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Abstract

With the great significance of biomolecular flexibility in biomolecular dynamics and func-

tional analysis, various experimental and theoretical models are developed. Experimentally,

Debye-Waller factor, also known as B-factor, measures atomic mean-square displacement

and is usually considered as an important measurement for flexibility. Theoretically, elastic

network models, Gaussian network model, flexibility-rigidity model, and other computational

models have been proposed for flexibility analysis by shedding light on the biomolecular

inner topological structures. Recently, a topology-based machine learning model has been

proposed. By using the features from persistent homology, this model achieves a remark-

able high Pearson correlation coefficient (PCC) in protein B-factor prediction. Motivated by

its success, we propose weighted-persistent-homology (WPH)-based machine learning

(WPHML) models for RNA flexibility analysis. Our WPH is a newly-proposed model, which

incorporate physical, chemical and biological information into topological measurements

using a weight function. In particular, we use local persistent homology (LPH) to focus on

the topological information of local regions. Our WPHML model is validated on a well-estab-

lished RNA dataset, and numerical experiments show that our model can achieve a PCC of

up to 0.5822. The comparison with the previous sequence-information-based learning mod-

els shows that a consistent improvement in performance by at least 10% is achieved in our

current model.

1 Introduction

Biomolecular functions usually can be analyzed by their structural properties through quanti-

tative structure-property relationship (QSPR) models (or quantitative structure-activity rela-

tionship (QSAR) models). Among all the structural properties, biomolecular flexibility is of

unique importance, as it can be directly or indirectly measured by experimental tools. Debye-

Waller factor or B-factor, which is the atomic mean-square displacement, provides a quantita-

tive characterization of the flexibility and rigidity of biomolecular structures. With the strong

relationship between structure flexibility and functions, various theoretical and computational

methods have been proposed to model the flexibility of a biomolecular. Such methods include

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0237747 August 21, 2020 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Pun CS, Yong BYS, Xia K (2020)

Weighted-persistent-homology-based machine

learning for RNA flexibility analysis. PLoS ONE 15

(8): e0237747. https://doi.org/10.1371/journal.

pone.0237747

Editor: Ning Cai, Beijing University of Posts and

Telecommunications, CHINA

Received: May 3, 2020

Accepted: August 1, 2020

Published: August 21, 2020

Copyright: © 2020 Pun et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: S1 Table lists the

results for PCC of each RNA chain in training set

achieved by the best optimal RF. All our codes can

be downloaded from https://github.com/cspun/

WPHML-B-Factor-Prediction.

Funding: This research is supported by Nanyang

Technological University Startup Grants M4081840

and M4081842 to CSP, Data Science and Artificial

Intelligence Research Centre@NTU M4082115 to

CSP, and Singapore Ministry of Education

Academic Research Fund Tier 1 RG31/18, RG109/

19, and Tier 2 MOE2018-T2-1-033 to KX. There

http://orcid.org/0000-0003-4183-0943
https://doi.org/10.1371/journal.pone.0237747
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0237747&domain=pdf&date_stamp=2020-08-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0237747&domain=pdf&date_stamp=2020-08-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0237747&domain=pdf&date_stamp=2020-08-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0237747&domain=pdf&date_stamp=2020-08-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0237747&domain=pdf&date_stamp=2020-08-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0237747&domain=pdf&date_stamp=2020-08-21
https://doi.org/10.1371/journal.pone.0237747
https://doi.org/10.1371/journal.pone.0237747
http://creativecommons.org/licenses/by/4.0/
https://github.com/cspun/WPHML-B-Factor-Prediction
https://github.com/cspun/WPHML-B-Factor-Prediction


molecular dynamics (MD) [1], normal mode analysis (NMA) [2–5], graph theory [6], elastic

network models (ENMs) [7–12], Gaussian network model (GNM) [7, 8], anisotropic network

model (ANM) [9], local density model (LDM) [13], local contact model (LCM) [14], weighted

contact number (WCN) model [15], molecular nonlinear dynamics [16], stochastic dynamics

[17] and flexibility-rigidity index (FRI) [18, 19]. In these models, biomolecular structures

are usually modeled as graphs or networks, and a deterministic relationship is established

between experimental B-factors and certain network properties, such as node degree, central-

ity, pseudo-inverse Laplacian matrix and pseudo-inverse Hessian matrixes.

Other than the above deterministic models, data-driven machine learning models are also

considered in flexibility analysis [20–29], thanks to the accumulation of ever-increasing experi-

mental data. In these learning models, biomolecular genetic, epigenetic, evolutional and struc-

tural information are extracted and used as features in machine learning models, such as

support vector machine (SVM), random forest (RF), gradient boost tree (GBT) and artificial

neural network (ANN). Among these learning models, an evolution-information-based learn-

ing model has been used in RNA flexibility analysis [27]. In this model, position-specific

iterative basic local alignment search tool (PSI-BLAST) [30] is considered for homologous

sequence identification. For each sample, a position-specific scoring matrix (PSSM) profile

is calculated. The properties of the matrix are used as feature vectors and fed into various

machine learning models. A Pearson correlation coefficient (PCC) value of 0.5028 between

the test and predicted B-factor values has been achieved [27]. Further, more features from

sequence-based information, including nucleotide acid one hot vector, predicted secondary

structure, and predicted solvent accessibility, are considered in RNAbval model [29]. Com-

bined with random forest, RNAbval can significantly improve the performance and achieve a

PCC of 0.6061 [29]. Moreover, multiscale weighted colored graphs (MWCGs) based learning

model is proposed to blindly predict protein B-factors [28]. These MWCGs provide a series of

graph features, that characterize the intrinsic flexibility of protein structure very well. The

model can be used in the blind prediction of protein B-factor with a PCC value of 0.66.

More recently, a persistent-homology (PH)-based machine learning model is proposed

[28]. In this model, PH, which is a tool for data simplification and dimension reduction, is

used for protein structure featurization. Different from conventional topology tools, which

tend to oversimplify structural information and thus can only be used in qualitative modeling,

PH manages to retain the important geometrical properties through a filtration process. Essen-

tially, a series of simplicial complexes are generated and their topological information are char-

acterized by homology groups [31, 32]. The “birth” and “death” of these homology generators

are recorded and can be represented in either persistent diagrams (PDs) or persistent barcodes

(PBs) [33]. Further, atom-specific PH and element-specific PH are used to classify the struc-

tures into different point sets with more detailed structural information [28]. Moreover, two

types of matrices, one based on Euclidean distance and another on multiscale interaction, are

considered. Machine learning models can achieve a PCC value up to 0.73 for a dataset of 364

proteins using the topological features extracted from their corresponding PBs [28].

Motivated by the great success of the PH-based machine learning models in protein B-fac-

tor prediction, we propose weighted-persistent-homology (WPH)-based machine learning

(WPHML) models for RNA B-factor prediction. WPH incorporates physical, chemical and

biological information into the topological measurements with a weight function [34, 35]. In

general, different weights are assigned to k-simplexes with k starting from 0. In particular, by

assigning a weight value of 0 or 1 to each point, we can naturally arrive at a local PH model

and element-specific PH model [36–38]. Similarly, an interactive PH is derived by assigning

weight values only to the edges between the interaction atoms [36–38]. More importantly, a
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weighted boundary operator can be designed to embed higher-level relations into topological

invariants.

In this paper, we only consider weight values on points, i.e., atoms, to select a local region

around a certain atom-of-interest, whose flexibility is to be evaluated. PH analysis is then

applied to the selected atoms within the local region. Features will be generated from the corre-

sponding PBs using a binning approach before the features are fed into learning models. To

test and compare the performance of our models, the same dataset and preprocessing steps as

described by Guruge et al. [27] are used. Our results show that WPH-based learning models

can consistently outperform this sequence-based model in RNA B-factor prediction [27].

However, it should be noticed that higher accuracy can be achieved with more sophisticated

feature engineering of sequence information [29]. A combination of features from both struc-

ture and sequence may achieve even better accuracy. Essentially, the importance of featuriza-

tion and feature engineering in material, chemical and biological learning models can not be

overemphasized.

The paper is organized as follows. Weighted persistent homology based featurization and

the combination with different types of machine learning approaches are introduced in Sec-

tion “Methodology”. In Section “Results”, we present the findings of our numerical results,

including the comparison between the benchmark and our WPHML approaches and the sen-

sitivity analysis of the model settings. The paper ends with a conclusion.

2 Methodology

In this section, we give a brief introduction to persistent homology and weighted persistent

homology. Then, topology-based featurization is discussed in great details. After that, we

briefly discuss the four main learning models that are considered.

2.1 Topology-based feature engineering

Data-driven sciences are widely regarded as the fourth paradigm that can fundamentally

change sciences and pave the way for a new industrial revolution [39]. The past decade has wit-

nessed a great boom of learning models in areas such as data mining, natural language process-

ing, image analysis, animation and visualization. In contrast, the application of learning

models in materials, chemistry and biology is far behind this trend.

One of the most important reasons is featurization or feature engineering [40–42]. Com-

pared to text, image or audio data, molecular structural data from material, chemistry and biol-

ogy are highly irregular and differ greatly from each other. Essentially, each molecule can have

not only different numbers or types of atoms but also very different and complicated spatial

connectivity. The structural complexity and high data dimensionality have significantly ham-

pered the progress of the application of learning models in these fields.

To solve the problems, various ways of featurization have been proposed and a series of

molecular descriptors (features) are generated. In general, molecular descriptors can be

divided into three groups, i.e., structural measurements, physical measurements, and genetic

features [40–42]. Structural measurements come from structural geometry, chemical confor-

mation, chemical graph, structure topology, etc. Physical descriptors come from molecular for-

mula, hydrophobicity, steric properties, and electronic properties, etc. Genetic features can be

derived from gene sequences, gene expression, genetic interaction, evolution information, epi-

genetic information, etc.

Recently, persistent homology has been used in molecular characterization. With the

unique attribute that balances geometric complexity and topological simplification, PH pro-

vides a unique structure featurization that can be naturally combined with machine learning
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models. PH-based learning models have been successfully used in various aspects of drug

design [36–38], including protein-ligand binding affinity prediction, solubility, toxicity, and

partition coefficient. More recently, PH-based learning models have been used in protein B-

factor blind prediction and a remarkable high accuracy is obtained [28]. These great successes

have inspired us to propose WPHML for RNA B-factor prediction. To have a better under-

standing of our WPHML, a brief introduction of PH and WPH is given below.

2.1.1 Persistent Homology (PH). General speaking, persistent homology can be analyzed

from three aspects—graph and simplicial complex; geometric measurements and topological

invariants; and a bridge between geometry and topology.

Graph and simplicial complex. A simplex is a generalization of the notion of a triangle or tet-

rahedron to arbitrary dimensions and it is the building block for the simplicical complex. A

simplicial complex K is a finite set of simplices that satisfy two essential conditions. First, any

face of a simplex in K is also in K. Second, the intersection of any two simplices in K is either

empty or shares faces. Geometrically, a 0-simplex is a vertex, a 1-simplex is an edge, a 2-sim-

plex is a triangle, and a 3-simplex represents a tetrahedron. Graphs and networks, composed

of only vertices and edges, are special cases of simplicial complexes.

Geometric measurements and topological invariants. Geometry models consider geometrical

information such as coordinates, distances, angles, areas, various curvatures and vector bun-

dles. Graph models study measurements such as degree, shortest path, clique, cluster coeffi-

cient, closeness, centrality, betweenness, Cheeger constant, modularity, graph Laplacian, graph

spectral, Erdős number and percolation. These geometric and graph descriptors characterize

local and non-intrinsic information very well. In contrast, PH explores the intrinsic connectiv-

ity information measured by Betti number, which is a type of topological invariants that is

unchanged under deformation. Geometrically, we can regard β0 as the number of isolated

components; β1 the number of one-dimensional loops, circles, or tunnels, and; β2 the number

of two-dimensional voids or holes.

Bridge between geometry and topology. Different from geometry and topology models, PH

manages to incorporate geometrical measurements into topological invariants, thus provides a

balance between geometric complexity and topological simplification. The key idea of PH is a

process called filtration [31, 32]. By varying the value of a filtration parameter, a series of sim-

plicial complexes are generated. These nested simplicial complexes encode topological infor-

mation of a structure from different scales. Some topological invariants “live longer” in these

simplicial complexes whereas others disappear very quickly when the filtration value increases.

In this way, topological invariants can be quantified by their “lifespans” or “persisting times”,

which are directly related to geometric properties. A PB can be generated from the birth, death

and persistence of the topological invariants of the given dataset [33]. An example of PBs can

be found in Fig 1.

2.1.2 Weighted Persistent Homology (WPH). Recently, we have systematically studied

WPH models and their applications in biomolecular data analysis [34, 35, 43]. General speak-

ing, we can define weight values, which represent physical, chemical and biological properties,

on k-simplices, such as vertices (atom centers), edges (bonds), or higher order simplices (motif

or domains). That is to say WPH can be characterized into three major categories—vertex-

weighted [44–47]; edge-weighted [36, 38, 48, 49], and; general-simplex-weighted models [35,

50, 51]. These weighted values can be viewed as certain distance measurements, and PH analy-

sis can be applied. In this way, these properties are naturally incorporated into topological

measurements.

On the other hand, we can define a weighted boundary map, which can embed deeper

interaction relationships into a topology. Note that to ensure the consistency of the homology

definition, weight values on different simplexes need to satisfy certain constraints [35, 50, 51].
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Previous PH models, including element-specific PH (ESPH) [36–38] and local persistent

homology (LPH) [34] can be regarded as special cases of vertex-weighted PH. The multi-level

PH, interactive PH, and electrostatic persistence [38] are essentially edge-weighted PH.

In this paper, LPH is used for RNA local structure characterization. Biologically, an RNA

chain is made up of a set of nucleotides, in which the size of the set of nucleotides can range

from low tens to a few thousands and above. In our LPH model, only atoms that are located

within a specific Euclidean cut-off distance E from each C1 atom in each chain are considered.

Note that only the B-factor for C1 atoms are predicted and evaluated against experimental

data in the same manner as by Guruge et al. [27].

As a nucleotide constitutes of heavy atoms C, N, O, and P, in our LPH model, the localized

ESPH is considered by using each of the four elements individually. That is, each element

would eventually generate its own unique set of topological features representation for the spe-

cific local region. Note that for each ESPH, the central C1 atom is always included. Their topo-

logical features are drastically different from one another as shown in Fig 1(c). Indeed, ESPH

is capable of retaining crucial biological information during topological simplification [52].

2.1.3 Topological Features Representation (TFR). Results from PH analysis are pairs of

“birth” and “death” values for different dimensions of Betti numbers. They can be represented

as PDs or PBs. However, PH results are notorious for meaningful metric definition and statis-

tic interface. Various methods are proposed [53] including barcode statistics, tropical coordi-

nates, binning approach, persistent image, persistent landscapes and image representations to

construct topological features.

Fig 1. (a) Chain B of RNA 4X4U with each element (C, N, O, P and H) highlighted in a different colour. (b) In order to apply LPH, a local region and

all the atoms within the local region for each central C1 atom is determined. However, only the elements of C, N, O and P are considered. (H

highlighted in yellow is ignored) (c) Localized ESPH is applied and a persistent barcode is plotted for each of the four elements. (d) Binning approach is

applied to each PB and the corresponding topological feature representation (TFR) of a sample i is obtained. The feature vector of four-element is a

concatenated vector of all four TFRs. The feature vectors are then used for ML training.

https://doi.org/10.1371/journal.pone.0237747.g001
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In this paper, we only consider topological features constructed using a binning approach

[53]. More specifically, the filtration interval [0, F] is divided into N bins of equal size f. The

number of barcodes which are located on each bin are then counted and used as feature vector

[54, 55]. More specifically, the feature vector of a sample i is defined as:

Vi ¼ jjfðbj; djÞ 2 Bða;DÞjbj � kF=N � djgjj 1 � k � N

where k�k is cardinality i.e., the number of elements, of sets. Here bj and dj are referring to

birth and death of bar j. B(α, D) is referring to the collections of barcodes with α referring to

the selection of atoms and D referring to the dimension of the Betti numbers. Essentially, for

each C1 atom, we have a N � 1 topological vector for each element and dimension of the Betti

numbers.

2.2 Machine Learning (ML) models

After the topological features are represented as a feature vector, it can serve as input to predict

B-factor values with ML algorithms. We consider four main ML models, namely regularized

linear regression, tree-based methods (including random forest and extreme gradient boost-

ing), support vector regression, and artificial neural networks. All our ML algorithms are

implemented in Python (packages mentioned below refer to the packages in Python).

In the following descriptions of the ML models, we assume that we train our models with n
data fðxi; yiÞg

n
i¼1

, where yi 2 R is the normalized B-factor value of the ith sample (details of B-

factor normalization will be discussed in Section Results), xi 2 R
p is the structured topological

feature vector of the ith sample, and p is the number of structured features. Conventionally, we

denote by ŷ the predicted normalized B-factor value of a sample.

2.2.1 Regularized linear regression. Linear regression is a straightforward yet efficient

approach to model the relationship between a quantitative response and features. The incorpo-

ration of regularization can effectively address the high dimensionality setting where the num-

ber of features is larger than the sample size. The variable selection feature of the regularized

linear regression makes it particularly suitable for our task as our feature vector is usually

lengthy. The general formulation of regularized linear regression can be read as the following

regularized minimization problem:

min
b02R;b2Rp

Xn

i¼1

ðyi � b0 � x>i bÞ
2
þRaðbÞ; ð1Þ

where Rað�Þ is a regularization term. Once we obtain the minimizer of (1), denoted by ðb̂0; b̂Þ,

we predict the B-factor value of the test data with structured feature vector x by ŷ ¼ b̂0 þ x>b̂.

The specification of Ra determines the shrinkage of b̂ and statistical accuracy of ŷ [56–60].

In our study, we consider the two typical choices of Ra, namely L2-norm (akbk
2

2
) and

L1-norm (αkβk1), where α is the tuning parameter that strikes the balance between efficiency

and regularization. The regression problem with these two types of regularization are also

known as Ridge regression [56] and least absolute shrinkage and selection operator

(LASSO) [57], respectively. The advantage of LASSO over Ridge regression is its variable selec-

tion feature, which has strong interpretable power. From the LASSO results, one can tell which

part of the structural information of the element is important. Both Ridge regression and

LASSO are implemented with the package “scikit-learn” [61].

2.2.2 Tree-based methods. Classification And Regression Tree (CART) [62] or decision

tree learning is a common method used in ML. Many variations of trees have been proposed

with the pruning and ensemble methods. The simple and interpretable tree-based methods
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have the advantage of handling high-dimensional data without further adjustments. It

addresses our concern with the lengthy feature vector deduced from topological features repre-

sentation. Among many candidates of tree-based methods, we consider Random Forest (RF)

[63, 64] and Extreme Gradient Boosting (XGBoost) [65].

RH. RH is an ensemble learning method that creates a variety of decision (regression) trees

independently during training, where each decision tree is constructed using a random subset

of the features as split candidates. During the training of each tree, the split at each node is

determined by the least-square method. In other words, for each region of each tree, we predict

the B-factor value with the average of the B-factor values of the samples fallen in the region. In

a regression RF, the final prediction is the average of the predicted values of all individual

trees. In the implementation of ensemble trees, the number of trees, minimum number of

samples at each leaf node, and the number of split candidates in each splitting, i.e., parameter

mtry, are all tuning parameters. In our application of RF, we choose mtry ¼ d ffiffiffipp e following

Breiman [64] and tune the other two hyperparameters. The RF is also implemented with the

package “scikit-learn” [61].

XGBoost. Has been one of the popular ML tools used by the winning teams of many ML

challenges and competitions, such as the Netflix prize [66] and various Kaggle challenges.

Instead of computing the average output of all the individual trees as in a regression RF, each

tree in XGBoost contributes a certain value which is added up iteratively. Such additive train-

ing or gradient boosting allows the predicted values to approach the actual values as closely as

possible. In our study, we tune the number of trees and the maximum tree depth, which affects

the number of leaves in the trees, while the remaining parameters are set default as defined by

XGBoost. XGBoost is implemented with the package “xgboost” [65].

2.2.3 Support Vector Regression (SVR). SVR [67], as a version of the well-known sup-

port vector machine (SVM) [68] for regression, is another popular ML algorithm. The goal of

an SVM model is to find a function β0 + x> β that has at most � deviation from the actual target

values yi for all the training data while trying to be as flat as possible [69]. Sometimes, the con-

vex optimization problem is not feasible and a “soft margin” loss function is introduced [68].

The SVR model (β0, β) is determined by the following minimization problem:

min
b0 ;b;x;x

�

1

2
kbk

2

2
þ C

Xn

i¼1

ðxi þ x
�

i Þ s:t:

yi � b0 � x>i bi � �þ xi

b0 þ x>i bi � yi � �þ x
�

i

xi; x
�

i � 0

8
>>><

>>>:

;

where ξ and x
�

i are slack variables to cope with the otherwise infeasible constraints of the opti-

mization problem and the hyperparameter C determines the trade-off between the efficiency

and the amount up to which deviation larger than � is tolerable. Typically, we adopt kernel

methods to transform the input features from a lower to a higher dimensional space, where a

linear fit is feasible. Common choices of kernel include polynomial kernel, Gaussian kernel,

and radial basis function (RBF) kernel. In our study, we have opted to use RBF kernel, i.e.,

Kðx; x0Þ ¼ expð� gkx � x0k2

2
Þ, in our SVR model. The SVR is implemented with the package

“scikit-learn” [61].

2.2.4 Artificial Neural Network (ANN). ANN has been proved to be capable of learning

to recognize patterns or categorize input data after training on a set of sample data from the

domain [70]. The ability to learn through training and to generalize broad categories from spe-

cific examples is the unique intelligence for ANN [71]. Different from other ML algorithms,

ANN requires the user to determine the architecture of the network, such as the number of

hidden layers, the number of nodes, and the specification of activation function in each layer.
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The hidden layers in ANN architecture allow the ANN to deal with nonlinear and complex

problems more robustly and therefore can operate on more interesting problems [72]. The

number of hidden layers enables a trade-off between smoothness and closeness of fit [73]. The

number of nodes within a hidden layer determines the trade-off between training time and

training accuracy. The weights of each layer are optimized via the use of a learning algorithm

called “backpropagation” [74]. Since the ANN will involve the learning of a vast amount of

weights, from the statistical perspective, the overfitting problem arises. We adopt a recently

proposed regularization technique called “dropout” [75], which is empirically proven magical.

This approach also addresses the curse of dimensionality due to the lengthy topological feature

vector in our study.

In our study, the number of hidden layers, number of nodes in each hidden layer, and the

number of epochs are treated as hyperparameters. The hidden and output activation functions

are set as sigmoid and leaky ReLU functions respectively. The dropout rate is set to 20% and

the remaining hyperparameters are set to default values as defined by the package. ANN is

implemented with the package “keras” [76].

2.3 Model setting

RNA dataset. We consider the same RNA dataset and data preprocessing by Guruge et al.

[27]. The chains are randomly split in the same manner with 75% of the chains go into a train-

ing set and 25% go into the test set. The B-factor of each nucleotide is represented by its C1

atom.

B-factor normalization and outlier detection. The values of B-factors may differ signif-

icantly from chain to chain due to reasons such as a relatively small number of residues in a

protein chain or differences in refinement methods used [77]. Thus, the B-factors of each

chain are normalized to have zero mean and unit variance [27]. The range of normalized B-

factor falls approximately between -3.00 and 4.00. Further, before the raw B-factors are nor-

malized, values of outliers are first detected and removed using a median-based approach

[78]. This is to eliminate raw B-factor values that are located on the extreme ends of the

distribution.

Hyperparameter setting. In our dataset, cut-off distance E, F/E ratio, and bin size f are

the hyperparameters to be optimized. We chose the value of E to be in the range from 10 Å to

45 Å with a stepsize of 5 Å, i.e., E = {10 Å, 15 Å, 20 Å, 25 Å, 30 Å, 35 Å, 40 Å, 45 Å}. The filtra-

tion interval F is defined such that the ratio of F/E is between 0.5 to 1.0 with a stepsize of 0.1,

i.e., F/E = {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. Bin size f is chosen to be in the range from 0.15 Å to 1.50

Å, i.e., f = {0.15 Å, 0.50 Å, 1.00 Å, 1.50 Å}. A total of 32,823 PBs are generated based on the Vie-

toris-Rips complex for each combination of element type, E and F/E ratio. Both “GUDHI” [79]

and “Dionysus” [80] packages are used.

To determine the optimal hyperparameter values for each ML model, we conduct a five-

fold cross validation (CV) using the training set. Specifically, the training set is randomly

divided into five folds with a similar number of chains. In each fold, for each combination of

the hyperparameters, we find the predicted B-factor values for the left-out training set with the

ML model trained by the remaining training set. The optimal hyperparameter set maximizes

the out-of-sample PCC between the predicted and actual values across all folds. The optimal

hyperparameter values for each ML model can be found in Table 1.

Once the hyperparameter values of the dataset and models have been optimized, the trained

models are evaluated using a test set that was non-overlapping with the training set. The PCC

between the predicted and actual normalized B-factor values in the test set is calculated for
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each model

PCCðyi; ŷiÞ ¼

Pn
i¼1
ðyi � �yÞðŷi �

�̂yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðyi � �yÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðŷi �

�̂yÞ2
q ;

where ŷi is the predicted i-th B-factor value, �y ¼ 1

n

Pn
i¼1

yi and �̂y ¼ 1

n

Pn
i¼1

ŷi.

3 Results

In this section, we demonstrate the performance of our WPHML model. Table 2 shows the

best performance achieved by each ML model on test set. The best performance reported by

Guruge et al. [27] is used as a benchmark performance (benchmark PCC = 0.5028). The

Table 1. Optimal hyperparameter values for each ML model. ESPH—χ and ESPH—CNOP refer to the optimal hyperparameter values of the ML model under single-ele-

ment and four-element-combined dataset respectively.

ML model Hyperparameters ESPH—χ ESPH—CNOP

Ridge Alpha 500 500

LASSO Alpha 0.01 1

RF No of trees 500 2000

No of min samples at nodes 5 5

XGBoost No of trees 50 50

Tree depth 3 3

SVM Kernel RBF RBF

Gamma 0.01 0.001

C 0.1 0.1

ANN No of hidden layers 4 3

No of nodes per hidden layer 68 900

Activation type for hidden layer Sigmoid Sigmoid

Dropout rate 20% 20%

No of epochs 15 10

https://doi.org/10.1371/journal.pone.0237747.t001

Table 2. Best test set performance for each ML model using the optimal hyperparameter values for dataset and

ML model. PSSM stands for Position Specific Scoring Matrix, which is the benchmark performance by Guruge et al.

[27].

Feature type ML model Test set PCC Improvement (%)

PSSM SVM (RBF) 0.5028

ESPH—O Ridge 0.4283 -14.8%

ESPH—O LASSO 0.4667 -7.2%

ESPH—P RF 0.5788 15.1%

ESPH—P XGBoost 0.5748 14.3%

ESPH—P SVM (RBF) 0.5520 9.8%

ESPH—P ANN 0.5732 14.0%

ESPH—CNOP Ridge 0.4849 -3.6%

ESPH—CNOP LASSO 0.4157 -17.3%

ESPH—CNOP RF 0.5822 15.8%

ESPH—CNOP XGBoost 0.5657 12.5%

ESPH—CNOP SVM (RBF) 0.5560 10.6%

ESPH—CNOP ANN 0.5609 11.6%

PSSM, etc [29] RF 0.6061 20.5%

https://doi.org/10.1371/journal.pone.0237747.t002

PLOS ONE Weighted-persistent-homology-based machine learning for RNA flexibility analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0237747 August 21, 2020 9 / 17

https://doi.org/10.1371/journal.pone.0237747.t001
https://doi.org/10.1371/journal.pone.0237747.t002
https://doi.org/10.1371/journal.pone.0237747


conditions in which the best test performances are obtained can be found in Table 3. In RNAb-

val model, sequence-based information, including PSSM, nucleotide acid one hot vector, pre-

dicted secondary structure, and predicted solvent accessibility, are considered [29]. By the use

of extensive sequence-based features, they can achieve better result.

For both single-element and four-element-combined models, it can be seen that WPHML

models are able to consistently outperform the evolution-based method (PSSM) by at least

approximately 10% with only the exception of linear regression models (Ridge and LASSO).

Among all the models, RF achieves the best result with PCC = 0.5788 (15.1% improvement).

Moreover, the performance of the RF model further improves to 0.5822 when the topological

features for all four elements were used, which is about 15.8% improvement.

The comparison between the results from single-element and four-element-combined

models shows that generally there is no significant improvement. In fact, SVM improves only

slightly (approximately 0.8%), while XGBoost and ANN models even show some small reduc-

tion of accuracy (1.8% and 2.4% respectively). The results seem to be different from previous

studies that concluded that element-specific models always deliver better results [28, 36–38].

Note that previous models are based on protein structures.

Comparably speaking, RNA structures are more regular and relatively simple. Similar topo-

logical features may be embedded in different types of element models. In this way, the addi-

tional features do not incorporate new information, instead they will contribute more noises,

which causes the drop in performances. Noted that the best test performance of all the models

except linear regression using a single element are all based on element P.

Effect of Euclidean cut-off distance

Fig 2 shows the effect of cut-off distance. It can be seen that the PCCs of the fivefold cross vali-

dation using the topological features from both element P and all four elements gradually

improve and eventually plateaus off at approximately 35 Å. Note that 35 Å is larger than the

generally used cut-off distance in the Gaussian network model, anisotropic network model,

and other graph-based models, which are usually around 8 Å to 20 Å.

One of the reasons that larger cut-off distance delivers good results is that our predicted

PCC values are predominantly determined by the several larger-sized RNAs. From S1 Table, it

can be seen that there is a wide range of chain PCC distribution in the test set, which ranges

from -0.50 to 0.80 although our RF model has a fairly good PCC of 0.5822. Moreover,

Table 3. Best test performance conditions.

Element type(s) ML model Cut-off (Å) F/E ratio Bin size (Å) PCC

ESPH—O Ridge 25 0.7 1.50 0.4283

ESPH—O LASSO 25 0.5 0.50 0.4667

ESPH—P RF 45 0.7 0.15 0.5788

ESPH—P XGBoost 45 0.9 1.00 0.5748

ESPH—P SVM (RBF) 40 0.5 1.00 0.5520

ESPH—P ANN 45 1.0 1.00 0.5732

ESPH—CNOP Ridge 35 0.6 0.50 0.4849

ESPH—CNOP LASSO 25 0.5 0.50 0.4157

ESPH—CNOP RF 40 0.5 0.15 0.5822

ESPH—CNOP XGBoost 45 0.7 0.15 0.5657

ESPH—CNOP SVM (RBF) 35 0.5 0.15 0.5560

ESPH—CNOP ANN 45 0.5 0.15 0.5609

https://doi.org/10.1371/journal.pone.0237747.t003

PLOS ONE Weighted-persistent-homology-based machine learning for RNA flexibility analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0237747 August 21, 2020 10 / 17

https://doi.org/10.1371/journal.pone.0237747.t003
https://doi.org/10.1371/journal.pone.0237747


approximately 70% of the test data points come from 4 out of the 34 chains, of which these 4

chains have a chain PCC higher than the overall PCC achieved by the RF model. With that

said, the performance of the test set is heavily based on these 4 chains. As long as the predic-

tions on these 70% data points continue to improve, the overall performance of the model

would continue to improve although there may be a reduction in performance on the remain-

ing 30% of data points. This indicates that the evaluation method [27, 28] may have certain

limitations. However, for a fair comparison, we still use it in the current paper.

Effect of F/E ratio

Fig 3 shows the effect of F/E ratio on the fivefold cross validation performance. At a low cut-

off distance, the improvement in the fivefold cross validation performance improves more sig-

nificantly when F/E ratio increases from 0.5 to 0.7. Beyond 0.7, the improvement in perfor-

mance is very minimal. However, at a large cut-off distance, the performance is rather

consistent from 0.5 to 1.0. This shows that the F/E ratio is not a significant hyperparameter to

generate the dataset and it is more than sufficient to use an F/E ratio of 0.5 so as to minimize

the number of unnecessary features generated especially as a large cut-off distance is required

as discussed previously.

Fig 2. Effect of Euclidean cut-off distance on RF using the topological features from element P and all four elements with a

fixed F/E ratio of 1.0 and bin size of 0.15Å.

https://doi.org/10.1371/journal.pone.0237747.g002
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Effect of bin size

Fig 4 shows the changes in five-fold CV performance with respect to bin size. As the bin size

decreases from 1.5 Å to 0.15 Å, the performance improves for all Euclidean cut-off distance.

This indicates that with a smaller bin size, the finer details of topological features are detected

especially topological invariants that exist for a very short moment. The geometric informa-

tion, embedded in the topological invariants, are key to the success of WPHML models.

4 Conclusion

In this paper, we propose the weighted-persistent-homology-based machine learning

(WPHML) models and use them in the RNA B-factor prediction. We found that our WPHML

models can consistently deliver a better performance than the evolution-based learning mod-

els. In particular, local persistent homology and element-specific persistent homology are con-

sidered for topological feature generation. These topological-feature-based random forest

models can deliver a PCC up to 0.5822, which is 15.8% increase as compared to the perfor-

mance of the previous model. Our WPHML models are suitable for any biomolecular-struc-

ture-based data analysis. Note that more sophisticated feature engineering of sequence-based

information can further improve the accuracy to 0.61 [29]. This again demonstrates the great

importance of featurization for material, chemical and biological learning models.

Fig 3. Effect of F/E ratio on RF using the topological features from all four elements and bin size of 0.15Å.

https://doi.org/10.1371/journal.pone.0237747.g003
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61. Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Gri-

sel, et al. Scikit-learn: Machine learning in python.

62. Breiman Leo, Friedman Jerome H., Olshen Richard A., and Stone Charles J. Classification And Regres-

sion Trees. Routledge, oct 1984.

63. Tin Kam Ho. Random decision forests. In Proceedings of 3rd International Conference on Document

Analysis and Recognition. IEEE Comput. Soc. Press, 1995.

64. Breiman Leo. Random forests. Machine Learning, 45(1):5–32, 2001. https://doi.org/10.1023/

A:1010933404324

65. Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining—KDD 16.

ACM Press, 2016.

66. James Bennett and Stan Lanning. The netflix prize. Proceedings of KDD Cup and Workshop 2007,

pages 3–6, August 2007.

67. Harris Drucker, Chris J. C. Burges, Linda Kaufman, Alex Smola, and Vladimir Vapnik. Support vector

regression machines. In Proceedings of the 9th International Conference on Neural Information Pro-

cessing Systems, NIPS’96, pages 155–161, Cambridge, MA, USA, 1996. MIT Press.

PLOS ONE Weighted-persistent-homology-based machine learning for RNA flexibility analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0237747 August 21, 2020 16 / 17

https://doi.org/10.1007/s00454-012-9465-x
https://doi.org/10.1016/j.comgeo.2016.07.001
https://doi.org/10.1371/journal.pone.0066506
http://www.ncbi.nlm.nih.gov/pubmed/23805226
https://doi.org/10.1016/j.entcs.2014.06.011
https://doi.org/10.1216/RMJ-2018-48-8-2661
https://doi.org/10.1002/cnm.2914
https://doi.org/10.2139/ssrn.3275996
https://doi.org/10.1371/journal.pcbi.1005929
http://www.ncbi.nlm.nih.gov/pubmed/29309403
https://doi.org/10.1371/journal.pcbi.1005690
http://www.ncbi.nlm.nih.gov/pubmed/28749969
https://doi.org/10.1198/016214501753382273
https://doi.org/10.1198/016214501753382273
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1198/016214506000000735
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1371/journal.pone.0237747


68. Cortes Corinna and Vapnik Vladimir. Support-vector networks. Machine Learning, 20(3):273–297, sep

1995. https://doi.org/10.1023/A:1022627411411

69. Smola Alex J. and Schölkopf Bernhard. A tutorial on support vector regression. Statistics and Comput-

ing, 14(3):199–222, aug 2004. https://doi.org/10.1023/B:STCO.0000035301.49549.88

70. Walczak Steven and Cerpa Narciso. Heuristic principles for the design of artificial neural networks.

Information and Software Technology, 41(2):107–117, jan 1999. https://doi.org/10.1016/S0950-5849

(98)00116-5

71. Hertz John, Krogh Anders, Palmer Richard G., and Horner Heinz. Introduction to the theory of neural

computation. Physics Today, 44(12):70–70, dec 1991. https://doi.org/10.1063/1.2810360

72. Medsker Larry R. Hybrid Neural Network and Expert Systems. Springer US, 1994.

73. Barnard Etienne and Wessels L. F. A. Extrapolation and interpolation in neural network classifiers.

IEEE Control Systems, 12(5):50–53, oct 1992. https://doi.org/10.1109/37.158898

74. Cherkassky V. and Lari-Najafi H. Data representation for diagnostic neural networks. IEEE Expert, 7

(5):43–53, oct 1992. https://doi.org/10.1109/64.163672

75. Srivastava Nitish, Hinton Geoffrey, Krizhevsky Alex, Sutskever Ilya, and Salakhutdinov Ruslan. Drop-

out: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research,

15:1929–1958, 2014.

76. François Chollet et al. Keras. https://keras.io, 2015.

77. Tronrud D. E. Knowledge-based b-factor restraints for the refinement of proteins. Journal of Applied

Crystallography, 29(2):100–104, apr 1996. https://doi.org/10.1107/S002188989501421X

78. Smith David K., Radivojac Predrag, Obradovic Zoran, Keith Dunker A., and Zhu Guang. Improved

amino acid flexibility parameters. Protein Science, 12(5):1060–1072, may 2003. https://doi.org/10.

1110/ps.0236203 PMID: 12717028

79. The GUDHI Project. GUDHI User and Reference Manual. GUDHI Editorial Board, 2015.

80. Dionysus: the persistent homology software. Software available at http://www.mrzv.org/software/

dionysus.

PLOS ONE Weighted-persistent-homology-based machine learning for RNA flexibility analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0237747 August 21, 2020 17 / 17

https://doi.org/10.1023/A:1022627411411
https://doi.org/10.1023/B:STCO.0000035301.49549.88
https://doi.org/10.1016/S0950-5849(98)00116-5
https://doi.org/10.1016/S0950-5849(98)00116-5
https://doi.org/10.1063/1.2810360
https://doi.org/10.1109/37.158898
https://doi.org/10.1109/64.163672
https://keras.io
https://doi.org/10.1107/S002188989501421X
https://doi.org/10.1110/ps.0236203
https://doi.org/10.1110/ps.0236203
http://www.ncbi.nlm.nih.gov/pubmed/12717028
http://www.mrzv.org/software/dionysus
http://www.mrzv.org/software/dionysus
https://doi.org/10.1371/journal.pone.0237747

