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This research work deals with two spectral matrix collocation algorithms based on (novel) clique 
functions to solve two classes of nonlinear nonlocal elliptic two-points boundary value problems 
(BVPs) arising in diverse physical models. The nonlinearity together with nonlocality makes the
models so difficult to solve numerically. In both matrix methods by expanding the unknown 
solutions in terms of clique polynomials the nonlocality in the models is handled. In the first 
and direct technique, the clique coefficients are determined in an accurate way through solving 
an algebraic system of nonlinear equations. To get rid of the nonlinearity of the models and in 
order to gain efficacy, the quasilinearization method (QLM) is utilized in the second approach. 
In the latter algorithm named QLM-clique procedure, the first directly clique collocation method 
is applied to a family of linearized equations in an iterative manner. In particular, we show that 
the series expansion of clique polynomials is convergent exponentially in a weighted 𝐿2 norm. 
Numerous numerical simulations validate the performance of two matrix collocation schemes and 
demonstrate the accuracy as well as the gain in computational efficiency in terms of elapsed CPU 
time. The proposed matrix algorithms for computation are easy to implement and straightforward, 
and provide more accuracy compared to other available computational values in the literature.

1. Introduction

There has been always an increasing interest in the study of boundary value problems (BVPs) for differential equations due to 
their importance in various disciplines of physical science and applied mathematics. The BVPs occur in the modeling of heat transfer, 
diffusion, chemical reactions, and the solution of optimal control problems [1,2].

In the current research study, we are concerned with numerical treatments of two classes of nonlinear nonlocal BVPs. To be 
precise, we are going to consider the following two models:

• Model problem (I): We consider the nonhomogeneous nonlocal BVPs reads [3,4]
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⎧⎪⎪⎨⎪⎪⎩
−𝑓

⎛⎜⎜⎝
1

∫
0

𝜔(𝑝)𝑑𝑝
⎞⎟⎟⎠ 𝑑2

𝑑𝜏2
𝜔(𝜏) = 𝑔(𝜏), 𝜏 ∈Ω𝜏 ∶= (0,1),

𝜔(0) = 𝜔0, 𝜔(1) = 𝜔1,

(1.1)

where 𝜔0, 𝜔1 are two given non-negative numbers. The previous work [3] addresses the issue of the existence and uniqueness of 
this model by means of fixed-point theory.

• Model problem (II): We study the nonlinear homogeneous nonlocal BVPs given as [4–6]

⎧⎪⎪⎨⎪⎪⎩
−𝑓

⎛⎜⎜⎝
1

∫
0

𝜔(𝑝)𝑑𝑝
⎞⎟⎟⎠ 𝑑2

𝑑𝜏2
𝜔(𝜏) + 𝓁(𝜏)𝜔2𝑛+1(𝜏) = 0, 𝜏 ∈Ω𝜏 ∶= (0,1),

𝜔(0) = 𝜔0, 𝜔(1) = 𝜔1,

(1.2)

where 𝑛 ∈ℕ and 𝜔0, 𝜔1 belong to [0, ∞). By means of Schauder’s fixed-point theorem, the existence and the uniqueness issues of 
the model (II) with 𝑙(𝜏) ≡ 1 were discussed and proved in [5].

In both models, the function 𝑓 = 𝑓 (𝑡) is a positive function of 𝑡, and 𝑔, 𝓁 are two given functions defined over Ω𝜏 . The above model 
problems (I) and (II) are called nonlocal due to the fact that the term 𝑓

(∫ 1
0 𝜔(𝑝)𝑑𝑝

)
depends on the unknown 𝜔(𝜏) in the whole 

domain Ω𝜏 instead of a single point. The nonlocal BVPs of these types (1.1) and (1.2) play important roles in diverse branches of 
science such as the aeroelastic behavior of a flexible elastic suspended cable driven by mean wind speed [7] and thermo-viscoelastic 
flows [8], see [9] and references therein for more details.

Before describing the main contributions of this work, we provide a brief review of previously published work devoted to the 
model equations (1.1) and (1.2) numerically. Finite difference schemes were suggested in [3] and [6]. The variational iteration 
method (VIM) was developed in [4]. An optimal iterative method based on Green’s functions and an optimal homotopy analysis 
method (GF-OHAM) has been studied in [10] and [11]. Finally, the Jacobi spectral method has been proposed recently in [12] to 
solve two models (I) and (II).

The spectral based collocation approaches are very common in simulating initial and BVPs. The benefit of spectral methods is 
that they provide a very accurate approximate solution for the model equations and achieve a higher accuracy with a low number of 
basis functions without employing discretization like the classical finite difference schemes. These methods have been successfully 
applied to a number of significant model problems with various (orthogonal) basis functions. Among these types of bases, we mention 
Morgan-Voyce [13], Vieta-Lucas [14], Bessel [15–17], Fibonacci [18], Jacobi [19], Chebyshev [20–24], and Vieta-Fibonacci [25], to 
name a few.

The focal objective of the present work is the development of two matrix collocation techniques based on clique functions [26–28]. 
Direct application of the spectral clique technique is accomplished in the first approach. Unlike the Jacobi spectral method [12], 
we describe a spectral algorithm in detail and in particular the convergence of the clique basis functions is established. The main 
advantage of this technique is that accurate approximate solutions are achieved using a few terms of the truncated series expansions. 
However, this approach suffers from the fact that by growing the number of bases, solving the corresponding nonlinear system is 
very time-consuming or we may not have convergence at all. The technique of quasilinearization (QLM) is then utilized in the second 
proposed approach to overcome this difficulty. Once the underlying model is transformed into a family of linearized BVPs, the direct 
spectral clique function acquires the approximate solution iteratively. This is the first time that two given models (I) and (II) are 
being solved by using the clique polynomials in two direct and iterative manners, to the best of the author’s knowledge. Concisely 
speaking, the main features of the present research are highlighted as follows:

• Two classes of BVPs with nonlinearity and nonlocality and with numerous applications in diverse physical models are solved 
numerically by employing two matrix collocation algorithms based on novel clique functions.

• The first proposed approach is called the direct clique collocation method, which converts the model problems into nonlinear 
algebraic matrix equations, however, is more accurate than existing available well-established schemes such as VIM [4] and 
GF-OHAM [10,11].

• The second approach is called QLM-clique method, which is based on a combination of quasilinearization and the direct clique 
collocation method. This hybrid technique solves a sequence of linear subproblems and is more efficient and effective than the
existing numerical schemes.

• The exponential convergence of the clique series expansion is proved in the 𝐿2 norms theoretically and confirmed by defining 
the numerical order of convergence numerically in both proposed spectral methods.

The outline of this study is given next. In the next section, we first introduce some basic facts related to clique polynomials and 
also the convergence of these functions is established in a weighted 𝐿2 norm. Then, in Section 3, we design two matrix collocation 
techniques based on the clique functions for two model equations (I) and (II) comprehensively. A detailed illustration of numerical 
2

simulations with three test cases is carried out in Section 4. Some concluding remarks are made in the final section.
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2. Clique functions: basic matrix relations

Let’s assume 𝔾 ∶= (𝑉 , 𝐸) is a (finite) graph, which is simple in the sense that has no multiple edges or loops. Here, 𝑉 is the set of 
𝑚 vertices of 𝔾 while 𝐸 denotes the set of 𝑛 edges of the graph. If two vertices are joined by a common edge in the graph, they are 
called adjacent vertices. We call 𝔾′ = (𝑉 ′, 𝐸′) a subgraph of 𝔾 if we have 𝑉 ′ ⊆ 𝑉 and 𝐸′ ⊆ 𝐸. In a complete graph, all pair of vertices 
are adjacent. The complete graph with 𝑚 vertices is shown by 𝐾𝑚, which has 

(𝑚
2

)
(undirected) edges. We define a 𝑞-clique in 𝔾 to be 

a subgraph of 𝔾 which is complete and has 𝑞 vertices. For more information about graph theory, we refer to [29].
The concept of clique polynomials for a complete graph was first given in [30]. Denoting by ℂ(𝔾, 𝜏), the clique polynomial of a 

given graph 𝔾 is defined by

ℂ(𝔾, 𝜏) ∶=
𝑚∑

𝑞=0
𝑐𝑞(𝔾) 𝜏𝑞,

where 𝑐𝑞(𝔾) denotes the number of 𝑞-cliques of 𝔾 and 𝑐0(𝔾) = 1. Whenever 𝑉 = {∅}, we set ℂ(𝔾, 𝜏) ∶= 1. For a complete graph 𝐾𝑚, 
the number of distinct 𝑞-cliques is as 𝑐𝑞(𝐾𝑚) =

(𝑚
𝑞

)
. Thus, the related clique polynomials for 𝐾𝑚 are rewritten as

ℂ𝑚(𝜏) ≡ℂ(𝐾𝑚, 𝜏) ∶=
𝑚∑

𝑞=0

(
𝑚

𝑞

)
𝜏𝑞. (2.1)

For 𝑚 = 0, 1, 2, 3, we get

ℂ0(𝜏) = 1,

ℂ1(𝜏) = 1 + 𝜏,

ℂ2(𝜏) = 1 + 2𝜏 + 𝜏2,

ℂ3(𝜏) = 1 + 3𝜏 + 3𝜏2 + 𝜏3.

We are interested in utilizing the clique polynomials of complete graphs on Ω𝜏 . To this end, we set

𝕎𝑀 = span⟨ℂ0(𝜏),ℂ1(𝜏),… ,ℂ𝑀 (𝜏)⟩,
as a finite subspace of

2
𝑤(Ω𝜏 ) =

{
𝑢 ∶ Ω𝜏 →ℝ ∶ 𝑢 is measurable and ‖𝑢‖𝑤 <∞

}
.

Here, the related norm ‖ ⋅ ‖ and its weighing function are defined by

‖𝑢‖2𝑤 = ∫
Ω𝜏

|𝑢(𝜏)|2 𝑤(𝜏)𝑑𝜏, 𝑤(𝜏) ∶= 1|Ω𝜏 | .
Obviously, 𝕎𝑀 of finite dimensional (𝑀 + 1) is a closed subspace of 2

𝑤(Ω𝜏 ). Thus, for an arbitrary function 𝑢(𝜏) ∈ 2
𝑤(Ω𝜏 ), one can 

find the finest (best) approximation 𝑢⋆ ∈𝕎𝑀 in the sense that

‖𝑢(𝜏) − 𝑢⋆(𝜏)‖𝑤 ≤ ‖𝑢(𝜏) − 𝑣(𝜏)‖𝑤, ∀𝑣 ∈𝕎𝑀. (2.2)

We can expand an arbitrary function 𝑢(𝜏) ∈ 2
𝑤(Ω𝜏 ) as an infinite series in terms of clique polynomials ℂ𝑚(𝜏) in (2.1). However, 

we practically utilize a finite number of elements and restrict the discussion to the subspace 𝕎𝑀 . Therefore, we approximate 𝑢(𝜏) as 
follows

𝑢(𝜏) ≈ 𝑢𝑀 (𝜏) =
𝑀∑

𝑚=0
𝑝𝑚 ℂ𝑚(𝜏) =𝐶𝐶𝐶𝑀 (𝜏)𝑃𝑃𝑃𝑀, 𝜏 ∈Ω𝜏 , (2.3)

where

𝑃𝑃𝑃𝑀 =
[
𝑝0 𝑝1 … 𝑝𝑀

]𝑇
, 𝐶𝐶𝐶𝑀 (𝜏) =

[
ℂ0(𝜏) ℂ1(𝜏) … ℂ𝑀 (𝜏)

]
.

Here, we seek for the coefficients 𝑝𝑚 as unknowns to be determined. We next define the error function 𝑀 (𝜏) = 𝑢(𝜏) − 𝑢𝑀 (𝜏). The 
next result indicates that the norm of error tends to zero if we increase 𝑀 . We recall that a function with 𝑟 continuous derivatives is 
called a (𝑟) function.

Theorem 2.1. Suppose that 𝑢𝑀 (𝜏) =𝐶𝐶𝐶𝑀 (𝜏) 𝑃𝑃𝑃𝑀 denotes the best approximation to 𝑢(𝜏) in the space 𝕎𝑀 and let 𝑢 ∈ (𝑀+1)(Ω̄𝜏 ) ∩2
𝑤(Ω𝜏 ). 

Then, it holds

‖𝑀 (𝜏)‖𝑤 ≤ ‖𝑢‖∞,𝑀+1  𝑀+1
0

(𝑀 + 1)!
,

3

where ‖𝑢‖∞,𝑀 ∶= sup𝜏∈Ω̄𝜏
|𝑢(𝑀)(𝜏)| and 0 = max{𝜏0, 1 − 𝜏0} for a 𝜏0 ∈ Ω̄𝜏 .
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Proof. We first select an arbitrary point 𝜏0 ∈ Ω̄𝜏 . We now expand the function 𝑢(𝜏) about 𝜏0 giving us the following representation

𝑢(𝜏) = 𝑢(𝜏0) + (𝜏 − 𝜏0)𝑢′(𝜏0) + (𝜏 − 𝜏0)2𝑢′′(𝜏0)∕2! +…+ (𝜏 − 𝜏0)𝑀𝑢(𝑀)(𝜏0)∕𝑀! +𝑅𝑀+1(𝜏),

where 𝑅𝑀+1(𝜏) = (𝜏 − 𝜏0)𝑀+1𝑢(𝑀+1)(𝑠𝜏 )∕(𝑀 + 1)! denotes the remainder error term and 𝑠𝜏 is between 𝜏0 and 𝜏 . By defining 𝑈𝑀 (𝜏) =∑𝑀
𝑗=0(𝜏 − 𝜏0)𝑗 𝑢(𝑗)(𝜏0)∕𝑗!, it is known from calculus theory [31] that the residual error satisfies

|𝑢(𝜏) −𝑈𝑀 (𝜏)| = |𝑅𝑀+1(𝜏)| ≤  𝑀+1
0 ‖𝑢‖∞,𝑀+1

(𝑀 + 1)!
. (2.4)

Due to (2.2), we know that 𝑢𝑀 (𝜏) is the finest approximation out of 𝕎𝑀 to 𝑢(𝜏). So, we get

‖𝑀 (𝜏)‖2𝑤 ≤ ‖𝑢(𝜏) − 𝑣(𝜏)‖2𝑤, ∀𝑣 ∈𝕎𝑀.

It is sufficient to select 𝑣(𝜏) = 𝑈𝑀 (𝜏) ∈𝕎𝑀 in the foregoing inequality to obtain

‖𝑀 (𝜏)‖2𝑤 ≤ ‖𝑢(𝜏) −𝑈𝑀 (𝜏)‖2𝑤 = ∫
Ω𝜏

|𝑢(𝜏) −𝑈𝑀 (𝜏)|2 𝑤(𝜏)𝑑𝜏.

If we use the result derived in (2.4), we arrive at

‖𝑀 (𝜏)‖2𝑤 ≤ ∫
Ω𝜏

||||||
 𝑀+1
0 ‖𝑢‖∞,𝑀+1

(𝑀 + 1)!

||||||
2

𝑤(𝜏)𝑑𝜏 ≤
||||||
 𝑀+1
0 ‖𝑢‖∞,𝑀+1

(𝑀 + 1)!

||||||
2

∫
Ω𝜏

𝑤(𝜏)𝑑𝜏.

The proof is completed by noting that ∫Ω𝜏
𝑤(𝜏)𝑑𝜏 = 1 followed by taking the square root from both sides of the last relation. □

It is also not a difficult task to show that the vector of clique polynomials 𝐶𝐶𝐶𝑀 (𝜏) in (2.3) can be written as

𝐶𝐶𝐶𝑀 (𝜏) =𝜒𝜒𝜒𝑀 (𝜏)𝐾𝐾𝐾𝑀, (2.5)

where 𝜒𝜒𝜒𝑀 (𝜏) as the vector of monomials is given by

𝜒𝜒𝜒𝑀 (𝜏) =
[
1 𝜏 𝜏2 … 𝜏𝑀

]
,

and 𝐾𝐾𝐾𝑀 as a lower-triangular matrix is defined by

𝐾𝐾𝐾𝑀 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(0
0

) (1
0

) (2
0

)
…

(𝑀−1
0

) (𝑀
0

)
0

(1
1

) (2
1

)
…

(𝑀−1
1

) (𝑀
1

)
0 0

(2
2

)
…

(𝑀−1
2

) (𝑀
2

)
⋮ ⋮ ⋱ ⋱ ⋱ ⋮
0 …

(𝑀−1
𝑀−1

) ( 𝑀

𝑀−1

)
0 …

(𝑀
𝑀

)

⎞⎟⎟⎟⎟⎟⎟⎟⎠(𝑀+1)×(𝑀+1)

.

It can be clearly seen that det(𝐾𝐾𝐾𝑀 ) =∏𝑀
𝑗=0

(𝑗
𝑗

)
, which is equal to one. Therefore, 𝐾𝐾𝐾𝑀 in an invertible matrix.

On account of two former relations (2.3) and (2.5), we may express the approximated solution 𝑢𝑀 (𝜏) as

𝑢𝑀 (𝜏) =𝜒𝜒𝜒𝑀 (𝜏)𝐾𝐾𝐾𝑀 𝑃𝑃𝑃𝑀. (2.6)

One can also prove that the derivatives of 𝜒𝜒𝜒𝑀 (𝜏) namely 𝑑𝜈

𝑑𝜏𝜈 𝜒𝜒𝜒𝑀 (𝜏) are written in terms of itself. To be more precise, we have

𝑑𝜈

𝑑𝜏𝜈
𝜒𝜒𝜒𝑀 (𝜏) =𝜒𝜒𝜒𝑀 (𝜏) (𝐸𝐸𝐸𝑀 )𝜈 , 𝐸𝐸𝐸𝑀 =

⎛⎜⎜⎜⎜⎜⎝

0 1 0 … 0
0 0 2 … 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋱ 𝑀

0 0 0 … 0

⎞⎟⎟⎟⎟⎟⎠(𝑀+1)×(𝑀+1)

, (2.7)

for 𝜈 = 1, 2. Indeed, 𝐸𝐸𝐸𝑀 is called the differentiation matrix. A set of collocation points on Ω𝜏 must be given to obtain the numerical 
solutions of BVPs (1.1) as well as (1.2). Instead of an uniform partitioning of Ω𝜏 , we use the shifted zeros of the Chebyshev nodes 
given in the following

𝜏𝜉 =
1
2
(1 − 𝑥𝜉), 𝜉 = 1,2,… ,𝑀 + 1, (2.8)( )
4

where 𝑥𝜉 ∶= cos 2𝜉−1
𝑀+1

𝜋

2 are the roots of the classical Chebyshev functions of the first kind.
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3. Two matrix collocation techniques

We will propose two matrix collocation algorithms using the clique basis functions to solve the linear and nonlinear model 
problems (I) and (II) in (1.1) and (1.2) respectively. While the first procedure is applied directly to these models, in the second 
approach we first utilize the technique of quasilinearization to convert the nonlinear nonlocal equation (1.2) into a family of simpler 
model equations. We illustrate these algorithms in detail below.

3.1. Directly proposed approach

Supposedly, we can express the solution 𝜔(𝜏) of model (I) and (II) in terms of clique functions. In view of (2.3), (2.5), and (2.6)
we can write

𝜔(𝜏) ≈𝑀 (𝜏) =
𝑀∑

𝑚=0
𝑝𝑚 ℂ𝑚(𝜏) =𝜒𝜒𝜒𝑀 (𝜏)𝐾𝐾𝐾𝑀 𝑃𝑃𝑃𝑀, 𝜏 ∈Ω𝜏 , (3.1)

in which we have used 𝜒𝜒𝜒𝑀 (𝜏) =
[
1 𝜏 𝜏2 … 𝜏𝑀

]
, 𝐾𝐾𝐾𝑀 is defined in the last section, and

𝑃𝑃𝑃𝑀 =
[
𝑝0 𝑝1 … 𝑝𝑀

]𝑇
, 𝐶𝐶𝐶𝑀 (𝜏) =

[
ℂ0(𝜏) ℂ1(𝜏) … ℂ𝑀 (𝜏)

]
.

By using the former relations (2.3)-(2.6), we may express 𝑀 (𝜏) as

𝑀 (𝜏) =𝐶𝐶𝐶𝑀 (𝜏)𝑃𝑃𝑃𝑀 =𝜒𝜒𝜒𝑀 (𝜏)𝐾𝐾𝐾𝑀 𝑃𝑃𝑃𝑀. (3.2)

In the latter relation, we differentiate twice with regard to variable 𝜏 . Utilizing the relation (2.7) to get{ (1)
𝑀

(𝜏) =𝜒𝜒𝜒𝑀 (𝜏)𝐸𝐸𝐸𝑀 𝐾𝐾𝐾𝑀 𝑃𝑃𝑃𝑀,

 (2)
𝑀

(𝜏) =𝜒𝜒𝜒𝑀 (𝜏) (𝐸𝐸𝐸𝑀 )2𝐾𝐾𝐾𝑀 𝑃𝑃𝑃𝑀.
(3.3)

The following theorem states the ways that the approximate solutions 𝑀 (𝜏) and 𝑑2

𝑑𝜏2
𝑀 (𝜏) can be written in the matrix forms. 

We proceed by defining the following vectors

𝑋𝑋𝑋 =

⎛⎜⎜⎜⎜⎝
𝜒𝜒𝜒𝑀 (𝜏1)
𝜒𝜒𝜒𝑀 (𝜏2)

⋮
𝜒𝜒𝜒𝑀 (𝜏𝑀+1)

⎞⎟⎟⎟⎟⎠
, 𝑊𝑊𝑊 =

⎛⎜⎜⎜⎜⎝
𝑀 (𝜏1)𝑀 (𝜏2)

⋮
𝑀 (𝜏𝑀+1)

⎞⎟⎟⎟⎟⎠
, 𝑊𝑊𝑊 (2) =

⎛⎜⎜⎜⎜⎝
 (2)

𝑀
(𝜏1)

 (2)
𝑀

(𝜏2)
⋮

 (2)
𝑀

(𝜏𝑀+1)

⎞⎟⎟⎟⎟⎠
. (3.4)

Theorem 3.1. The matrix representation forms of 𝑑𝜈

𝑑𝜏𝜈 𝑀 (𝜏), 𝜈 = 0, 2 at the Chebyshev nodes (2.8) are given by

𝑊𝑊𝑊 =𝑋𝑋𝑋𝑀 𝐾𝐾𝐾𝑀 𝑃𝑃𝑃𝑀, (3.5)

𝑊𝑊𝑊 (2) =𝑋𝑋𝑋𝑀 (𝐸𝐸𝐸𝑀 )2𝐾𝐾𝐾𝑀 𝑃𝑃𝑃𝑀. (3.6)

Proof. The main idea of proof is to place the points (2.8) into relations (3.2)-(3.3) followed by utilizing the defined vectors (3.4). □

Since the considered models involve an integral term, one needs to approximate it in the matrix form. To do so, we integrate the 
relation (3.2) over Ω𝜏 to get

∫
Ω𝜏

𝑀 (𝑝)𝑑𝑝 =
⎛⎜⎜⎜⎝∫Ω𝜏

𝜒𝜒𝜒𝑀 (𝑝)
⎞⎟⎟⎟⎠𝐾𝐾𝐾𝑀 𝑃𝑃𝑃𝑀 = 𝐼𝐼𝐼𝑀 𝐾𝐾𝐾𝑀 𝑃𝑃𝑃𝑀, (3.7)

where the constant vector 𝐼𝐼𝐼𝑀 as the integral of 𝜒𝜒𝜒𝑀 (𝑝) is 𝐼𝑀 ∶=
[
1 1

2
1
3 … 1

𝑀+1

]
.

3.1.1. The nonhomogeneous nonlocal model problem (I)
We proceed by inserting the set of Chebyshev nodes (2.8) into the model (1.1) to arrive at

−𝑓
⎛⎜⎜⎝

1

∫
0

𝑀 (𝑝)𝑑𝑝
⎞⎟⎟⎠ 𝑑2

𝑑𝜏2
𝑀 (𝜏𝜉 ) = 𝑔(𝜏𝜉), 𝜉 = 1,2,… ,𝑀 + 1, (3.8)

where we have replaced 𝜔(𝜏) by its approximation 𝑀 (𝜏). By using the matrix notations (3.6) and (3.7), we rewrite the latter 
equations (3.8) compactly as( )
5

−𝑓 𝐼𝐼𝐼𝑀 𝐾𝐾𝐾𝑀 𝑃𝑃𝑃𝑀 𝑊𝑊𝑊 (2) =𝐺𝐺𝐺. (3.9)
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Here, the right-hand-side vector 𝐺𝐺𝐺 is given by

𝐺𝐺𝐺 =

⎛⎜⎜⎜⎜⎝
𝑔(𝜏1)
𝑔(𝜏2)
⋮

𝑔(𝜏𝑀+1)

⎞⎟⎟⎟⎟⎠(𝑀+1)×1

.

We now get the fundamental matrix equation by placing the relation (3.6) into the former equation (3.9) as

𝐻𝐻𝐻𝑃𝑃𝑃𝑀 =𝐺𝐺𝐺, or [𝐻𝐻𝐻 ;𝐺𝐺𝐺], (3.10)

where

𝐻𝐻𝐻 ∶=
{
−𝑓

(
𝐼𝐼𝐼𝑀 𝐾𝐾𝐾𝑀 𝑃𝑃𝑃𝑀

)
𝑋𝑋𝑋𝑀 (𝐸𝐸𝐸𝑀 )2

}
𝐾𝐾𝐾𝑀.

It can be readily seen that we need to solve a nonlinear matrix equation, which its degree of nonlinearity depends strictly on the 
positive function 𝑓 . In the numerical part, different kinds of this function are considered. Besides, we use the nonlinear solver of 
Newton type to solve the nonlinear system (3.10).

3.1.2. The homogeneous nonlinear nonlocal model problem (II)
Similar to the first linear model (I), we consider the relation (1.2). By inserting the set of Chebyshev nodes (2.8) into it to get

−𝑓
⎛⎜⎜⎝

1

∫
0

𝑀 (𝑝)𝑑𝑝
⎞⎟⎟⎠ 𝑑2

𝑑𝜏2
𝑀 (𝜏𝜉 ) + 𝓁(𝜏𝜉) (𝑀 )2𝑛+1(𝜏𝜉) = 0, 𝜉 = 1,2,… ,𝑀 + 1. (3.11)

We next introduce the matrix 𝐿𝐿𝐿 in the diagonal form and the zero vector 𝑍𝑍𝑍 as

𝐿𝐿𝐿 =

⎛⎜⎜⎜⎜⎝
𝓁(𝜏1) 0 … 0
0 𝓁(𝜏2) … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝓁(𝜏𝑀+1)

⎞⎟⎟⎟⎟⎠
, 𝑍𝑍𝑍 =

⎛⎜⎜⎜⎜⎝
0
0
⋮
0

⎞⎟⎟⎟⎟⎠
.

Therefore, we now able to rewrite the system of equations (3.11) in a compact representation form as

−𝑓
(
𝐼𝐼𝐼𝑀 𝐾𝐾𝐾𝑀 𝑃𝑃𝑃𝑀

)
𝑊𝑊𝑊 (2) +𝐿𝐿𝐿𝑊𝑊𝑊 2𝑛+1 =𝑍𝑍𝑍, (3.12)

where the vectors 𝑊𝑊𝑊 and 𝑊𝑊𝑊 (2) are defined in (3.4).

Remark 3.2. The powers of 𝑊𝑊𝑊 in (3.12) can be handled in a matrix form by a recursive manner. To treat the term 𝑊𝑊𝑊 2, we use the 
following relation

𝑊𝑊𝑊 2 =

⎛⎜⎜⎜⎜⎝
2

𝑀
(𝜏1)2

𝑀
(𝜏2)
⋮

2
𝑀
(𝜏𝑀+1)

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
𝑀 (𝜏1) 0 … 0

0 𝑀 (𝜏2) … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝑀 (𝜏𝑀+1)

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

𝑀 (𝜏1)𝑀 (𝜏2)
⋮

𝑀 (𝜏𝑀+1)

⎞⎟⎟⎟⎟⎠
=𝑊𝑊𝑊 𝑊𝑊𝑊 .

On account of (3.2), we can write the matrix 𝑊𝑊𝑊 in the form

𝑊𝑊𝑊 = 𝑋̌𝑋𝑋𝐾̌𝐾𝐾𝑃𝑃𝑃 ,

where

𝑋̌𝑋𝑋 ∶=

⎛⎜⎜⎜⎜⎝
𝜒𝜒𝜒𝑀 (𝜏1) 0 … 0

0 𝜒𝜒𝜒𝑀 (𝜏2) … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝜒𝜒𝜒𝑀 (𝜏𝑀+1)

⎞⎟⎟⎟⎟⎠
, 𝐾̌𝐾𝐾 ∶=

⎛⎜⎜⎜⎜⎝
𝐾𝐾𝐾𝑀 0 … 0
0 𝐾𝐾𝐾𝑀 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝐾𝐾𝐾𝑀

⎞⎟⎟⎟⎟⎠
, 𝑃𝑃𝑃 ∶=

⎛⎜⎜⎜⎜⎝
𝑃𝑃𝑃𝑀 0 … 0
0 𝑃𝑃𝑃𝑀 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝑃𝑃𝑃𝑀

⎞⎟⎟⎟⎟⎠
.

By repeating this process, one can easily find

𝑊𝑊𝑊 2𝑛+1 =
(
𝑊𝑊𝑊

)2𝑛
𝑊𝑊𝑊 , 𝑛 ∈ℕ. (3.13)

With the aid of former approximation (3.13) and the preceding relations (3.5), (3.6), we set{ ( ) ( )2𝑛
}

6

𝐻𝐻𝐻 ∶= −𝑓 𝐼𝐼𝐼𝑀 𝐾𝐾𝐾𝑀 𝑃𝑃𝑃𝑀 𝑋𝑋𝑋𝑀 (𝐸𝐸𝐸𝑀 )2 +𝐿𝐿𝐿 𝑊𝑊𝑊 𝑋𝑋𝑋𝑀 𝐾𝐾𝐾𝑀,
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which is obtained by putting the relations (3.5)-(3.6) into the corresponding equation (3.12). We arrive at related fundamental matrix 
equation

𝐻𝐻𝐻𝑃𝑃𝑃𝑀 =𝑍𝑍𝑍, or [𝐻𝐻𝐻 ;𝑍𝑍𝑍]. (3.14)

3.1.3. Treatment of boundary conditions

The fundamental matrix equations for both linear and nonlinear models are obtained in the last parts. The implementations of 
boundary conditions have so far been left undone. We need to incorporate the related boundary conditions (1.1) and (1.2) into the 
matrix equations (3.10) and (3.14) respectively. We consider the relation (3.2) and tend 𝜏 → 0, 1 in order to implement the boundary 
conditions. In either case, we get{

s𝐻𝐻𝐻0𝑃𝑃𝑃𝑀 = 𝜔0,
s𝐻𝐻𝐻0 ∶=𝜒𝜒𝜒𝑀 (0)𝐾𝐾𝐾𝑀,

s𝐻𝐻𝐻1𝑃𝑃𝑃𝑀 = 𝜔1,
s𝐻𝐻𝐻1 ∶=𝜒𝜒𝜒𝑀 (1)𝐾𝐾𝐾𝑀.

(3.15)

Or equivalently we obtain two rows [ s𝐻𝐻𝐻0; 𝜔0] and [ s𝐻𝐻𝐻1; 𝜔1] to be added into the matrix equations. We now replace two rows of the 
fundamental matrix equations [𝐻𝐻𝐻 ; 𝐺𝐺𝐺] in (3.10) or [𝐻𝐻𝐻 ; 𝑍𝑍𝑍] in (3.14) by two above new rows. Denote the modified matrix equations 
by [ s𝐻𝐻𝐻 ; s𝐺𝐺𝐺] or [ s𝐻𝐻𝐻 ; s𝑍𝑍𝑍]. In each case, by solving the modified equation we get the clique coefficients 𝑝0, 𝑝1, … , 𝑝𝑀 for each model 
problem (1.1) or (1.2).

3.2. The quasilinearization approach

This part is devoted to applying first the common quasilinearization method (QLM) to the nonlinear and nonhomogeneous 
nonlocal model (1.2) to get a family of linearlized model equations. An analogue conclusion can be drawn for the model (I) as 
a special case of (II). The QLM has been successfully applied to many important nonlinear equations in the literature, we refer 
to [32–35] for more information.

Let by 𝜔𝑠(𝜏) we denote the quasilinear solution and 𝜔0(𝜏) be a rough approximation to 𝜔(𝜏). Applying the QLM to the original 
nonlinear nonlocal model problem (1.2) we get the following

𝑓
⎛⎜⎜⎝

1

∫
0

𝜔𝑠(𝑝)𝑑𝑝
⎞⎟⎟⎠ 𝑑2

𝑑𝜏2
𝜔𝑠+1(𝜏) −

[
(2𝑛+ 1)𝓁(𝜏)𝜔2𝑛

𝑠 (𝜏)
]
𝜔𝑠+1(𝜏) = −2𝑛𝓁(𝜏)𝜔2𝑛+1

𝑠 (𝜏), (3.16)

for 𝑠 = 1, 2, …. Note that during the QLM process we first assumed that the integral term 𝑓
(∫ 1

0 𝜔(𝑝)𝑑𝑝
)

is a constant coefficient. 
Hence, we employed the QLM to the model and finally we replaced the unknown function 𝜔(𝜏) by the previous approximation 𝜔𝑠(𝜏). 
It should be emphasized that the initial approximation at 𝑠 = 0 can not be taken as a zero function in 𝑓

(∫ 1
0 𝜔𝑠(𝑝)𝑑𝑝

)
. With the 

quasilinear model (3.16), the same boundary conditions as (1.2) are given

𝜔𝑠+1(0) = 𝜔1, 𝜔𝑠+1(1) = 𝜔1. (3.17)

Remark 3.3. A similar technique can be applied to the first model problem (I) in (1.1) as a special case of model (II). In this case we 
get the following quasilinear models

⎧⎪⎪⎨⎪⎪⎩
−𝑓

⎛⎜⎜⎝
1

∫
0

𝜔𝑠(𝑝)𝑑𝑝
⎞⎟⎟⎠ 𝑑2

𝑑𝜏2
𝜔𝑠+1(𝜏) = 𝑔(𝜏),

𝜔𝑠+1(0) = 𝜔1, 𝜔𝑠+1(1) = 𝜔1.

𝑠 = 1,2,… .

For simplicity of exposition, we utilize the following notations for the quasilinear models (3.16)

𝑙𝑠(𝜏) ∶= −
[
(2𝑛+ 1)𝓁(𝜏)𝜔2𝑛

𝑠 (𝜏)
]
∕𝑓

⎛⎜⎜⎝
1

∫
0

𝜔𝑠(𝑝)𝑑𝑝
⎞⎟⎟⎠ , 𝑔𝑠(𝜏) ∶= −2𝑛𝓁(𝜏)𝜔2𝑛+1

𝑠 (𝜏)∕𝑓
⎛⎜⎜⎝

1

∫
0

𝜔𝑠(𝑝)𝑑𝑝
⎞⎟⎟⎠ .

So, we may rewrite the equations (3.16) together with boundary conditions (3.17) into a concise form as

⎧⎪⎨ 𝑑2

𝑑𝜏2
𝜔𝑠+1(𝜏) + 𝑙𝑠(𝜏)𝜔𝑠+1(𝜏) = 𝑔𝑠(𝜏), 𝑠 = 1,2,… . (3.18)
7

⎪⎩𝜔𝑠+1(0) = 𝜔1, 𝜔𝑠+1(1) = 𝜔1.
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We now apply the direct spectral clique collocation approach to the above family of equations. To this end, we suppose that the 
approximate solution 𝑠,𝑀 (𝜏) to the true solution 𝜔𝑠(𝜏) of (3.18) is already computed in the iteration 𝑠 ≥ 1. In the next iteration and 
according to (3.1), we try to find a solution in terms of clique function as

𝜔𝑠+1(𝜏) ≈𝑠+1,𝑀 (𝜏) =
𝑀∑

𝑚=0
𝑝(𝑠)𝑚 ℂ𝑚(𝜏) =𝜒𝜒𝜒𝑀 (𝜏)𝐾𝐾𝐾𝑀 𝑃𝑃𝑃

(𝑠)
𝑀

, 𝜏 ∈Ω𝜏 ,

where we set 𝑃𝑃𝑃 (𝑠)
𝑀

∶=
[
𝑝
(𝑠)
0 𝑝

(𝑠)
1 𝑝

(𝑠)
2 … 𝑝

(𝑠)
𝑀

]𝑇
and 𝜒𝜒𝜒𝑀 (𝜏), 𝐾𝐾𝐾𝑀 are as defined in (3.1) or (2.3). We then proceed by placing the 

Chebyshev nodes (2.8) into (3.18). In the matrix format, we obtain

𝑊𝑊𝑊
(2)
𝑠+1 +𝐿𝐿𝐿𝑠𝑊𝑊𝑊 𝑠+1 =𝐺𝐺𝐺𝑠, 𝑠 = 1,2,… , 𝐺𝐺𝐺𝑠 =

⎛⎜⎜⎜⎜⎝
𝑔𝑠(𝜏1)
𝑔𝑠(𝜏2)
⋮

𝑔𝑠(𝜏𝑀+1)

⎞⎟⎟⎟⎟⎠
, (3.19)

where

𝑊𝑊𝑊 𝑠+1 =

⎛⎜⎜⎜⎜⎝
𝑠+1,𝑀 (𝜏1)𝑠+1,𝑀 (𝜏2)

⋮
𝑠+1,𝑀 (𝜏𝑀+1)

⎞⎟⎟⎟⎟⎠
, 𝑊𝑊𝑊

(2)
𝑠+1 =

⎛⎜⎜⎜⎜⎝
 (2)

𝑠+1,𝑀 (𝜏1)
 (2)

𝑠+1,𝑀 (𝜏2)
⋮

 (2)
𝑠+1,𝑀 (𝜏𝑀+1)

⎞⎟⎟⎟⎟⎠
, 𝐿𝐿𝐿𝑠 =

⎛⎜⎜⎜⎜⎝
𝑙𝑠(𝜏1) 0 … 0
0 𝑙𝑠(𝜏2) … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝑙𝑠(𝜏𝑀+1)

⎞⎟⎟⎟⎟⎠
.

The results of Theorem 3.1 are also valid here, in the sense that

𝑊𝑊𝑊 𝑠+1 =𝑋𝑋𝑋𝑀 𝐾𝐾𝐾𝑀 𝑃𝑃𝑃
(𝑠)
𝑀

,

𝑊𝑊𝑊
(2)
𝑠+1 =𝑋𝑋𝑋𝑀 (𝐸𝐸𝐸𝑀 )2𝐾𝐾𝐾𝑀 𝑃𝑃𝑃

(𝑠)
𝑀

.

To get the linear fundamental matrix equation, it suffices to insert the proceeding relations into (3.19). Therefore, we arrive at

𝐻𝐻𝐻𝑠𝑃𝑃𝑃
(𝑠)
𝑀

=𝐺𝐺𝐺𝑠, or [𝐻𝐻𝐻𝑠;𝐺𝐺𝐺𝑠], 𝑠 = 1,2,… , (3.20)

where

𝐻𝐻𝐻𝑠 ∶=
{
𝑋𝑋𝑋𝑀 (𝐸𝐸𝐸𝑀 )2 +𝐿𝐿𝐿𝑠𝑋𝑋𝑋𝑀

}
𝐾𝐾𝐾𝑀.

To finalize the process, we require to implement the boundary conditions the matrix formats as we did before in (3.15) in the 
direct collocation technique. In this case, by replacing two rows of [𝐻𝐻𝐻𝑠; 𝐺𝐺𝐺𝑠] the resulting modified matrix equation will be denoted 
by [ s𝐻𝐻𝐻𝑠; s𝐺𝐺𝐺𝑠] for 𝑠 = 1, 2, …. Based on solving this linear system the unknown clique coefficients are found. In contrast to the direct 
approaches previously described, we here just solve a linear algebraic system rather than a nonlinear one. We refer to the latter 
technique as QLM-clique scheme.

4. Implementation and graphical illustrations

A set of computational results is performed to show the accuracy of the presented direct and QLM-clique collocation matrix 
techniques and support the theoretical findings. The benefits of these attempts will be presented through comparisons of results in 
the model problems obtained by these matrix methods and the outcomes of other existing numerical techniques. All experimental 
simulations were conducted on an ASUS laptop computer with a 2.2 GHz Intel Core i7 CPU and 16 GB RAM. We utilized Matlab 
software version 2021a.

In order to measure the quality of approximations, the absolute error between the exact solution 𝜔(𝜏) and the numerical solutions 
𝑀 (𝜏) and 𝑠,𝑀 (𝜏) are defined as follows

𝑀 (𝜏) ∶= ||𝜔(𝜏) −𝑀 (𝜏)|| , 𝑠,𝑀 (𝜏) ∶= |𝜔(𝜏) −𝑠,𝑀 (𝜏)|, 𝜏 ∈Ω𝜏 . (4.1)

We also calculate the norms (for a fixed 𝑠) of the former error terms (4.1) as follows

𝔼∞ ≡ 𝔼∞(𝑀) ∶= max
𝜏∈Ω𝜏

𝑀 (𝜏), 𝔼𝑠,∞ ≡ 𝔼𝑠,∞(𝑀) ∶= max
𝜏∈Ω𝜏

𝑠,𝑀 (𝜏).

The following expressions are further used to calculate the obtained order of convergence (OC) related to both numerical techniques 
given by (

𝔼∞(𝑀)
) ( 𝔼𝑠,∞(𝑀) )
8

OC∞ ∶= log2 𝔼∞(2𝑀)
, OC𝑠,∞ ∶= log2 𝔼𝑠,∞(2𝑀)

. (4.2)
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Table 1

Numerical/exact solutions in Test Example 4.1 with 𝑀 = 3 and diverse 𝜏 ∈Ω𝜏 .

𝑥 Clique VIM [4]

3(𝜏) Exact 3(𝜏) 𝑢10 AE

0.1 0.000999999999958 0.001 4.1654014 × 10−14 0.0010252914 2.5 × 10−5

0.2 0.007999999999917 0.008 8.3121066 × 10−14 0.0080490501 4.9 × 10−5

0.3 0.026999999999879 0.027 1.2068369 × 10−13 0.0270697430 7.0 × 10−5

0.4 0.063999999999849 0.064 1.5106849 × 10−13 0.0640858376 8.6 × 10−5

0.5 0.124999999999829 0.125 1.7100210 × 10−13 0.1250958009 9.6 × 10−5

0.6 0.215999999999823 0.216 1.7721113 × 10−13 0.2160981001 9.8 × 10−5

0.7 0.342999999999834 0.343 1.6642221 × 10−13 0.3430912024 9.1 × 10−5

0.8 0.511999999999865 0.512 1.3536194 × 10−13 0.5120735751 7.4 × 10−5

0.9 0.728999999999919 0.729 8.0756957 × 10−14 0.7290436852 4.4 × 10−5

Test example 4.1. The first test case is devoted to a non-homogeneous model in the form (1.1) as given by [4,10,11]

⎛⎜⎜⎝
1

∫
0

𝜔(𝑝)𝑑𝑝
⎞⎟⎟⎠
1∕3

𝑑2

𝑑𝜏2
𝜔(𝜏) = 6𝜏

41∕3
, 𝜏 ∈Ω𝜏 ,

and with the boundary conditions 𝜔(0) = 0 and 𝜔(1) = 1. One can verify that the true solution is 𝜔(𝜏) = 𝜏3.

For this example, we set 𝑀 = 3 and use the direct clique-collocation approach (3.10). By using the four collocation points 
{321∕8434, 467∕1513, 1046∕1513, 1567∕1629} and solving the modified fundamental matrix equation [ s𝐻𝐻𝐻 ; s𝐺𝐺𝐺] we get the unknown coef-
ficients as

𝑃𝑃𝑃 3 =
(
1.0,3.0,−3.0,1.0

)𝑇
.

Hence, the approximate solution is obtained by considering the clique vector 𝐶𝐶𝐶3(𝜏) as

3(𝜏) =𝐶𝐶𝐶3(𝜏)𝑃𝑃𝑃 3 =
(
1 1 + 𝜏 1 + 2𝜏 + 𝜏2 1 + 3𝜏 + 3𝜏2 + 𝜏3

)⎛⎜⎜⎜⎜⎝
1
3
−3
1

⎞⎟⎟⎟⎟⎠
= 𝜏3,

which is clearly the exact solution. Note that the required CPU time for 𝑀 = 3 by the direct clique collocation method is about 2
seconds. We also notice that the measured time is taken to solve the final fundamental matrix equation (3.20).

For further validation, a comparison is made between the numerical outcomes gained by the direct collocation technique (3.10)
and the results obtained via the variational iteration method (VIM) [4] with 10 iterations in Table 1. The numerical results are 
obtained with 𝑀 = 3 and evaluated at some points 𝜏 ∈ [0, 1]. The exact solutions are also tabulated in the third column. Note that 
the last column shows the absolute errors (AE) achieved by VIM. It can be readily observed that the present technique with a lower 
computational cost performs extremely better than VIM.

Test example 4.2. We now consider the homogeneous model in the form (1.2). By taking 𝑓 (𝑡) = 1
𝑡

and 𝑛 = 2, we have the following 
model [4,10,11]

−
⎛⎜⎜⎝

1

∫
0

𝜔(𝑝)𝑑𝑝
⎞⎟⎟⎠
−1

𝑑2

𝑑𝜏2
𝜔(𝜏) + 3

8(
√
2 − 1)

𝜔5(𝜏) = 0, 𝜏 ∈Ω𝜏 .

The given boundary conditions are 𝜔(0) = 1 and 𝜔(1) = 1√
2
. The exact solution is given by 𝜔(𝜏) = 1√

𝜏+1
.

We first set 𝑀 = 5. Using the direct clique collocation approach (3.14), we get the approximate solution

5(𝜏) = −0.02973645463 𝜏5 + 0.1247582345 𝜏4 − 0.2506226733 𝜏3 + 0.3614999396 𝜏2

− 0.498792265 𝜏 + 1.0.

Utilizing the same number of clique bases, we employ the second linearized QLM-clique technique with 𝑠 = 5 and the initial approx-
imation 𝜔0(𝜏) = 1 − 𝜏∕2. The obtained approximation is

5,5(𝜏) = −0.02973645162 𝜏5 + 0.124758223 𝜏4 − 0.2506226538 𝜏3 + 0.3614999168 𝜏2
9

− 0.4987922532 𝜏 + 1.0.
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Fig. 1. Approximate solutions versus exact one obtained via clique/QLM-clique collocation approach (left) and the associated absolute errors (right) in Test Exam-
ple 4.2 with 𝑀 = 5, 8, 12, and 𝑠 = 5.

It is evident that the coefficients of both solutions are coincided up to 8 number of digits. To see the effect of using different initial 
approximations, we take 𝜔0(𝜏) = 1. In this case, we get

5,5(𝜏) = −0.02973644636 𝜏5 + 0.1247582027 𝜏4 − 0.2506226196 𝜏3 + 0.3614998768 𝜏2

− 0.4987922323 𝜏 + 1.0,

which is approximately the same as the last one.
The profile of approximate solutions 5(𝜏) and 5,5(𝜏) together with related exact solution are depicted in Fig. 1, the left picture. 

The related achieved absolute errors obtained via both approaches are also depicted in the same figure, the right part. We emphasize 
that we can obtain more accuracy by increasing 𝑀 . To justify this fact, we use 𝑀 = 8 and 𝑀 = 12 in the QLM-clique technique. The 
achieved absolute errors for two latter values of 𝑀 are also depicted in Fig. 1.

To validate the obtained result, let us mention the following approximate solution obtained via the combined Green’s function 
and optimal homotopy analysis method GF-OHAM [10,11]

𝜙2(𝑥) = 1 − 0.4973𝑥+ 0.3737𝑥2 − 0.3060𝑥3 + 0.2235𝑥4 − 0.1258𝑥5 + 0.05148𝑥6 − 0.0153𝑥7

+ 0.0033𝑥8 − 0.00055𝑥9 + 0.0000646𝑥10 … .

The corresponding approximation attained via QLM-clique with 𝑀 = 10 is given by

5,10(𝜏) = 1.0 − 0.4999995 𝜏 + 0.37498269 𝜏2 − 0.31223646 𝜏3 + 0.2712800 𝜏4 − 0.23535132 𝜏5

+ 0.19050825 𝜏6 − 0.13024817 𝜏7 + 0.066533613 𝜏8 − 0.0216455 𝜏9 + 0.0032831897 𝜏10.

Note, the same result is obtained by the direct clique approach, but we omit it to save space. These approximate solutions can also 
be compared with the series expansion of the exact solution given by

𝜔(𝜏) = 1√
𝜏 + 1

≈ 1 − 1
2
𝜏 + 3

8
𝜏2 − 5

16
𝜏3 + 35

128
𝜏4 −… .

Table 2 shows some comparisons with two available existing numerical procedures. For this purpose, we use the VIM [4] and the 
GF-OHAM [10].

In the next simulation results, we compare the performance of two proposed matrix algorithms in terms of efficiency and numer-
ical order of convergence (OC). To this end, different values of 𝑀 = 2𝑗 , 𝑗 = 0, 1, 2, 3, 4 are utilized. The error norms 𝔼∞ and 𝔼𝑠,∞ for 
𝑠 = 5 related to test Example 4.2 are tabulated in Table 3. The spent CPU times measured in seconds are further presented in this 
table. Besides, the estimated OC for these error norms are shown in Table 3. Let us emphasize that we could not obtain reasonable 
outcomes in the direct approach for 𝑀 = 16, so we have not reported the results in this case. It can be obviously realized that the 
estimated OC of both matrix collocation strategies has exponential behavior as proved in Theorem 2.1. However, the CPU times 
reported in Table 3 show that the QLM-clique matrix algorithm is more efficient than the direct collocation approach.

Test example 4.3. In the third test study we again consider to the homogeneous model with 𝑓 (𝑡) = 1
𝑡2

and 𝑛 = 1 in the form (1.2). 
10

Thus, we get [10,11]
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Table 2

Numerical/exact solutions in Test Example 4.2 utilizing 𝑀 = 5 and diverse 𝜏 ∈Ω𝜏 .

𝑥 QLM-clique VIM [4] GF-OHAM [10]

5,5(𝜏) Exact 5(𝜏) 𝑢3 AE 𝜙2 𝐸2

0.1 0.953497330 0.953462589245592 3.47 × 10−5 0.9535746906 1.1 × 10−4 0.953715758 2.53 × 10−4

0.2 0.912886662 0.912870929175277 1.57 × 10−5 0.9130017937 1.3 × 10−4 0.913348055 4.77 × 10−4

0.3 0.877068787 0.877058019307029 1.08 × 10−5 0.8773763380 3.2 × 10−4 0.877702187 6.44 × 10−4

0.4 0.845172545 0.845154254728517 1.83 × 10−5 0.8454589061 3.0 × 10−4 0.845886767 7.32 × 10−4

0.5 0.816519146 0.816496580927726 2.26 × 10−5 0.8167992837 3.0 × 10−4 0.817233417 7.36 × 10−4

0.6 0.790586484 0.790569415042095 1.71 × 10−5 0.7909250558 3.6 × 10−4 0.791235825 6.66 × 10−4

0.7 0.766973456 0.766964988847370 8.47 × 10−6 0.7672832340 3.2 × 10−4 0.767504100 5.39 × 10−4

0.8 0.745364273 0.745355992499930 8.28 × 10−6 0.7457397214 3.8 × 10−4 0.745731089 3.75 × 10−4

0.9 0.725492783 0.725476250110012 1.65 × 10−5 0.7257126136 2.3 × 10−4 0.725667948 1.91 × 10−4

Table 3

The results of maximum absolute error norms, the corresponding estimated order of 
convergence, and CPU times, in Test Example 4.2 with diverse 𝑀 .

𝑀 Clique QLM-clique

𝔼∞ OC∞ CPU(s) 𝔼5,∞ OC5,∞ CPU(s)

1 3.7814 × 10−2 − 0.29995 3.7814 × 10−2 − 0.37005
2 6.4447 × 10−3 2.5527 0.83433 6.4447 × 10−3 2.5527 0.41440
4 2.0937 × 10−5 4.9440 2.90217 2.0938 × 10−4 4.9440 0.50689
8 1.5987 × 10−7 10.355 15.5894 1.6031 × 10−7 10.351 0.72272
16 − − − 2.1024 × 10−9 6.2527 1.30033

−
⎛⎜⎜⎝

1

∫
0

𝜔(𝑝)𝑑𝑝
⎞⎟⎟⎠
−2

𝑑2

𝑑𝜏2
𝜔(𝜏) +

(√
2

ln2

)2

𝜔3(𝜏) = 0, 𝜏 ∈Ω𝜏 .

The accompanied boundary conditions given as 𝜔(0) = 1 and 𝜔(1) = 1
2 . Here, the function 𝜔(𝜏) = 1

𝜏+1 is known as the exact solution 
to this model.

The approximate solutions using 𝑀 = 8 via the direct clique and QLM-clique matrix collocation procedures obtained as follows 
respectively

8(𝜏) = 0.03299843825 𝜏8 − 0.182257207 𝜏7 + 0.4642505855 𝜏6 − 0.7525294686 𝜏5

+ 0.9251400828 𝜏4 − 0.9863217331 𝜏3 + 0.9986653453 𝜏2 − 0.9999460432 𝜏 + 1.0,

and

5,8(𝜏) = 0.032985326 𝜏8 − 0.18218723 𝜏7 + 0.46408212 𝜏6 − 0.75228112 𝜏5

+ 0.92487946 𝜏4 − 0.98610858 𝜏3 + 0.99851115 𝜏2 − 0.99988113 𝜏 + 1.0.

Note that in the latter QLM-clique solution, we have used the initial approximation 𝜔0(𝜏) = 1 − 𝜏 and 𝑠 = 5 was taken as before. 
Clearly, one sees a good alignment between the given coefficients. The graphical illustrations of the foregoing approximations are 
shown in Fig. 2. Besides, the graphics of related absolute errors 8(𝜏) and 5,8(𝜏) are presented in this figure.

Similar to the second test case, we compare the result of the proposed method with the result reported via GF-OHAM. The 
approximate solution obtained by this scheme is [10,11]

𝜙2(𝑥) = 1 − 1.00399𝑥+ 0.995127𝑥2 − 0.90086𝑥3 + 0.655261𝑥4 − 0.338986𝑥5 + 0.115228𝑥6

− 0.0246916𝑥7 + 0.00308645𝑥8 − 0.00017147𝑥9 … .

In Table 4, a comparison between 5,5(𝜏) and the above solution 𝜙2 evaluated at some point 𝜏 ∈ Ω𝜏 is reported. Additionally, the 
associated absolute errors 5,5(𝜏) and 𝐸2 = |𝑢−𝜙2| are presented in Table 4. Obviously, the obtained solution of degree 5 is more 
accurate than the approximation of degree 9 obtained by using the GF-OHAM [10,11].

Indeed, the approximate solution using 𝑀 = 9 obtained by utilizing the QLM-clique scheme is given by

5,9(𝜏) = 1.0 − 0.99992353 𝜏 + 0.99949587 𝜏2 − 0.99536662 𝜏3 + 0.9698158 𝜏4 − 0.87685961 𝜏5

6 7 8 9
11

+ 0.66908189 𝜏 − 0.38018454 𝜏 + 0.13663536 𝜏 − 0.022694623 𝜏 .
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Fig. 2. Approximate solutions versus exact one obtained via clique/QLM-clique collocation approach (left) and the associated absolute errors (right) in Test Exam-
ple 4.3 with 𝑀 = 8, and 𝑠 = 5.

Table 4

Numerical/exact solutions in Test Example 4.3 with 𝑀 = 5 and diverse 𝜏 ∈Ω𝜏 .

𝑥 QLM-clique GF-OHAM [10,11]

5,5(𝜏) Exact 5,5(𝜏) 𝜙2 𝐸2

0.1 0.909221629705822 0.909090909090909 1.3072 × 10−4 0.908713383 3.77 × 10−4

0.2 0.833390455620759 0.833333333333333 5.7122 × 10−5 0.832746652 5.86 × 10−4

0.3 0.769267982919968 0.769230769230769 3.7214 × 10−5 0.768603045 6.27 × 10−4

0.4 0.714350231166983 0.714285714285714 6.4517 × 10−5 0.713705107 5.80 × 10−4

0.5 0.666746826500040 0.666666666666667 8.0160 × 10−5 0.666157571 5.09 × 10−4

0.6 0.625060093818403 0.625000000000000 6.0094 × 10−5 0.624561470 4.38 × 10−4

0.7 0.588264148968677 0.588235294117647 2.8855 × 10−5 0.587870965 3.64 × 10−4

0.8 0.555583990931140 0.555555555555556 2.8435 × 10−5 0.555285414 2.70 × 10−4

0.9 0.526374594006055 0.526315789473684 5.8805 × 10−5 0.526170109 1.45 × 10−4

Table 5

The results of maximum absolute error norms, the corresponding estimated order of conver-
gence, and CPU times in Test Example 4.3 with diverse 𝑀 .

𝑀 Clique QLM-clique

𝔼∞ OC∞ CPU(s) 𝔼5,∞ OC5,∞ CPU(s)

1 8.5780142 × 10−2 − 0.31551 8.5780142 × 10−2 − 0.38790
2 1.7280180 × 10−2 2.3115 1.46497 1.7283500 × 10−2 2.3112 0.43169
4 7.1513421 × 10−4 4.5948 3.39733 7.1999405 × 10−4 4.5853 0.51555
8 7.3183300 × 10−7 9.9325 54.0007 1.0248915 × 10−5 6.1344 0.70158

On the other hand, the Maclaurin series form of the exact solution is 𝜔(𝜏) = 1 − 𝜏 + 𝜏2 − 𝜏3 +…. By looking at these solutions, we can 
easily conclude that the proposed approach has more accuracy than the other one.

Finally, the results of maximum absolute error norms as well as the elapsed CPU time (in seconds) related to both presented 
approaches are provided in Table 5. Along with these errors, we report the estimated OC. The results show that by increasing 𝑀
the accuracy of the direct method is better than the QLM-clique procedure. However, as shown before, the latter approach is more 
efficient than the direct procedure especially when we use a larger problem size. For example for 𝑀 = 8 the time needed for the 
direct clique collocation is about eight times longer than the QLM-clique matrix method.

5. Conclusions

This study has proposed two matrix collocation techniques that rest upon (novel) clique functions of graphs for solving two classes 
of nonlinear, nonlocal, and two-point boundary value problems (BVPs). The first algorithm applied directly to the model problems 
while in the second approach, the given equation was first transformed into a sequence of quasilinear equations followed by solving 
them via the former direct algorithm. The convergence of the clique basis function is verified in a weighted 𝐿2 norm. The presented 
algorithms are applied to solve numerically three test examples with known true solutions for their order of convergence. The main 
12

achievements of the current study can be summarized in the following points:
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• The proposed direct clique matrix collocation approach is more accurate than two existing numerical procedures such as VIM [4]
and GF-HAM [10].

• The second QLM-clique matrix methodology as a combination of the quasilinearization and the direct matrix method is not only 
accurate but also computationally efficient in terms of elapsed CPU time, see Tables 2 and 5.

• Besides, the outcomes presented in tables and figures show that both methods are exponentially convergent, which confirms the 
theoretical upper bound derived in Theorem 2.1.

The presented numerical approaches can be easily extended to solve diverse types of BVPs in science and engineering.
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