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A B S T R A C T

Background: IFITM3 is a viral restriction protein that enables sequestration of viral particles and subsequent
trafficking to lysosomes. Recently, IFITM3 upregulation was found to induce gamma – secretase activity and the
production of amyloid beta. The purpose of this study was to determine whether dysregulation of IFITM3-
dependent pathways was present in neurons and peripheral immune cells donated by AD patients. As a sec-
ondary aim, we sought to determine whether these perturbations could be induced by viruses, including SARS-
CoV-2.
Methods: Gene set enrichment analyses (GSEA) previously performed on publicly available transcriptomic data
from tissues donated by AD patients were screened for enriched pathways containing IFITM3. Subsequently,
signature containing IFITM3, derived from entorhinal cortex (EC) neurons containing neurofibrillary tangles
(NFT) was screened for overlap with curated, publicly available, viral infection-induced gene signatures
(including SARS-CoV-2).
Results: GSEA determined that IFITM3 gene networks are significantly enriched both in CNS sites (entorhinal and
hippocampal cortices) and in peripheral blood mononuclear cells (PBMCs) donated by AD patients. Overlap
screening revealed that IFITM3 signatures are induced by several viruses, including SARS-CoV, MERS-CoV, SARS-
CoV-2 and HIV-1 (adjusted p-value <0.001; Enrichr Database).
Discussion: A data-driven analysis of AD tissues revealed IFITM3 gene signatures both in the CNS and in peripheral
immune cells. GSEA revealed that an IFITM3 derived gene signature extracted from EC/NFT neurons overlapped
with those extracted from publicly available viral infection datasets, including SARS-CoV-2. Our results are in line
with currently emerging evidence on IFITM3’s role in AD, and SARS-CoV-2’s potential contribution in the setting
of an expanded antimicrobial protection hypothesis.
1. Background Among potential crossroads between amyloidogenesis and immunity
The antimicrobial protection hypothesis of Alzheimer’s disease (AD)
describes a model of amyloidogenesis resulting from chronic activation of
the innate immune cascades; this activation is not attributed to any single
pathogen per se, but its progression to chronicity is considered the driver of
beta-amyloid accumulation and its subsequent deposition (Moir et al.,
2018).
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has been recently been found in interferon-induced transmembrane
protein 3 (IFITM3) expression (Hur et al., 2020); Upregulation of IFITM3,
a viral particle sequestration protein, was found to be a characteristic of
neurons and astrocytes displaying higher γ-secretase, and consequently,
increased amyloid beta (Aβ) generation (Hur et al., 2020).

In a recent study from our group, where we examined a data-driven,
in silico model of tissue interaction in AD, several infection- and immune-
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Table 1
Gene signatures containing IFITM3 in the Vavougios et al. study, 2020.

Gene Ontology and corresponding
dataset

Reference Hits Adjusted P-
value

AD EC – NFT (GDS2795)

response_to_type_I_interferon(5) http://amigo
.geneontolo
gy.org/amigo
/term
/GO:0034340

84 0.00200343

cellular_response_to_type_I_interferon(6) http://amigo
.geneontolo
gy.org/amigo
/term
/GO:0071357

82 0.00229691

type_I_interferon_signaling_pathway(7) http://amigo
.geneontolo
gy.org/amigo
/term
/GO:0060337

82 0.00229691

AD PMBC (GDS2601)

multi_organism_metabolic_process(3) http://amigo
.geneontolo
gy.org/amigo
/term
/GO:0044033

144 0.000712085

viral_gene_expression(4) http://amigo
.geneontolo
gy.org/amigo
/term
/GO:0019080

139 0.000712085

viral_transcription(5) http://amigo
.geneontolo
gy.org/amigo
/term
/GO:0019083

130 0.0110638

AD HC (GDS810)
viral_gene_expression(4) http://amigo

.geneontolo
gy.org/amigo
/term
/GO:0019080

184 0.0131733

GDSXXX or GDSXXXX format represents the Gene Expression Omnibus (GEO)
dataset identifier used in these analyses. “Hits” refers to the number of genes
comprising each signature.AD: Alzheimer’s Disease; PBMC: Peripheral Blood
Mononuclear Cells; NEC: Normal Elderly Controls; EC: Entorhinal Cortex; NFT:
Neurofibrillary tangles; FDR: False Discovery Rate; GO: Gene Ontology.
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related gene networks were found to be overlapping between the central
nervous system and the peripheral immune system (Vavougios et al.,
2020). We hypothesize that (a) IFITM3 is differentially expressed in both
the CNS and the peripheral immune system in AD and that (b) viral in-
fections, including SARS-CoV-2 can induce IFITM3’s expression.

2. Materials and methods

In a previous study, we had identified immune and infection-related
pathways overlapping between the peripheral immune system and the
CNS in a data driven manner (Vavougios et al., 2020). For the con-
struction of our model, we had used gene expression data from peripheral
blood mononuclear cells (PBMC), entorhinal cortex neurons containing
neurofibrillary tangles (EC-NFT), and hippocampal cortex neurons,
available from the National Institutes of Health (NIH) public repository,
Gene Expression Omnibus (GEO). An overview of the datasets included in
our analysis is presented on supplementary Table 1. Detailed descriptions
of each study are found elsewhere (Blalock et al., 2004; Maes et al.,
2007)(Dunckley et al., 2006).

For this study, we scrutinized these previously generated data for
pathways containing IFITM3. Subsequently, we used an EC-NFT gene
signature containing IFITM3 in order to determine whether IFITM3’s
expression could be upregulated via viral infections, including SARS-
CoV-2. For this purpose, we performed gene set enrichment analysis
via the Enrichr web platform (Kuleshov et al., 2016), screening the
“COVID-19 related gene sets”, “Virus Perturbations Up” modules Addi-
tionally, the DisGeNET (Pi~nero et al., 2017) and KEGG (Kanehisa et al.,
2017) pathways subsets were also scrutinized, in order to determine
significant enrichments with other disease and specific pathways,
respectively.

3. Results

In our original data, IFITM3 which was part of several significantly
enriched gene ontologies (GOs) in the PBMC dataset, the entorhinal
cortex dataset and a hippocampal cortex dataset (Benjamini – Hochberg
adjusted p-value <0.05; Table 1). These pathways were associated with
interferon signaling and viral gene expression (Table 1); Several genes
comprising these pathways overlapped between different tissues donated
by AD patients (PBMC, HC, EC; See Venn Diagram (Khan and Mathelier,
2017), Fig. 1), as per the tissue interaction concept introduced by our
study (Vavougios et al., 2020). In order to determine whether IFITM3
dysregulation could arise secondary to viral infection, we used an AD
NFT-EC gene signature to determine whether it overlaps with upregu-
lated genes from viral perturbation experiments in Gene Expression
Omnibus (GEO), available via the Enrichr web service (under the GEO
Virus Perturbations UP module) (Kuleshov et al., 2016). Enrichment
analyses revealed that several predominantly respiratory pathogens,
including SARS-CoV-2, could significantly upregulate IFITM3 (Table 2 –

5; See also Supplementary Materials 1). Aside from viral infections,
DisGeNET enrichments included autoimmune diseases and neoplasms,
with a notable enrichment of multiple sclerosis (Table 4 and Supple-
mentary Materials 1) (see Fig. 2) (see Table 5).

4. Discussion

SARS-CoV-2 impact on the CNS is increasingly recognized in the
literature, and its potential specific relationship with AD is the subject of
ongoing studies (Lempriere, 2020). Within the conceptual framework of
the antimicrobial protection hypothesis, SARS-CoV-2’s interaction with
IFITM3 is even more relevant.

4.1. A proposed IFITM3-driven feed-forward loop in AD pathogenesis

The IFITM family of proteins have been previously recognized as
important regulators of MERS-CoV-2 and SARS-CoV-2 virulence, either
2

by physiological restriction of their entry, or as infection enhancers,
following loss-of-function mutations (Zhao et al., 2018). IFITM3 was
found to be upregulated in SARS-CoV-2 -infected cells (Shi et al., 2020;
Sardar et al., 2020); furthermore, specific polymorphisms, such as the
rs12252-C have been identified as severity markers for COVID-19 (Zhang
et al., 2020). A current concept for SARS-CoV-2’s immunoevasion of
IFITM3 sequestration involves cleavage by TMPRSS2 (Zheng et al.,
2020). Recently, yet another such host factor was identified in NRP1
(Cantuti-Castelvetri et al., 2020), indicating another CNS-specific inter-
action pathway. Interestingly, both IFITM3 and NRP1 have been iden-
tified as neuroinflammation-induced in a cellular model of AD (Correani
et al., 2017).

As a viral restriction protein, endocytic vesicle IFITM3 tags viral
particles for lysosomal fusion (Spence et al., 2019). Viral particle re-
striction via IFITM3 trafficking is a second line of defense active against a
variety of pathogens including HIV-1, Dengue, Ebola, Influenza A (IAV)
and CMV, among others (Wellington et al., 2019).

Several components of antiviral immunity have recently been
recognized as per their potential contribution in the pathogenesis of AD
and neuroinflammation. Type I interferon (IFNA) responses, while
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Fig. 1. Venn diagram displaying common genes
between signatures. Each distinct colored shape
corresponds to a gene signature, with the numbers
in their intersection representing the number of
overlapping genes in each signature. AD NFT – EC
(a): response_to_type_I_interferon(5); AD NFT – EC
(b): cellular_response_to_type_I_interferon(6); AD
NFT – EC (c): type_I_interferon_signaling_path-
way(7); AD PBMC (a): multi_-
organism_metabolic_process(3); AD PBMC (b):
viral_gene_expression(4) AD PBMC (c): viral_tran-
scription(5); AD HC: viral_gene_expression(4). AD:
Alzheimer’s Disease; PBMC: Peripheral Blood
Mononuclear Cells; NEC: Normal Elderly Controls;
EC: Entorhinal Cortex; NFT: Neurofibrillary tangles;
FDR: False Discovery Rate; GO: Gene Ontology.
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pivotal in restricting viruses from propagating within the CNS (Roy et al.,
2020), display dose-dependent neurotoxicity via both IFNAR- and
NMDAR-initiated cascades (Kessing and Tyor, 2015). This paradigm has
been studied in the HIV-associated neurocognitive disorder (HAND)
spectrum, where cognitive impairment is considered to progress via
accumulating exposure of the CNS to IFNAR-signaling (Thaney and Kaul,
2019).

In the setting of AD, IFN responses were recently shown to be elicited
by Aβ-Nucleic Acid (NA) complexes, with IFITM3 among the IFN-gene
signatures detected (Roy et al., 2020). The immunogenicity and of
these Aβ-NА complexes and the resulting microglial activation appears to
be independent of the source of NA (i.e. whether or not they are xeno-
biotic). This concept, along with its close connection with IFN responses
is another finding of both our current analyses (Cytosolic DNA-sensing
pathway, adj. p-value ¼ 3.755e�30; Table 3) and our previous study
(Vavougios et al., 2020).

In this setting, Аβ-NА complexes may act as the immunogenic sub-
strate of neuroinflammation propagating across the CNS in AD, a hy-
pothesis supported by a correlation between IFN signaling upregulation
(including IFITM3) and Braak staging in the study of Roy et al. (2020).
This observation would further outline a positive feedback loop, where
Aβ-NА induces IFITM3 (Roy et al., 2020), and IFITM3 furthermore in-
duces Aβ production2*. Notably, this model can readily account for the
increased AD risk conferred by HSV-1 neuroinfection (Cairns et al.,
2020), and may be further incorporate lysosomal/autophagosomal
dysfunction noted in AD. Specifically, HSV-1 induced IFITM3 upregula-
tion (Nicholl et al., 2000) in the brain during neuroinfection (Cairns
et al., 2020), would not lead to viral clearance in the case of perturbed
IFITM3, i.e. unsuccessful lysosomal fusion (Orr and Oddo, 2013). In this
3

sense, the discovery of HSV-1 genomes entangled in amyloid-β plaques in
the CNS (Bearer, 2012) would reflect the debris of a defunct IFITM3
shuttling system upregulated by the positive feedback of unresolved viral
infection, and acting as an Aβ-NA immunogenic template, inducing
neuroinflammation.

4.2. A hypothesis on the potential consequences of SARS-CoV-2-mediated
induction of IFITM3 signaling in the CNS

SARS-CoV-2’s modus operandi as a neuroinvasive pathogen provides
further insight as to how viruses may trigger or sustain the proposed
IFITM3 feedback loop. Even indirectly, SARS-CoV-2 may trigger IFITM3
by eliciting delayed and IFN responses (Meinhardt et al., 2021). In the
scenario of transcribial neuroinvasion (Lei et al., 2020), SARS-CoV-2
would gain access to the entorhinal cortex. SARS-CoV-2 neuroinvasion
has been shown to induce neurodegeneration in 3D brain organoids,
pathologically associated with altered subcellular localization of hyper-
phosphorylated tau (Ramani et al., 2020). Interestingly, SARS-CoV-2
cellular entry and host-virus interactions further extent from IFITM3 to
regulators of tau aggregation and phosphorylation, such as FYN (Briner
et al., 2020; Glebov, 2020).

Direct and indirect induction of IFITM3 by neuroinvasion and IFN
responses correspondingly, further contributed by Aβ oligomerization
and Aβ-NА (both viral and i.e. fragments from neuronal apoptosis or
genotoxic stress) would finally serve to evolve an in situ tauopathy to a
distal Aβ-synaptopathy. Up to this point, our proposed model reiterates
previously described mechanisms of HSV-1 modus operandi in β-amy-
loidogenesis (Bearer, 2012), with several important differences
however.



Fig. 2. Schematic representation of the proposed IFITM3 feed forward mechanism in AD pathogenesis. Within this concept, viral infection initially upregulates IFITM3
(a) directly, via physical interactions between IFITM3 and viral particles (b) via promoting IRF3-mediated IFN cascades. IFITM3 in turn modulates γ-secretase towards
increased production of Аβ oligomers, while other interactors such as FYN, which are also implicated in antiviral responses, promote Tau hyperphosporylation and
aggregation. IFITM3 and Tau containing exosomes, in conjunction with Аβ oligomers would then propagate a neuroinflammatory signal from the primary infection
site to other distal, non-infected sites via transsynaptic uptake. Aβ and nucleic acid (NA) complexes (Аβ-NА) would serve to stimulate microglia and trigger further
inflammation. Both viral (exoNA) and endogenous (endoNA) nucleic acids could contribute to this process, either as a result of the viral lifecycle or as apoptotic debris.
Prolonged infections, lifelong latency (i.e. HSV-1) or accumulating infectious burden on the primary infection site (i.e. the entorhinal cortex) could provide feed-
forward neuroinflammatory stimulus even in the absence of an active pathogen. In a similar manner, intrinsic defects (i.e. pathogenic variants of the amyloid pro-
cessing machinery, autophagic cascades and so forth) in either the neuroinflammatory induction and response aspect, autophagy or cellular bioenergetics would serve
as enhancers, reinforcing the noxious biological effects of e.g. IFITM3 uptake by non-infected neurons.

Table 2
Gene set enrichment analysis, scrutinizing the “COVID-19 related gene sets”
subset of the Enrichr database.

Index Name P-value Adjusted p-
value

1 MERS-CoV Top 200 Predicted Genes from
Geneshot GeneRIF via AutoRIF Co-Occurrence
Gene Similarity

6.993e-
67

1.434e-64

2 SARS-CoV perturbation Up Genes bronchial
epithelial 2B4 from GSE17400:GPL570:6

3.746e-
56

3.840e-54

3 Up-regulated by SARS-CoV-2 in Calu-3 24hr
from GSE148729

1.243e-
46

8.495e-45

4 Up-regulated by SARS-CoV-1 in Calu-3 from
GSE148729

8.228e-
42

4.217e-40

5 SARS perturbation Up Genes airway epithelium
(HAE) from GSE47961:GPL6480:4

5.631e-
38

2.309e-36

6 SARS perturbation Up Genes airway epithelium
(HAE) from GSE47961:GPL6480:3

1.290e-
37

4.407e-36

7 Up-regulated by SARS-CoV-2 2 MOI in Calu-3
from GSE147507

4.427e-
37

1.134e-35

8 Up-regulated by SARS-COV-2 infection of
Calu3 cells

4.427e-
37

1.296e-35

9 SARS-CoV perturbation Up Genes bronchial
epithelial 2B4 from GSE17400:GPL570:3

6.619e-
37

1.508e-35

10 SARS perturbation Up Genes airway epithelium
(HAE) from GSE47961:GPL6480:6

1.825e-
36

3.740e-35

Results have been truncated to the first 10 entries. For this analysis, the AD
Entorhinal cortex gene signature designated as “response_to_ty-
pe_I_interferon(5)” was supplied to Enrichr.

Table 3
Gene set enrichment analysis, scrutinizing the “GEO Virus Perturbations UP”
subset of the Enrichr database.

Index Name P-value Adjusted p-value

1 A-CA-04-2009(H1N1) 12Hour
GSE47960

1.345e-
38

4.345e-36

2 SARS-BatSRBD 72Hour GSE47960 6.268e-
37

1.012e-34

3 SARS-CoV 96Hour GSE47961 1.719e-
30

1.388e-28

4 A-CA-04-2009(H1N1) 6Hour GSE47961 1.719e-
30

1.851e-28

5 SARS-ddORF6 72Hour GSE47961 6.086e-
29

2.457e-27

6 RSV 48Hour GSE32138 6.086e-
29

2.808e-27

7 A-CA-04-2009(H1N1) 18Hour
GSE37571

6.086e-
29

3.276e-27

8 A-CA-04-2009(H1N1) 12Hour
GSE47961

6.086e-
29

3.932e-27

9 hMPV 24Hour GSE8961 2.035e-
27

6.573e-26

10 SARS-dORF6 72Hour GSE47960 2.035e-
27

7.304e-26

Results have been truncated to the first 10 entries. For this analysis, the AD
Entorhinal cortex gene signature designated as “response_to_ty-
pe_I_interferon(5)” was supplied to Enrichr.
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On its own right, IFITM3 induction is not restricted to intracellular
cascades. IFITM3 has been previously shown to be a mutant-tau exclusive
cargo in AD exosomes (Podvin et al., 2020), whereas IFITM3-loaded
4

exosome trafficking from infected to non-infected cells has been shown
to confer resistance to DENV infection (Zhu et al., 2015). On these pre-
mises, IFITM3, exosomal hyperphosphorylated tau (Wang et al., 2017)
and Аβ-NА may constitute a feed-forward signal expanding from a pri-
mary site of neuroinfection (i.e. the entorhinal cortex) via afferent



Table 4
Gene set enrichment analysis, scrutinizing the “DisGeNET” subset of the Enrichr
database.

Name P-value Adjusted p-value

1 Virus Diseases 6.209e-39 1.421e-35
2 Influenza 5.146e-33 5.890e-30
3 Hepatitis C 6.045e-30 4.612e-27
4 Infection 3.631e-23 2.078e-20
5 West Nile viral infection 5.699e-22 2.609e-19
6 Autoimmune Diseases 8.919e-21 3.403e-18
7 Hepatitis C, Chronic 1.657e-20 5.418e-18
8 Lupus Erythematosus, Systemic 3.981e-20 1.139e-17
9 Vesicular Stomatitis 2.520e-19 6.408e-17
10 Multiple Sclerosis 3.907e-18 8.943e-16

Results have been truncated to the first 10 entries. For this analysis, the AD
Entorhinal cortex gene signature designated as “response_to_ty-
pe_I_interferon(5)” was supplied to Enrichr.

Table 5
Gene set enrichment analysis, scrutinizing the “KEGG Pathways 2019” subset of
the Enrichr database.

Index Name P-value Adjusted p-
value

1 Hepatitis C 1.047e-
48

8.457e-47

2 Epstein-Barr virus infection 1.859e-
48

8.457e-47

3 Influenza A 3.364e-
45

1.020e-43

4 Measles 2.016e-
44

4.587e-43

5 NOD-like receptor signaling pathway 1.105e-
42

2.011e-41

6 Herpes simplex virus 1 infection 1.925e-
40

2.919e-39

7 Kaposi sarcoma-associated herpesvirus
infection

3.494e-
40

4.543e-39

8 Human papillomavirus infection 7.803e-
39

8.876e-38

9 JAK-STAT signaling pathway 7.715e-
33

7.801e-32

10 Cytosolic DNA-sensing pathway 4.126e-
31

3.755e-30

Results have been truncated to the first 10 entries. For this analysis, the AD
Entorhinal cortex gene signature designated as “response_to_ty-
pe_I_interferon(5)” was supplied to Enrichr.
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projections (i.e. the hippocampi). Interestingly, while the primary site
would be infected, the signal itself would propagate AD pathology even
in the absence of infection: i. directly via Aβ oligomers, Aβ-NА and Tau
and ii. indirectly, via IFITM3 uptake and the subsequent boosting in IFN
and Aβ-oligomer production. The latter hypothesis could account for
previously observed correlations between IFITM3 expression and Braak
staging (Roy et al., 2020). In this setting, both the reactivation of a latent
virus or de novo infection would reinforce the IFITM3 feed-forward loop.
4.3. Limitations and strengths

The proposed model of infection-induced, perturbed IFITM3
signaling in the pathogenesis of AD, as well as its specific iteration with
SARS-CoV-2, should be interpreted within their respective limitations.
Viral infection could have been a perturbator to any number of samples
or studies included in our analyses. While the original studies report strict
and stem from established brain banks (Supplementary Table 1), the
possibility cannot be excluded and should be taken into consideration as
a potential confounder on the results we report herein. Studying a
significantly enriched signature that overlaps between different tissues
(and by extent, studies) furthermore decreases but does not nullify this
possibility. In a similar manner, as there is no detailed infection history
5

on any of the original studies’ participants, we cannot account for its
impact on our findings.

Another important limitation of our study is that our results indicate
overlapping mechanisms, rather than a mechanistic effect. In this sense,
we detect pathways and gene signatures that are perturbed in a similar
manner in both AD and viral infections; we do not however determine a
causal relationship directly. While a possible explanation for this overlap
in AD would be neuroinvasion, our study by design does not provide
mechanistic evidence of such. Furthermore, The overlapping IFITM3
signatures we report on are significantly enriched both in neuro-
pathologically determined AD and viral infections, including SARS-CoV-
2. Using IFITM3 signatures from AD EC-NFT, we reconstruct multiple
viral infection-induced signatures containing IFITM3, indicating both
candidate targets and the potential pathways by which said infections
may either induce or contribute to AD pathobiology. Notably, while
IFITM3 was focused on due to its discovery as a γ-secretase modulator,
our approach identifies IFN responses, viral latency and innate immunity
as common mechanisms enriched by IFITM3 networks.

5. Concluding remarks

In the case of SARS-CoV-2, independent studies have shown that the
novel coronavirus is capable of transcribial neuroinvasion and gain ac-
cess to the entorhinal cortex (Meinhardt et al., 2021), is associated with
AD-like dyscognitive phenotypes (Woo et al., 2020) correlated with
hippocampal atrophy (Lu et al., 2020). Furthermore, SARS-CoV-2 both
induces and evades IFN responses during its latency (Lei et al., 2020),
indicating another plausible explanation for the transcriptomic overlap
we outline. The latter finding may account for the noted deterioration of
AD symptoms in patients during infection (Takeda et al., 2014), as well as
post-infection risk of dementia(Muzambi et al., 2020). This hypothesis
however, would require a singular experiment where all these indepen-
dent observations, as well as our own findings, are replicated.

The interaction concept introduced in our study (Vavougios et al.,
2020) with the global (PMBCs, Hippocampi, Entorhinal Cortex) presence
of IFITM3 networks furthermore supports an “outside – in” trigger for
neurodegeneration. Finally, taking into account that multiple viruses
could upregulate IFITM3 based on overlap between our recent work
(Vavougios et al., 2020), Hur et al.‘s study (Hur et al., 2020) and GEO
experimental data, the putative viral trigger for AD may not need to be
any single viral pathogen, but rather a process of viral infection induced,
positive/feed-forward feedback of the IFITM3 trafficking system. Future
experiments should explore a mechanistic model of IFITM3’s perturba-
tions introduced by viral infections, and their effects on β-amyloido-
genesis and tau oligomerization.
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