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Abstract

Background: Cholera toxin (CT) and toxin-co-regulated pili (TCP) are the major virulence factors of Vibrio cholerae O1 and
O139 strains that contribute to the pathogenesis of disease during devastating cholera pandemics. However, CT and TCP
negative V. cholerae strains are still able to cause severe diarrheal disease in humans through mechanisms that are not well
understood.

Methodology/Principal Findings: To determine the role of other virulence factors in V. cholerae pathogenesis, we used a CT
and TCP independent infection model in the nematode Caenorhabditis elegans and identified the hemolysin A (hlyA) gene
as a factor responsible for animal death and developmental delay. We demonstrated a correlation between the severity of
infection in the nematode and the level of hemolytic activity in the V. cholerae biotypes. At the cellular level, V. cholerae
infection induces formation of vacuoles in the intestinal cells in a hlyA dependent manner, consistent with the previous in
vitro observations.

Conclusions/Significance: Our data strongly suggest that HlyA is a virulence factor in C. elegans infection leading to
lethality and developmental delay presumably through intestinal cytopathic changes.
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Introduction

Understanding the nature of the biological determinants that

underlie severe illness has been a longstanding goal of V. cholerae

research. Cholera toxin (CT) and toxin-coregulated pili (TCP)

are the major virulence determinants of V. cholerae O1 and

O139 strains. However, other V. cholerae sero groups and

vaccine strains that lack CT and TCP are also capable of

causing diarrheal illness [1,2,3,4]. In addition to these two

virulence factors, other toxins such as hemolysin/cytolysin

(VCC), zonula occludens toxin (Zot), and accessory cholera

enterotoxin (Ace) have also been identified. Although cyto-

pathic effects of these toxins have been well characterized in

vitro, their role regarding the molecular mechanisms underlying

the disease pathogenesis is not clear, and requires further

research in animal models [5].

Pore-forming toxins (PFTs) are the most common class of

toxins that are implicated in bacterial virulence [6]. VCC is an

80 kDa PFT that is expressed in most V. cholerae strains including

O1 biotype El Tor, O139, and non-O1/non-O139 isolates. VCC

peptides, encoded by the hlyA gene, assemble into heptameric

channels following proteolytic activation by exogenous proteases

[7,8,9]. The effects of VCC on eukaryotic hosts have been

documented at both the cellular and organism level. In vitro, VCC

is associated with cellular degenerative events such as autophagy,

vacuolization, lysis, apoptosis, and necrosis [10,11,12,13,14,15].

In infant mouse and rabbit ileal loop models, VCC was found to

be responsible for the residual toxicity and diarrhea observed

after the administration of vaccine strains into the gastrointestinal

system [10].

Additionally, VCC seemed to be the major contributor to the

lethality of streptomycin-fed adult mice after gastrointestinal

exposure to high doses of El Tor strains [16].

The nematode Caenorhabditis elegans has been used as an

invertebrate host to identify and assess virulence factors of several

human pathogens including Pseudomonas aeruginosa, Salmonella

Typhimurium and Yersinia pseudotuberculosis [17,18,19,20,21,22,23].

V. cholerae causes lethal infection in C. elegans via a CT and TCP

independent process that provides an excellent model to

investigate the roles of other V. cholerae virulence factors [23]. In

this model, the nematode killing by V. cholerae has been associated

with LuxO regulated genes in the quorum sensing (QS) pathway

such as the transcriptional regulator hapR and hapR-regulated

metalloprotease PrtV [23].
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We used the CT negative vaccine strains CVD109 and

CVD110 to examine the roles of additional V. cholerae virulence

factors. CVD110 is derived from its parental strain CVD109 with

an additional mutation in the hlyA locus [24]. In the C. elegans

infection model, we observed a decrease in nematode killing after

feeding CVD110, in comparison to CVD109, pointing to the

deleterious effects of hlyA. This finding led to the identification of

V. cholerae hemolysin/cytolysin as a virulence factor that contrib-

utes to the pathogenesis of C. elegans infection. Using the high

throughput Complex Object Parametric Analyzer and Sorter

(COPAS) assay and microscopy, we also found that the hlyA gene

causes growth retardation in C. elegans. We determined the severity

of lethal infection after feeding nematodes with wild type V. cholerae

biotypes that have differences in hlyA gene structure and

expression, and found a correlation between worm lethality and

varying levels of bacterial hemolytic activity. Furthermore, we

showed that the hlyA gene-encoded hemolysin/cytolysin is

responsible for the formation of intestinal vacuoles in C. elegans

during V. cholerae infection. Altogether, our findings provide an in

vivo model for further research on the virulence mechanisms of V.

cholerae hemolysin/VCC using C. elegans as a host organism.

Materials And Methods

Bacterial strains, plasmids, media and culture conditions
The bacterial strains and plasmids used in this study are listed in

Table 1. V. cholerae strains were cultured in tryptic soy broth (TSB,

Becton Dickinson Microbiology Systems, BBL, Cockeysville, MD)

media supplemented with 1% NaCl at 30uC. Escherichia coli OP50

was grown in LB culture medium.

Cloning and complementation of V. cholerae hlyA gene
For complementation of the hlyA mutation in CVD110, a plasmid

containing the entire hlyA gene was introduced into CVD110. For

this procedure, a 2497 bp DNA segment containing the entire hlyA

gene was amplified from E7946 by PCR using primers

VchlySalIF 59CAGTGTCGACTGACGAGGGTAACCCATGA

and VchlyPstIR 59CAGTCTGCAGTTTCAGGGCATGCTT-

CCA which were designed to contain SalI and PstI sites (underlined)

for subsequent cloning. PCR was performed in 20 ml solutions

containing 1 ml of bacterial cell lysate, primers (400 nM) and 17 ml

(0.019 U/ml) Platinum Blue PCR Supermix (Invitrogen). PCR

conditions for amplification were the following: 95uC for 5 minutes

followed by 35 cycles of denaturation at 94uC for 30 seconds;

annealing at 56uC for 30 seconds; and extension at 72uC for 60

seconds; with a final extension of 72uC for 7 minutes. The amplified

product was cloned into a SalI, PstI digested pMMB66EH [25]. For

complementation experiments the resulting plasmid pHNC44 was

introduced into a spontaneous streptomycin resistant mutant of

CVD110 (resulting in strain HNC44) using a conjugation method

described by Datta et al. [26].

Construction of DhlyA of V. cholerae E7946
HNC45, the strain containing a deletion in hlyA locus, was

generated via introduction of pCWDhlyA [16] into a spontaneous

streptomycin resistant mutant of E7946 using conjugation. Resulting

mutants were analyzed by PCR to ensure the loss of the hlyA gene.

C. elegans strains and maintenance
C. elegans wild type strain N2 Bristol and SS104 glp-4(bn4) strain

were obtained from the Caenorhabditis Genetic Center (CGC,

Minneapolis, MN), and were maintained at 20uC and 16uC,

respectively in C. elegans habitation media (CeHM) [27] in tissue

culture flasks on a platform shaker.

Caenorhabditis elegans Lethality Assay
100 ml of overnight cultures of V. cholerae strains were seeded

onto the center of the surface of a five cm NGM agar plates and

Table 1. C. elegans and bacterial strains, and plasmids used in this study.

Relevant genotype and/or phenotype Source or reference

C. elegans strains

N2 Wild type Bristol isolate Caenorhabditis Genetics Center

SS104 glp-4 (bn2) Caenorhabditis Genetics Center

Bacterial strains

OP50 E. coli Caenorhabditis Genetics Center

A1552 V. cholerae Wild-type O1 El Tor, Ogawa Fitnat Yildiz, UCSC

N16961 V. cholerae Wild-type O1 El Tor, Ogawa DVA* Strain collection

569B V. cholerae Wild-type O1 classical DVA strain collection

VC395 V. cholerae Wild-type O1 classical DVA strain collection

E7946 V. cholerae Wild-type O1 El Tor, Ogawa DVA strain collection

CVD110 D(ctxAB zot ace) hlyA::(ctxB mer) Hgr Parental strain: E7946 James B. Kaper, University of Maryland, School of Medicine

CVD109 D(ctxAB zot ace) Parental strain: E7946 James B. Kaper, University of Maryland, School of Medicine

HNC44 CVD110/pHNC44 This study

HNC45 E7946 DhlyA This study

LS38 S. aureus DVA Strain collection

Plasmids

pHNC44 pMMB66EH: hlyA This study

pCWDhlyA DhlyA K. Satchel, University of Illinois

*Division of Virulence Assessment, CFSAN, FDA.
doi:10.1371/journal.pone.0011558.t001
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incubated at room temperature (,22uC) overnight prior to

addition of about 50 L4 stage glp-4(bn2) worms onto the plates

for each treatment (20 to 30 worms per plate). glp-4(bn2)

temperature sensitive sterile mutants were used to prevent the

worms from having progeny during the assay. For lethality assays

L4 stage worms were shifted from 16uC to 25uC as soon as they

were placed onto the plates. At least three replicates were made for

each experimental condition. E. coli OP50 (C. elegans food strain)

was used as a baseline control in each experiment. Plates were

incubated at 25uC during the experiment and scored for live

worms every 24–48 hours. We censored the missing worms from

the analysis at the time of the event. 100 mg/ml ampicillin was

added to NGM agar plates used for complementation experiments

to maintain the plasmid during the survival assay. The Prism

version 4.0 (GraphPad, San Diego, CA) was used to analyze and to

plot the data according to a Kaplan-Meier method and survival

curves were compared using the logrank test. Statistical signifi-

cance was set at p-value ,0.05.

Microscopy
Live nematodes were mounted on an agar pad on a slide and

covered with a cover glass. Sodium azide was used to anesthetize

the worms [28]. L1 stage worms were exposed to test bacteria on

NGM agar plates for 48 hours at 20uC before examination. The

different developmental stages of C. elegans are defined as L1, L2,

L3, L4 and adult, and are described as follows [29]. L1 stage:

Gonad consists of 4 to 12 cells. L2 stage: More than 12 cells

present in the gonad, and vulva development has not started yet.

L3 stage: Vulva development is in progress, gonad arms grow

towards anterior and posterior ends of the worm. L4 stage: The

vulva cells move together and create a channel like opening

between uterine cavity and outside environment, gonad arms

reflects to grow back towards the middle of the animal where vulva

is located, and the somatic gonad is differentiated into the uterus,

spermatica and oviduct. Adult stage: Gonad development is

complete, oocytes and fertilized eggs are present. Intestinal tracts,

somatic gonad and vulva were examined under Nomarski optics

using a Zeiss AxioImager D1 microscope (Carl Zeiss MicroIma-

ging, Inc, Thornwood, NY).

COPAS analysis
A COPAS biosorter [30] (Union Biometrica, MA) was used to

assess worm growth. L1 stage animals were synchronized by

treating gravid adults with hypochlorite and incubating released

eggs in M9 buffer overnight [28]. Experiments were started with

synchronized L1 stage animals. After exposure to test bacteria on

the NGM agar plates for 72 hours, worms were washed out of the

plates into 15 ml Falcon tubes with M9 buffer, washed twice in

M9 buffer and sorted following calibration and sample analysis

methods [31]. For each experimental condition, worm growth was

assessed by measuring the parameter ‘‘Extinction’’ (EXT;

represents the optical density of the worms, which measures the

decrease in laser light intensity when an object passes through the

laser beam). To evaluate the life stage composition of a worm

culture, EXT values were plotted against the frequency of events

by binning the readings in increments of 50. Sums of EXT values

of 1000 worms for each condition were calculated as an index of

population growth, and Student’s t test was used to compare

growth.

Hemolysin assay
CAMP test was performed using Staphylococcus aureus strain LS38

on five percent sheep RBC plates according to the procedure

described by Christie et al [32]. Staphylococcus aureus strain LS38

was streaked in the middle of the agar plate in a straight line. The

V. cholerae strain to be tested was streaked perpendicularly to the

LS38 streak without allowing the two streaks to touch each other.

The presence of enhanced hemolytic reaction was evaluated where

the tested bacterial strains are in close proximity with Staphylococcus

aureus strain LS38, which appears like a clear arrowhead.

Results

hlyA is required for lethality during V. cholerae infection
in C. elegans

Worms fed with a wild type V. cholerae strain die faster than the

ones fed with E. coli OP50, the standard nematode food, or UV-

killed V. cholerae, and this lethality seems to be the result of a lethal

infection that is independent of the major virulence factors, CT

and TCP ([23] and our unpublished results). To determine the

role of other virulence factors in nematode killing, we fed worms

with V. cholerae vaccine strains that are deficient in several known

virulence factors, and assayed lethality under these conditions. The

vaccine strain CVD110 lacks the virulence genes zot, ace, ctxA, and

hlyA [24], Table 1. The ctxB gene locus was deleted in CVD110

genome, but it was reinserted into the hlyA locus to inactivate hlyA

gene and keep the immunogenicity elicited by CtxB protein. For

full toxicity, CtxB requires the presence of CtxA, and since

CVD110 does not have ctxA gene, the virulence mediated by

cholera toxin is lacking in this strain [24]. We observed an

attenuated killing response in CVD110 fed worms in comparison

to the worms fed with the isogenic wild type V. cholerae strain

E7946 (Fig. 1A), suggesting that one or more of these deficient

factors might be responsible for increased lethality in C. elegans.

When we fed worms with CVD110’s immediate parental strain

CVD109, which has an intact hlyA, we found that the presence of

hlyA gene was sufficient to kill the worms at a rate comparable to

that of observed for V. cholerae E7946 (Fig. 1A). To further evaluate

the role of hlyA gene, we created the E7946-derived strain HNC45

that has a single locus deletion of hlyA gene. HNC45 fed worms

showed decreased lethality similar to that of observed for CVD110

(Fig. 1B). When we reintroduced a functional copy of hlyA into

CVD110 via conjugation of a plasmid expressing hlyA, the

resulting strain showed lethality when fed to C. elegans (Fig. 1C)

similar to that of the wild type strain E7946. Together, these

findings indicated that V. cholerae hlyA is responsible for lethality

during infection in C. elegans.

V. cholerae infection causes developmental delay in C.
elegans via hlyA

Because the worm lethality assay measures the longevity of non-

reproducing worm populations and allows observations only for

adult animals, we wanted to evaluate other possible outcomes in

relation to C. elegans infection that could be attributed to hlyA. To

characterize how the exposure to V. cholerae affects the life cycle of

C. elegans, we fed strain E7946 to wild type growing worms and

examined their development using two approaches. In the first

assay, synchronized L1 stage worms were initiated on bacterial

feeding, and were examined under Nomarski optics at 48 hours

for subsequent attainment of larval stages. To identify develop-

mental stages, we used the size and shape of the somatic gonad

and vulva as developmental landmarks (Methods, and Fig. 2A).

While all the worms that were fed with the control bacterium

OP50 reached L4 stage and beyond at 48 hours, only 45% of the

E7946 fed worms attained L4 stage during this time (Fig. 2B),

suggesting that a developmental delay was induced by V. cholerae

exposure. Using this assay, we evaluated the effects of hlyA on

larval development and found that all L1 worms that were fed on

VCC Virulence in C. elegans
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the hlyA-deficient V. cholerae strain HNC45 reached L4 stage and

beyond at 48 hours (Fig. 2B).

In an independent approach, the COPAS biosorter [30] was

used to quantify the optical density distributions of growing worm

populations to evaluate the composition of life stages in a given

feeding condition. For this assay, synchronized L1 stage worms

were fed on hlyA intact (E7946 and CVD109) and hlyA deficient

(CVD110 and HNC45) strains of V. cholerae for 72 hours, and the

optical density of the worms were evaluated by EXT measure-

ments (Methods). A qualitative assessment of images taken on

samples of worm cultures prior to sorting showed that the worms

fed with hlyA deficient strains and with E. coli OP50 contained

mostly adults and eggs. In contrast, worms fed with the hlyA intact

strains contained smaller animals and no eggs (Fig. 3A–E). We

observed distinct density distribution curves for E. coli OP50 and

V. cholerae A1552 fed worms, which is consistent with the life stage

composition of their respective worm cultures (Figure 3F). We

compared the total optical density values that reflects the

population growth (methods), and found that the worms exposed

to hlyA(+) strains showed developmental delay while the worms

exposed to hlyA(-) strains grew similar to the worms fed with the

OP50 bacteria (Fig. 3G). Altogether, these results confirmed our

findings in lethality assays, and further implicated a role for hlyA as

a virulence factor that impairs nematode development.

Varying levels of hemolytic activity in V. cholerae strains
correlate with severity of the nematode infection

One of the major differences between the two biotypes of V.

cholerae is that the Classical strains exhibit lower hemolytic activity

than the El Tor strains [33]. A variation in hlyA expression

presumably explains the decrease in hemolytic activity, because

the levels of hlyA expression were found to be lower in Classical

biotype than in El Tor biotype [34]. The classical strain 569B also

contains a 11 bp deletion in the open reading frame of hlyA gene

that results in a stop codon and a predicted 244 aa long truncated

gene product [35]. Truncated HlyA peptide still has cytotoxic

effects, but the molecular lesion lessens the severity of its

cytotoxicity [10]. To compare the lethality caused by two biotypes

of V. cholerae, Classical strains 569B and 395, and El Tor strains

N16961, E7946, A1552 were fed to the worms. All the strains

Figure 1. hlyA is required for killing during V. cholerae infection in C. elegans. Lethality analysis was performed in glp-4(bn2) worms that were
fed with indicated bacterial strains (Table 1). Agar plates were kept at 25uC and scored for survivors at 24–48 hour intervals. Data were plotted
according to a Kaplan-Meier method and survival curves were compared using the logrank test. p,0.005. CVD110 and CVD109 represent the hlyA
deficient and hlyA containing vaccine strains respectively, and they are isogenic with E7946. strR, streptomycin resistance; DhlyA, hlyA deletion;
CVD110 strR/pHNC44:hlyA is the complementation strain. A) Comparison of lethality caused by vaccine strains CVD110 (hlyA-), CVD109 (hlyA+) and V.
cholerae WT strain E7946. CVD110 exposed worms: median survival–10 days, CVD109 exposed worms: median survival–5 days, E7946 exposed
worms: median survival-5 days. p,0.0001 for CVD110 versus CVD109 and for CVD110 versus E7946. p = 0.3455 for E7946 versus CVD109. B)
Comparison of lethality caused by hlyA deletion mutant, WT strain E7946 and CVD110. p,0.0001 for E7946 strR versus E7946 strR DhlyA and for
E7946 strR versus CVD110 strR. p = 0.1383 for E7946 strR DhlyA versus CVD110 strR. C) Comparison of lethality caused by CVD110, CVD110 with hlyA
expressing plasmid and CVD109. p,0.0001 for each curve comparison in this graph.
doi:10.1371/journal.pone.0011558.g001
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tested showed increased lethality in comparison to E. coli OP50

baseline, but the Classical strains caused a lower level of lethality

than the El Tor strains (Fig. 4A). The results of the CAMP

hemolytic assay revealed that while all the El Tor strains had

identifiable hemolytic activity, the Classical strains showed no

hemolytic activity under assay conditions (Methods; Fig. 4B).

Assessing the modulation of the severity of infection by varying

levels of hemolytic activity in wild type isolates of V. cholerae

provided a further clue on how the activity of hlyA gene might be

related to virulence mechanisms in the nematode infection.

Altogether, our results derived from the interactions of different

V. cholerae isolates with the nematode supported the notion that

hlyA is a virulence factor in C. elegans infection.

hlyA expression contributes to formation of vacuoles in
the intestine of C. elegans

V. cholerae O1 El Tor strains cause lethality in C. elegans through

intestinal colonization [23]. In addition, we observed tissue

damage in the form of vacuole formation and intestinal wall

shrinkage along the gut in worms feeding on wild type V. cholerae

(Fig. 5A and 5B). Since it has been shown that VCC causes cellular

vacuolation in cultured cells [12,13,36], we investigated the

contribution of hlyA to intestinal lesions in C. elegans. L1 stage

worms were fed with bacterial strains for 48 hours, and examined

under Nomarski optics for the presence or absence of anatomical

changes that indicate intestinal pathology including appearance of

vacuoles, wall shrinkage, and lumen distention. We found that

animals fed with the hlyA deficient strain HNC45 showed a lower

degree of intestinal vacuolization in comparison to the hlyA intact

E7946-fed worms (Fig. 5A and D), suggesting that the hlyA

expression may contribute to the formation of intestinal vacuoles

during V. cholerae infection. There were no statistically significant

differences in other anatomical features such as intestinal wall

shrinkage, and luminal distention between E7946 and HNC45 fed

animals (Fig. 5B, C, E, and F). Together, these results indicate that

hlyA has a specific role in eliciting intestinal vacuolation during V.

cholerae infection in C. elegans that may represent a crucial step in

pathogenesis leading to developmental delay and lethality.

Discussion

CT is a powerful toxin, and the severity of symptoms induced

by it in human gastroenteritis limits our understanding of the role

of accessory toxins in the disease process. Although several vaccine

Figure 2. V. cholerae causes developmental delay in C. elegans via hlyA gene. A) Illustrative pictures of gonad and vulva in each
developmental stage. Black arrowhead indicates vulva. B) Synchronized L1 stage N2 worms (n = 50 per condition) were fed the indicated bacterial
strains on agar plates for 48 hours at 20uC. The developmental stage of growing worms was determined under Nomarski optics using gonad
development as milestones.
doi:10.1371/journal.pone.0011558.g002
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studies have uncovered possible roles for accessory toxins as

virulence determinants in human diarrheal disease [4,37,38,39],

the contribution of these toxins to the pathogenesis of gastroen-

teritis is not well understood. Since the interaction of V. cholerae

with various host organisms mimics only partial aspects of the

clinical picture in humans, the development of additional host

models to examine the mechanisms of virulence is essential. The

exposition of the accessory toxin VCC as a virulence determinant

via vaccine studies [37] was confirmed by findings in animal and

cell culture models [7,10,16] and further elucidation of its role in

the pathogenesis of V. cholerae infection requires the advance of

novel animal models. Here, using a CT independent infection

model in the nematode C. elegans, we demonstrated the hlyA gene

as a virulence factor contributing to the pathogenesis of infection

and lethality in this system. Our findings open the way to further

research not only on the interaction of VCC with other proteins

on the pathogen side, but also on its interactions and effects

regarding host’s innate immune system, developmental pathways,

and target cells where main events leading to pathogenesis take

place.

Previous studies have shown that hemolysins and other

members of PFTs produced by several bacterial species induce

lethality in C. elegans [18,40,41,42]. The a-hemolysin of S. aureus and

the hemolysin ShlA of S. marcescens are required for C. elegans killing

[18,40,42]. In addition, B. thuringiensis Crystal (Cry) PFTs are toxic

to C. elegans, producing vacuole-like structures, pitting, and

constrictions in the intestinal tissue of the exposed worms [41].

Similarly, we observed tissue damage in the form of vacuoles and

constrictions along the intestines of the nematodes that were

feeding on wild type V. cholerae, and found that this vacuolization

was modulated by hlyA expression. Our findings are consistent

with the results of previous reports stating that VCC cause

vacuolization in cultured cells [12,13,36], and extend those

observations to an in vivo experimental setting.

Although the lethality assay is a widely used method in

analyzing the host response of C. elegans to microorganisms, it

measures the longevity of worm populations only in the adult

stage. We extended our observations on the V. cholerae infection of

adult worms to the larval stages of C. elegans to assess development.

Using microscopy and COPAS to assess population characteristics

of growing worms, we showed that V. cholerae infection impairs

nematode development via hlyA gene. Further research is required

to investigate whether developmental pathways are altered via

VCC during V. cholerae infection in C. elegans.

What other genes in V. cholerae might be interacting with hlyA

gene during pathogenesis of C. elegans infection? A candidate

interactor would be PrtV, a protease regulated by the LuxO–HapR

pathway in V. cholera that has been reported to be involved in C.

elegans lethality [23]. PrtV and VCC may interact by an activating

relationship because they both induce lethality in C. elegans. A prtV

mutation in O1 El tor strain O17 does not seem to affect the

hemolytic activity of this strain [43], but Ou et al. recently

suggested that an 80 kDa protoxin form of VCC be a potential

substrate for PrtV using a biochemical assay [44]. Further research

is needed to address the interaction of VCC and PrtV in vivo.

What happens to cells during PFT exposure? Early effect of

pore formation is increased permeabilization of the plasma

membrane to ions, in particular calcium, possibly leading to

osmotic stress [45]. However, recent studies revealed that cells

might be actively responding to the attack of PFTs via major

signaling pathways to alleviate cellular destruction [46,47]. p38

Figure 3. V. cholerae causes growth retardation of worm cultures via hlyA gene. Synchronized L1 stage N2 worms were fed on indicated
bacterial strains on agar plates for 72 hours at 22uC. Worms washed into M9 buffer were sorted using COPAS (n = 1000). Images in A to E indicate the
composition of worm cultures prior to sorting. Black arrows indicate eggs, white arrows indicate adult nematodes. (F) Curve representing the optical
density (EXT) distribution of sorted worms was plotted. E. coli OP50 fed worm populations showed two separable peak domains (indicated with
arrows), V. cholerae A1552 fed worms showed a single peak (indicated with an arrowhead) falling between E. coli OP50 induced peaks that is
consistent with a population of worms mostly larger than eggs but fail to reach adult sizes EXT, extinction; strR, streptomycin resistance. (G)
Population growth of C. elegans fed with hlyA deleted, hlyA intact V. cholerae strains and OP50. Student’s t test was used to compare growth.
** denotes a statistical significance of P,0.001 according to Student’s t test; *** P,0.0001. Total EXT represents the sum of EXT values for sorted
worms per condition.
doi:10.1371/journal.pone.0011558.g003

Figure 4. Correlation between level of hemolytic activity and
severity of lethality. A) Lethality analysis as described in the legend
of Fig. 1 was performed in glp-4(bn2) worms that were fed indicated
bacterial strains (Table 1). O1 El Tor strains A1552, E7946 and N16961
induce higher lethality than O1 Classical strains 569B and VC395 with a
statistical significance of p,0.01 according to logrank test. Curve
comparisons within the classical (p = 0.5389) and El tor (p = 0.7224)
strains were not statistically significant. B) Hemolytic activity of
indicated bacterial strains was determined by the CAMP test (Methods).
doi:10.1371/journal.pone.0011558.g004
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mitogen activated protein kinase (p38 MAPK) pathway has been

thought to be a major player in innate immunity, and it was found

to be upregulated transcriptionally in response to B. thuringiensis

Cry5B toxin in C. elegans [47]. The same pathway was also shown

to be involved in protection of mammalian cells against PFT

aerolysin [47]. Cells might deal with PFTs using pathways that

regulate cell death. Caspase-1, a major player in apoptosis,

appeared to promote cell survival by activating sterol regulatory

element binding proteins (SREBPs) upon PFT exposure [46]. Our

recent work revealed that hypoxic response pathway protects C.

elegans against PFTs, including VCC [48]. Cultured cells were

found to have an increased autophagic response to VCC, and it

was thought that this mechanism was required to override

cytotoxicity and prevent cell death [14,49]. Besides enabling high

throughput approaches and powerful genetic and genomic

methods, further investigations in C. elegans -V. cholerae host

pathogen model will be important not only in identifying host

immune responses against VCC attack, but also in characterizing

the changes underlying pathogenesis at subcellular resolution in a

readily accessible way.

Acknowledgments

The authors would like to thank Jane Michalski and James B. Kaper of the

Center for Vaccine Development, School of Medicine, University of

Maryland for V. cholerae vaccine strains CVD110 and CVD109. The

authors are also indebted to Karla J. Fullner Satchel for hlyA deletion clone,

and Hulusi Cinar for critical reading of the manuscript. C. elegans strains

used in this paper were provided by the Caenorhabditis Genetics Center. We

are grateful to Nick Olejnick, Thomas Black, Oluwakemi Odusami, Mitzi

Aguilar for technical help.

Author Contributions

Conceived and designed the experiments: HNC MK ARD BM. Performed

the experiments: HNC MK ARD rs KB BM. Analyzed the data: HNC.

Contributed reagents/materials/analysis tools: BDT FY. Wrote the paper:

HNC.

References

1. Faruque SM, Chowdhury N, Kamruzzaman M, Dziejman M, Rahman MH, et al.

(2004) Genetic diversity and virulence potential of environmental Vibrio cholerae

population in a cholera-endemic area. Proc Natl Acad Sci U S A 101: 2123–2128.

2. Levine MM, Kaper JB, Herrington D, Ketley J, Losonsky G, et al. (1988) Safety,

immunogenicity, and efficacy of recombinant live oral cholera vaccines, CVD

103 and CVD 103-HgR. Lancet 2: 467–470.

Figure 5. hlyA expression is required for formation of vacuoles in the intestine. glp-4(bn2) worms were fed wild type strain E7946 and hlyA
deficient HNC45 for 48 hours at 20uC and examined under Nomarski optics. A) Intestinal vacuoles (as indicated by arrows) appear in the gut of V.
chlorea fed nematodes. B) Arrowhead marks a region of intestinal wall shrinkage, and C) the extent of a distended lumen is indicated by the white
line. Quantifications of these anatomical changes as represented by the percent of animals carrying these changes are shown in D) for intestinal
vacuoles, in E) for intestinal wall shrinkage, and in F) for distended lumen. Statistical significance is derived according to Student’s t test. n = 20.
doi:10.1371/journal.pone.0011558.g005

VCC Virulence in C. elegans

PLoS ONE | www.plosone.org 8 July 2010 | Volume 5 | Issue 7 | e11558



3. Ottaviani D, Leoni F, Rocchegiani E, Santarelli S, Masini L, et al. (2009) Prevalence

and virulence properties of non-O1 non-O139 Vibrio cholerae strains from seafood
and clinical samples collected in Italy. Int J Food Microbiol 132: 47–53.

4. Tacket CO, Losonsky G, Nataro JP, Cryz SJ, Edelman R, et al. (1993) Safety

and immunogenicity of live oral cholera vaccine candidate CVD 110, a delta
ctxA delta zot delta ace derivative of El Tor Ogawa Vibrio cholerae. J Infect Dis

168: 1536–1540.
5. Fullner Satchell KJ (2003) Toxins of Vibrio cholerae: Consensus and

Controversy. In: Hecht IG, ed. Microbial Pathogenesis and the Intestinal

Epithelial Cell. Washington, DC: ASM press. pp 481–502.
6. Alouf J, Popoff M, eds (2005) The Comprehensive Source Book of Bacterial

Protein Toxins. London: Academic Press.
7. Ichinose Y, Yamamoto K, Nakasone N, Tanabe MJ, Takeda T, et al. (1987)

Enterotoxicity of El Tor-like hemolysin of non-O1 Vibrio cholerae. Infect Immun
55: 1090–1093.

8. Ikigai H, Akatsuka A, Tsujiyama H, Nakae T, Shimamura T (1996) Mechanism

of membrane damage by El Tor hemolysin of Vibrio cholerae O1. Infect Immun
64: 2968–2973.

9. Olson R, Gouaux E (2005) Crystal structure of the Vibrio cholerae cytolysin (VCC)
pro-toxin and its assembly into a heptameric transmembrane pore. J Mol Biol

350: 997–1016.

10. Alm RA, Guerry P, Power ME, Lior H, Trust TJ (1991) Analysis of the role of
flagella in the heat-labile Lior serotyping scheme of thermophilic Campylobac-

ters by mutant allele exchange. J Clin Microbiol 29: 2438–2445.
11. Coelho A, Andrade JR, Vicente AC, Dirita VJ (2000) Cytotoxic cell vacuolating

activity from Vibrio cholerae hemolysin. Infect Immun 68: 1700–1705.
12. Figueroa-Arredondo P, Heuser JE, Akopyants NS, Morisaki JH, Giono-

Cerezo S, et al. (2001) Cell vacuolation caused by Vibrio cholerae hemolysin.

Infect Immun 69: 1613–1624.
13. Mitra R, Figueroa P, Mukhopadhyay AK, Shimada T, Takeda Y, et al. (2000)

Cell vacuolation, a manifestation of the El tor hemolysin of Vibrio cholerae. Infect
Immun 68: 1928–1933.

14. Saka HA, Gutierrez MG, Bocco JL, Colombo MI (2007) The autophagic

pathway: a cell survival strategy against the bacterial pore-forming toxin Vibrio

cholerae cytolysin. Autophagy 3: 363–365.

15. Zitzer A, Palmer M, Weller U, Wassenaar T, Biermann C, et al. (1997) Mode of
primary binding to target membranes and pore formation induced by Vibrio

cholerae cytolysin (hemolysin). Eur J Biochem 247: 209–216.
16. Olivier V, Haines GK, 3rd, Tan Y, Satchell KJ (2007) Hemolysin and the

multifunctional autoprocessing RTX toxin are virulence factors during intestinal

infection of mice with Vibrio cholerae El Tor O1 strains. Infect Immun 75:
5035–5042.

17. Aballay A, Ausubel FM (2002) Caenorhabditis elegans as a host for the study of host-
pathogen interactions. Curr Opin Microbiol 5: 97–101.

18. Kurz CL, Chauvet S, Andres E, Aurouze M, Vallet I, et al. (2003) Virulence

factors of the human opportunistic pathogen Serratia marcescens identified by in
vivo screening. EMBO J 22: 1451–1460.

19. Kurz CL, Ewbank JJ (2000) Caenorhabditis elegans for the study of host-pathogen
interactions. Trends Microbiol 8: 142–144.

20. Kurz CL, Ewbank JJ (2007) Infection in a dish: high-throughput analyses of
bacterial pathogenesis. Curr Opin Microbiol 10: 10–16.

21. Tan MW, Mahajan-Miklos S, Ausubel FM (1999) Killing of Caenorhabditis elegans

by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc
Natl Acad Sci U S A 96: 715–720.

22. Kurz CL, Ewbank JJ (2003) Caenorhabditis elegans: an emerging genetic model for
the study of innate immunity. Nat Rev Genet 4: 380–390.

23. Vaitkevicius K, Lindmark B, Ou G, Song T, Toma C, et al. (2006) A Vibrio

cholerae protease needed for killing of Caenorhabditis elegans has a role in protection
from natural predator grazing. Proc Natl Acad Sci U S A 103: 9280–9285.

24. Michalski J, Galen JE, Fasano A, Kaper JB (1993) CVD110, an attenuated Vibrio

cholerae O1 El Tor live oral vaccine strain. Infect Immun 61: 4462–4468.

25. Furste JP, Pansegrau W, Frank R, Blocker H, Scholz P, et al. (1986) Molecular

cloning of the plasmid RP4 primase region in a multi-host-range tacP expression
vector. Gene 48: 119–131.

26. Datta AR, Kaper JB, MacQuillan AM (1984) Shuttle cloning vectors for the
marine bacterium Vibrio parahaemolyticus. J Bacteriol 160: 808–811.

27. Nass R, Hamza I (2007) The nematode C. elegans as an animal model to explore

toxicology in vivo: Solid and growth culture conditions and compound exposure

parameters. Current Protocols in Toxicology. pp 1–17.

28. Sulston J, Hodgkin J (1988) Methods. In: Wood WB, ed. The Nematode

Caenorhabditis elegans New York: Cold Spring Harbor Laboratory Press.

29. Wood WB, ed (1988) The Nematode Caenorhabditis elegans. New York: Cold

Spring Harbor Laboratory Press.

30. Pulak R (2006) Techniques for analysis, sorting, and dispensing of C. elegans on

the COPAS flow-sorting system. Methods Mol Biol 351: 275–286.

31. Sprando RL, Olejnik N, Cinar HN, Ferguson M (2009) A method to rank order

water soluble compounds according to their toxicity using Caenorhabditis elegans, a

Complex Object Parametric Analyzer and Sorter, and axenic liquid media.

Food Chem Toxicol 47: 722–728.

32. Christie R, Atkins NE, Munch-Peterson E (1944) A note on a lytic phenomenon

shown by group B streptococi. Aust J Exp Biol Med Sci 22: 197–200.

33. Richardson K, Michalski J, Kaper JB (1986) Hemolysin production and cloning

of two hemolysin determinants from classical Vibrio cholerae. Infect Immun 54:

415–420.

34. Beyhan S, Tischler AD, Camilli A, Yildiz FH (2006) Differences in gene

expression between the classical and El Tor biotypes of Vibrio cholerae O1. Infect

Immun 74: 3633–3642.

35. Rader AE, Murphy JR (1988) Nucleotide sequences and comparison of the

hemolysin determinants of Vibrio cholerae El Tor RV79(Hly+) and RV79(Hly-)

and classical 569B(Hly-). Infect Immun 56: 1414–1419.

36. Moschioni M, Tombola F, de Bernard M, Coelho A, Zitzer A, et al. (2002) The

Vibrio cholerae haemolysin anion channel is required for cell vacuolation and

death. Cell Microbiol 4: 397–409.

37. Levine MM, Kaper JB, Herrington D, Losonsky G, Morris JG, et al. (1988)

Volunteer studies of deletion mutants of Vibrio cholerae O1 prepared by

recombinant techniques. Infect Immun 56: 161–167.

38. Tacket CO, Kotloff KL, Losonsky G, Nataro JP, Michalski J, et al. (1997)

Volunteer studies investigating the safety and efficacy of live oral El Tor Vibrio

cholerae O1 vaccine strain CVD 111. Am J Trop Med Hyg 56: 533–537.

39. Tacket CO, Losonsky G, Nataro JP, Comstock L, Michalski J, et al. (1995)

Initial clinical studies of CVD 112 Vibrio cholerae O139 live oral vaccine: safety

and efficacy against experimental challenge. J Infect Dis 172: 883–886.

40. Bae T, Banger AK, Wallace A, Glass EM, Aslund F, et al. (2004) Staphylococcus

aureus virulence genes identified by bursa aurealis mutagenesis and nematode

killing. Proc Natl Acad Sci U S A 101: 12312–12317.

41. Marroquin LD, Elyassnia D, Griffitts JS, Feitelson JS, Aroian RV (2000) Bacillus

thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the

nematode Caenorhabditis elegans. Genetics 155: 1693–1699.

42. Sifri CD, Begun J, Ausubel FM, Calderwood SB (2003) Caenorhabditis elegans as a

model host for Staphylococcus aureus pathogenesis. Infect Immun 71: 2208–2217.

43. Ogierman MA, Fallarino A, Riess T, Williams SG, Attridge SR, et al. (1997)

Characterization of the Vibrio cholerae El Tor lipase operon lipAB and a protease

gene downstream of the hly region. J Bacteriol 179: 7072–7080.

44. Ou G, Rompikuntal PK, Bitar A, Lindmark B, Vaitkevicius K, et al. (2009)

Vibrio cholerae cytolysin causes an inflammatory response in human intestinal

epithelial cells that is modulated by the PrtV protease. PLoS One 4: e7806.

45. Aroian R, van der Goot FG (2007) Pore-forming toxins and cellular non-

immune defenses (CNIDs). Curr Opin Microbiol 10: 57–61.

46. Gurcel L, Abrami L, Girardin S, Tschopp J, van der Goot FG (2006) Caspase-1

activation of lipid metabolic pathways in response to bacterial pore-forming

toxins promotes cell survival. Cell 126: 1135–1145.

47. Huffman DL, Abrami L, Sasik R, Corbeil J, van der Goot FG, et al. (2004)

Mitogen-activated protein kinase pathways defend against bacterial pore-

forming toxins. Proc Natl Acad Sci U S A 101: 10995–11000.

48. Bellier A, Chen CS, Kao CY, Cinar HN, Aroian RV (2009) Hypoxia and the

hypoxic response pathway protect against pore-forming toxins in C. elegans. PLoS

Pathog 5: e1000689.

49. Gutierrez MG, Saka HA, Chinen I, Zoppino FC, Yoshimori T, et al. (2007)

Protective role of autophagy against Vibrio cholerae cytolysin, a pore-forming toxin

from V. cholerae. Proc Natl Acad Sci U S A 104: 1829–1834.

VCC Virulence in C. elegans

PLoS ONE | www.plosone.org 9 July 2010 | Volume 5 | Issue 7 | e11558


