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Abstract: Rapid and efficient analysis of fluoride ion is crucial to providing
key information for fluoride ion hazard assessment and pollution management.
In this study, we synthesized one symmetrical structure called 1,4-bis(4,5-diphenyl-
1H-imidazol-2-yl)benzene (1a) and two asymmetrical structures, namely 2-(4-(4,5-diphenyl-
1H-imidazol-2-yl)phenyl)-1H-phenanthro(9,10-d)imidazole (1b) and 2-(4-(4,5-diphenyl-1H-imidazol-
2-yl)phenyl)-1H-imidazo(4,5-f )(1,10)phenanthroline (1c), which served as an efficient anion sensor
for fluoride ion over a wide range of other anions (Cl−, Br−, I−, NO3

−, ClO4
−, HSO4

−, BF4
−, and

PF6
−) owing to imidazole group in the main backbone. The absorption intensity of compound 1a at

λmax 358 nm slightly decreased; however, a new band at λmax 414 nm appeared upon the addition
of fluoride ion, while no evident change occurred upon the addition of eight other anions. The
photoluminescence intensity of compound 1a at λmax 426 nm was nearly quenched and fluorescence
emission spectra were broadened when fluoride ion was added into dimethyl sulfoxide (DMSO)
solution of compound 1a. Compared with the optical behaviors of the DMSO solution of compound
1a in the presence of Bu4N+F−, compounds 1b and 1c exhibited considerable sensitivity to fluoride
ion due to the increase in coplanarity. Furthermore, compared with the fluorescence emission
behaviors of the DMSO solutions of compounds 1a and 1b in the presence of Bu4N+F−, compound
1c exhibited the most significant sensitivity to fluoride ion due to the charge transfer enhancement.
Consequently, the detection limits of compounds 1a–1c increased from 5.47 × 10−6 M to 4.21 × 10−6

M to 9.12 × 10−7 M. Furthermore, the largest red shift (75 nm) of the DMSO solution compound 1c in
the presence of fluoride ion can be observed. Our results suggest that the increase in coplanarity
and the introduction of electron-withdrawing groups to the imidazole backbone can improve the
performance in detecting fluoride ion.
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1. Introduction

The field of anion recognition and sensing has attracted considerable attention in the past decades
because different anions play different functions in biological and environmental processes and
either inadequate or excessive anions would be harmful [1–12]. Among all anions, fluoride ion
has been extensively studied because it plays a vital role in medicine, biology, and environmental
sciences [13–25]. Therefore, an efficient analysis of fluoride ion is crucial to providing key information
for fluoride ion hazard assessment and pollution management. Many groups have made substantial
efforts to design and synthesize optical sensors of fluoride ion in recent years [26–32]. Among these
optical sensors, imidazole-based optical sensors have been extensively investigated because these
sensors are easily obtained and exhibit distinctive fluorescence property and strong interaction between
N–H fragment and fluoride ion [33–40].
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In this study, we synthesized one symmetrical structure called 1,4-bis(4,5-diphenyl-
1H-imidazol-2-yl)benzene (1a) and two asymmetrical structures, namely 2-(4-(4,5-
diphenyl-1H-imidazol-2-yl)phenyl)-1H-phenanthro(9,10-d)imidazole (1b) and 2-(4-(4,5-diphenyl-
1H-imidazol-2-yl)phenyl)-1H-imidazo(4,5-f )(1,10)phenanthroline (1c), which have been further
used as optical sensors for fluoride ion. The relationship between molecular structures and optical
properties for the analysis of fluoride ion has been investigated in terms of five aspects: (1) Compared
with mono-imidazole derivatives, the fluorescence quantum yields of bisimidazole are higher; (2) In
view of the influence of molecular rigidity on optical performance for the analysis of fluoride ion, two
adjacent phenyl rings are connected through C–C bond to increase molecular coplanarity; (3) The
introduction of two sp2-hybridized N atoms as electron-withdrawing substituents into the molecular
backbone is intended for the investigation of the electronic effects of substituents; (4) As shown in
Scheme S2 (Supplementary Materials), compared with compound 1a, compound 1b exhibits better
coplanarity which is more favorable for carrier transport and then improves the detection limit of
sensors. Phenanthrene group was used as an electron donor in compound 1b and then charge transfer
can easily occur from phenanthrene group (donor) to imidazole group (acceptor). However, when
phenanthrene group is changed to 1,10-phenanthroline group, charge transfer cannot easily occur
from 1,10-phenanthroline group to imidazole group because 1,10-phenanthroline group is an stronger
electron accepor, compared with imidazole group; (5) When compounds 1a–1c dimethyl sulfoxide
(DMSO) solution are added with excess fluoride ion, deprotonation of imidazole group occur which
changes imidazole group as an electron donor to as an electron acceptor [33,41], leading to different
charge transfer process of compounds 1b and 1c. Thus, the optical properties of compounds 1a–1c
DMSO solution for the analysis of fluoride ion influenced by the molecular structures and electronic
properties of substitute groups are investigated in detail.

2. Results and Discussion

2.1. Synthesis of Compounds 1a–1c

Scheme 1 depicts the synthetic procedure for the preparation of compounds 1a–1c according to
previous studies [42,43]. The two adjacent phenyl rings of compound 1a were connected through
C–C bond to form compound 1b, which exhibited a rigid structure and high degree of coplanarity,
to investigate the relationship between molecular structures and optical behaviors. Furthermore, two
sp2-hybridized N atoms as electron-withdrawing substituents were introduced into compound 1b
to form compound 1c to study the electronic effects of substituents. Consequently, compound 1a
displayed a symmetrical structure, whereas compounds 1b and 1c had an asymmetrical structure.
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2.2. Optical Properties of Compounds 1a–1c

Figure 1a illustrates the normalized absorption spectra of compounds 1a–1c in DMSO solution.
The absorption spectrum of compound 1a exhibits two prominent bands at λmax 296 nm and 358 nm,
which can be ascribed to a localized aromatic π-π* transition and the absorption of the entire molecule,
respectively [3,33]. Compared with the absorption spectrum of compound 1a, the long peak of
compound 1b is red shifted from 358 nm to 372 nm with two shoulder peaks at λmax 352 nm and
390 nm because the structure of compound 1b is more coplanar than that of compound 1a due to
the inhibition of C–C single bond rotation of compound 1b. Although compound 1c possesses two
sp2-hybridized N atoms as electron-withdrawing substituents, the long peak of compound 1c is
slightly blue shifted from 372 nm (the absorption peak of compound 1b) to 367 nm with a shoulder
peak at λmax 385 nm. This phenomenon is similar to that presented in a previous report regarding
symmetrical bisimidazole systems [44]. Molar absorption coefficients of compounds 1a–1c are 6.0 × 104,
5.2 × 104, and 5.2 × 104 L mol−1 cm−1, respectively. Compounds 1a–1c emit a strong blue light in the
DMSO solution, and corresponding emission spectra are shown in Figure 1b. As shown in Figure 1b,
two emission bands exist at λem = 406 nm and λem = 426 nm under excitation at λex 358 nm for
compound 1a, λem = 416 nm and λem = 436 nm under excitation at λex 372 nm for compound 1b,
and λem = 438 nm under excitation at λex 367 nm for compound 1c. The long emission wavelength is
red shifted from compound 1a to compound 1b to compound 1c due to the increase in coplanarity,
which can lead to the expansion of the π electron delocalization.
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Although imidazole derivatives have been used as chemosensors for fluoride ion, systematic
studies on the effects of coplanarity and electron-withdrawing substituents have rarely been reported.
Figure 2a exhibits the absorption spectra of the DMSO solution of compound 1a in the presence of nine
anions (F−, Cl−, Br−, I−, NO3

−, ClO4
−, HSO4

−, BF4
−, and PF6

−, 20 equiv.). The absorption intensity
at λmax 358 nm slightly decreases, but a new band at λmax 414 nm appears, while no evident change
occurred upon the addition of eight other anions. The new band at λmax 414 nm is attributed to the
variations of the electronic transition due to the occurrence of a strong interaction between fluoride ion
and N–H groups. As shown in Scheme 2, the imidazole group serves as an electron acceptor before the
addition of Bu4N+F−, but the imidazole group acts as an electron donor after the addition of Bu4N+F−,
which leads to the charge transfer enhancement. The titration absorption spectra of the DMSO solution
of compound 1a with the addition of different amounts of Bu4N+F− have been examined to verify
this phenomenon, as shown in Figure 2d. The absorption intensity at λmax 358 nm decreases, and the
absorption intensity at λmax 414 nm steadily increases with the increase in the amount of Bu4N+F−.
Meanwhile, the absorption peak at λmax 358 nm is red shifted to 378 nm when 100 equiv. Bu4N+F− is
added into the DMSO solution of compound 1a, suggesting that compound 1a can be a candidate as
a chemosensor for fluoride ion. The absorption behavior of the DMSO solution of compound 1b in
the presence of Bu4N+F− is similar to that of the DMSO solution of compound 1a. However, a new
band at λmax 420 nm can be easily observed. Compared with the absorption behaviors of the DMSO
solutions of compounds 1a and 1b in the presence of Bu4N+F−, the absorption behavior of the DMSO
solution of compound 1c is different to some extent. The absorption peak at λmax 367 nm is red shifted
with the increase in the amount of Bu4N+F−.
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The fluorescence emission behaviors of the DMSO solutions of compounds 1a–1c in the presence of
nine anions (F−, Cl−, Br−, I−, NO3

−, ClO4
−, HSO4

−, BF4
−, and PF6

−, 20 equiv.) are also investigated,
and the corresponding emission spectra are shown in Figure 3. As shown in Figure 3a,d, the
photoluminescence (PL) intensity of compound 1a is slightly quenched, and the fluorescence emission
spectra are slightly broadened in the presence of fluoride ion (20 equiv.), while no evident fluorescence
change occurred in the presence of eight other anions. Figure 3g depicts the titration emission
spectra of the DMSO solution of compound 1a with the addition of different amounts of Bu4N+F−.
The PL intensity at λmax 426 nm is nearly quenched, and the fluorescence emission spectra are further
broadened when 100 equiv. Bu4N+F− are added into the DMSO solution of compound 1a. The UV/Vis
absorption and fluorescence emission spectra of compound 1a shows a fact that firstly formation of
N-H . . . F hydrogen bond and subsequent deprotonation with adding excess Bu4N+F− is responsible
for the behaviour of compound 1a (Scheme 2). Figure S11 shows that the linear regression equation
of compound 1a was y = 4.781 − 0.00347x, and the slope was −0.00347 (Supplementary Materials).
The detection limit of compound 1a was calculated to be 5.47 × 10−6 M with the equation: detection
limit = 3Sd/$, where Sd is the standard deviation of blank measurement, and $ is the slope between
the fluorescence intensity versus fluoride ion concentration [45,46]. The emission behavior of the
DMSO solution of compound 1b in the presence of Bu4N+F− is similar to that of the DMSO solution
of compound 1a. However, the PL intensity of compound 1b is quenched, and a new band at λmax

470 nm appears in the presence of fluoride ion (20 equiv.). The detection limit of compound 1b was
calculated to be 4.21 × 10−6 M according to Figure S12. Compared with the emission behaviors of
the DMSO solutions of compounds 1a and 1b in the presence of Bu4N+F−, the emission behavior of
the DMSO solution of compound 1c is different. The PL intensity of compound 1c at λmax 438 nm is
dramatically quenched, and a new band at λmax 513 nm is easily observed in the presence of fluoride
ion (20 equiv.). Furthermore, the PL peak of compound 1c at λmax 438 nm disappears when 50 equiv.
Bu4N+F− are added into the DMSO solution of compound 1c. The detection limit of compound 1c was
calculated to be 9.12 × 10−7 M according to Figure S13. As shown in Scheme 2, the imidazole group
acts as as an electron acceptor before the addition of Bu4N+F−, charge transfer can easily occur from
diphenyl (for compound 1a) or phenanthrene (for compound 1b) group (donor) to imidazole group
(acceptor) but charge transfer can not easily occur from 1,10-phenanthroline group (for compound 1c)
to imidazole group because 1,10-phenanthroline group is an stronger electron accepor. While the
imidazole group acts an electron donor after the addition of excess Bu4N+F−, which leads to the charge
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transfer enhancement from the imidazole group to 1,10-phenanthroline. Therefore, the largest red shift
(75 nm) of the DMSO solution of compound 1c is in the presence of Bu4N+F−.Molecules 2017, 22, 1519 6 of 9 
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3. Conclusions

In summary, one symmetrical structure (1a) and two asymmetric structures (1b and 1c) were
successfully synthesized. Interestingly, compounds 1a–1c can act as efficient anion sensors for fluoride
ion over a wide range of other anions (Cl−, Br−, I−, NO3

−, ClO4
−, HSO4

−, BF4
− and PF6

−) owing
to the imidazole group in the main backbone. Compared with the optical behaviors of the DMSO
solution of compound 1a in the presence of Bu4N+F−, compounds 1b and 1c exhibit considerable
sensitivity to fluoride ion due to the increase in the coplanarity. Furthermore, compared with the
fluorescence emission behaviors of the DMSO solutions of compounds 1a and 1b in the presence of
Bu4N+F−, compound 1c exhibits the most significant sensitivity to fluoride ion due to charge transfer
enhancement. Consequently, the detection limits of compounds 1a–1c increase from 5.47 × 10−6 M
to 4.21 × 10−6 M to 9.12 × 10−7 M. Our results suggest that the increase in the coplanarity and the
introduction of electron-withdrawing groups to the imidazole backbone can improve the performance
in detecting fluoride ion. We will introduce poly(ethylene glycol) methyl ether into start materials to
improve the solubily of target compounds in water in our future work.

Supplementary Materials: Supplementary Materials are available online. Figure S1. 1H NMR spectrum of
compound 4-(4,5-diphenyl-1H-imidazol-2-yl)benzaldehyde in DMSO-d6. Figure S2. 1H NMR spectrum of
compound 1a in DMSO-d6. Figure S3. 1H NMR spectrum of compound 1b in DMSO-d6. Figure S4. 1H NMR
spectrum of compound 1c in DMSO-d6. Figure S5. MS spectrum of compound 1a. Figure S6. MS spectrum
of compound 1b. Figure S7. MS spectrum of compound 1c. Figure S8. Correlation curves of compound 1a at
358 nm and 414 nm adding different equivalents of F−. Figure S9. Correlation curves of compound 1b at 372 nm
and 420 nm adding different equivalents of F−. Figure S10. Correlation curves of compound 1c at 367 nm and
380 nm adding different equivalents of F−. Figure S11. Change in PL intensity of compound 1a (10 uM) upon
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titration with F−. Figure S12. Change in PL intensity of compound 1b (10 uM) upon titration with F−. Figure S13.
Change in PL intensity of compound 1c (10 uM) upon titration with F−.
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