagocytosis, and antagonized anti‑inflammatory 
signaling through the P38 MAPK signaling pathway  (52). 
Down‑regulation of a positive regulator of inflammation might 
have a negative effect for inflammation in patients with RA.

PIAS proteins inhibit activated STAT and play important 
roles in regulating many important cellular events, such as 

cell survival, migration, and signal transduction in many cell 
types  (53,54). PIAS proteins also modulate the activity of 
several transcription factors and act as E3 ubiquitin ligases 
in the sumoylation pathway  (54‑57). In a similar fashion, 
down‑regulation of a negative regulator of inflammation might 
have a positive effect for inflammation in patients with RA. 
Lao et al reported that PIAS3 regulates migration and invasion 
through the Rac1/PAK1/JNK pathway in RA‑FLSs (53).

GDF5 is a member of the TGF‑β superfamily and is most 
closely related to the bone morphogenetic protein subfamily. 
GDF5 increases glycosaminoglycan synthesis  (58) and 
cartilage and bone formation  (59). GDF5 is present in the 
synovium membrane and cartilage of patients with RA and is 
actively involved in the regulation of cartilage maintenance and 
repair (60). GDF5 is associated with joint destruction in patients 
with osteoarthritis (61) and RA (62). GDF5 in RA‑FLS was 

Table  III. The 10 most significant functional categories of the 246 genes most differentially expressed by FasL exposure in 
RA‑FLS. P‑values were detected by a paired t‑test.

GO Accession	 GO Term	 Corrected P‑value

GO:0001228	 Transcriptional activator activity, RNA polymerase II transcription	 0.000028
	 Regulatory region sequence‑specific DNA binding
GO:0009893| GO:0044253	 Positive regulation of metabolic process	 0.000028
GO:0031325	 Positive regulation of cellular metabolic process	 0.000028
GO:0010604	 Positive regulation of macromolecule metabolic process	 0.000028
GO:0051173	 Positive regulation of nitrogen compound metabolic process	 0.000028
GO:0042325	 Regulation of phosphorylation	 0.000066
GO:0048518| GO:0043119	 Positive regulation of biological process	 0.000066
GO:0019220	 Regulation of phosphate metabolic process	 0.000087
GO:0043408	 Regulation of MAPK cascade	 0.000087
GO:0051239	 Regulation of multicellular organismal process	 0.000087 

GO, gene ontology; FasL, Fas ligand; RA, rheumatoid arthritis.

Figure 2. mRNA expression levels of the 3 most upregulated genes by FasL 
in RA‑FLS. RT‑qPCR analysis of the relative mRNA expression levels 
of DUSP6, EREG and IL‑11 in RA‑FLS after 12  h of incubation with 
1,000 ng/ml of FasL or serum‑free medium as a control is shown (n =6 for 
each gene). Control cells were assigned a value of 1. *P<0.05; RT, reverse 
transcription; RA, rheumatoid arthritis; FLS, fibroblast‑like synoviocytes; 
FasL, Fas ligand; DUSP6, dual specificity phosphatase 6; EREG, epiregulin.

Figure 3. mRNA expression levels of the 3 most downregulated genes by 
FasL in RA‑FLS. RT‑qPCR analysis of the relative mRNA expression levels 
of ANGPTL7, PIAS2 and GDF5 in RA‑FLS after 12 h of incubation with 
1,000 ng/ml of FasL or serum‑free medium as a control is shown (n =6 for 
each of genes). Control cells were assigned a value of 1. *P<0.05; RT, reverse 
transcription; RA, rheumatoid arthritis; FLS, fibroblast‑like synoviocytes; 
FasL, Fas ligand; ANGPTL7, angiopoietin‑like 7; PIAS2, protein inhibitor of 
activated STAT 2; GDF5, growth differentiation factor 5.
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suppressed by IL‑1β and had a strong chondrogenic‑promoting 
effect on TGF‑β3‑induced chondrocyte differentiation in 
RA‑FLS (60).

In the present study, at the first brush, we exhaustively 
investigated and revealed the gene expression profiles 
regulated by FasL in RA‑FLS by the microarray assay. 
Secondly, we confirmed the universality of the gene 
expression pattern by a different method, RT‑qPCR assay, 
using the different samples of RA‑FLS from those used for 
the microarray assay. In order to obtain the pathological 
homogeneity among the samples as much as possible, the 
patients who underwent similar clinical features were 
recruited; who had been treated only with conventional 
DMARDs, not with biological DMARDs or targeted 
synthetic DMARDs, and who had their knee joint destructed 
severely resulting total knee replacement surgery. Therefore, 
we considered that there were no differences among the 10 
samples. The samples 1‑4 used for the microarray and 5‑10 
for the RT‑qPCR assay were randomly selected.

The expression profiles of genes regulated by TL1A 
were elucidated by use of a microarray assay in our previous 
report (26). TL1A and FasL are bound and inhibited by the 
common decoy receptor, DcR3. Therefore, clarifying the 
relationship between the expression profiles of genes regulated 
by FasL and those regulated by TL1A might help us to better 
understand the role of the FasL/TL1A/DcR3 signaling system 
in the pathogenesis of RA. Further study is needed to reveal 
the relationship between these gene expression profiles.

The limitations of the current study include its small 
sample size and that it presents gene expression data only. The 
results of the current study revealed a series of genes whose 
expression is regulated by FasL in RA‑FLS with microarray 
analysis, and the mRNA expression of some genes of note 
was confirmed by RT‑qPCR assay. However, in addition to the 
expression analysis of each gene, how the genes regulated by 
FasL in RA‑FLS are involved in the pathogenesis of RA also 
requires further investigation. In the current study, we aimed 
to analyze exhaustively the gene expression pattern regulated 
by FasL in RA‑FLS. Therefore, the assay for expression of 
proteins coded by each gene should also be performed in the 
further studies.

In conclusion, the current study is the first, to the best of 
our knowledge, to report the expression profile of genes in 
RA‑FLS regulated by FasL. These data demonstrate that FasL 
may regulate the gene expression of various key molecules 
in RA‑FLS, thus affecting the pathogenesis of RA, including 
apoptosis, proliferation, cytokine production, cytokine‑induced 
inflammation, intracellular signaling, angiogenesis, bone 
destruction, and chondrogenesis. FasL may have pleiotropic 
actions not only protectively but also detrimentally for RA. 
Further investigation of the genes detected in this profile may 
provide a deeper understanding of the pathogenesis of RA and 
new targets for its treatment.
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