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Gold-catalysis, in this century, is one of the most emerging and promising new areas of
research in organic synthesis. During the last two decades, a wide range of distinct
synthetic methodologies have been unveiled employing homogeneous gold catalysis and
aptly applied in the synthesis of numerous natural products and biologically active
molecules. Among these, the reactions involving α-oxo gold carbene/α-imino gold
carbene intermediates are of contemporary interest, in view of their synthetic potential
and also due to the need to understand the bonding involved in these complexes. In this
manuscript, we document the theoretical investigations on the regio-selectivity
dependence of substitution on the gold-catalyzed cycloisomerization of
o-nitroarylalkyne derivatives. We have also studied the relative stabilities of α-oxo gold
carbene intermediates.
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INTRODUCTION

Gold catalyzed reactions have been increasingly emerging in the literature over the past few decades
(Hashmi, 2007; Pflästerera and Hashmi, 2015). The majority of these reactions are based on the
propensity of gold complexes to act as carbophilic Lewis acids in the activation of carbon–carbon
multiple bonds, thus allowing the formation of new C–C and C–hetero atom bonds by inter-/
intramolecular addition of nucleophiles across the Au-complexed multiple bonds (Corma et al.,
2011). An interesting class of gold-catalyzed reactions that needs a mention in this context are the
catalytic internal redox cyclisation’s (Xiao and Li, 2011; Zhang, 2014; Yeom and Shin, 2014). The
oxygen atom transfer to alkynes catalyzed by gold complexes is a well-known addition−elimination
process employing nucleophilic oxygen atom donors such as nitro (Asao et al., 2003; Li et al., 2005;
Ramana et al., 2010), amine-/pyridine N-oxides (Cui et al., 2009; Nosel et al., 2013), nitrone (Heom
et al., 2008; Pati and Liu, 2009; Chen et al., 2011), sulfoxides (Shapiro and Toste, 2007; Lu et al., 2013),
and epoxides (Hashmi et al., 2008; Lin et al., 2008), reacting with the activated alkynes.

The Au-catalyzed cycloisomerizaton of nitrotolans documented by Yamamoto and co-workers in
2003 (Scheme 1, Eq. 1) (Asao et al., 2003), is an important advancement to synthesize 2-
arylisatogens. Interestingly, when the pendant alkyne substituent is an alkyl group, the internal
redox process proceeds in a complementary mode resulting in the formation of a benzo[c]isoxazole,
trivially known as anthranil. A mechanism founded upon the addition of the oxygen of the nitro
group in a 6-endo-dig fashion has been postulated as the key step involved for the intramolecular
redox process. Initially, it has been proposed that the resulting gold-ate complex A undergoes
protonolysis followed by ring opening with water to produce a nitrosobenzene. There exist two
possibilities for the subsequent dehydrative cyclization leading to isatogens (path a) or anthranil
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(path b). Though this explains the possible paths, it does not
account for why these paths are substituent dependent. In a later
report, Crabtree’s group has documented (Scheme 1, Eq. 2) a

similar nitroalkynes cycloisomerization by iridium hydrides
leading to anthranils (Li et al., 2005). With the help of single
crystal structural analysis, it has been proved that there exists an

SCHEME 1 | Mechanism of nitroalkyne cycloisomerization.

SCHEME 2 | The free energy profile for the formation of -endo and -exo intermediates for –phenyl and –ethyl substitutions. Values are in kcal/mol.
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intermediate iridium(III) nitroso complex B, which results after
the initial oxygen transfer from nitro to alkyne in a 6-endo-dig
fashion. In this context, as a part of the total synthesis of the
pseudoindoxyl class of natural products (Ramana et al., 2010;
Patel et al., 2013), we have speculated on the possibility of
complementing this process by employing Pd-complexes
which was successfully realized to come up with a general
method for the synthesis of 2-aryl and 2-alkyl isatogens via an
internal nitro-alkyne redox process (Scheme 1, Eq. 3) (Ramana
et al., 2010). We have also studied in detail the mechanistic
aspects with density functional theory (DFT) and reasoned that
the formation of an α-oxo metal carbenoid C occurs by the 5-exo-
dig mode of cyclization of the nitro group on the alkyne, which
subsequently undergoes a 6n-electro cyclization to isatogen. In
this manuscript, we document the DFT calculations on the [Au]-
catalysed complementary nitroalkyne redox process that leads to
α-oxo gold carbenes B and C, especially focusing on the energies
associated with oxygen transfer and carbene transfer. This has
been undertaken considering the importance of gold catalyzed
processes that proceed through the α-imino and/or α-oxo gold
carbenes and their promising applications in the heterocyclic
synthesis (Aguilar and Santamaría, 2019; Zhang, 2014). These
processes in general proceed through the carbene and/or nitrene
transfer from the [Au]-centre (Ye, 2020). However, in case of the
Au-carbenes B and C, such a transfer is challenging, as the
internal electrocyclization along with the nitroso group is
highly favored with either of them. The possibility of trapping
these reactive intermediates has been attempted with internal and
external nucleophiles. However, on both instances, it has been
realized that the intramolecular process leading to isatogens or
anthranil has exclusively taken place and the products obtained
are from the reaction of the nucleophile employed with the

isatogen. Thus, a qualitative understanding of the relative
energies of B and C and the energies associated in their
formation is expected to provide some clues on the possible
trapping.

RESULTS AND DISCUSSION

In order to understand the selectivity (endo or exo) dependence
on the substitution (alkyl or aromatic) on the nitro alkyne, we
have performed density functional theory (DFT) calculations
using the Turbomole 7.2 program package (TURBOMOLE
V7.2, 2017). We have chosen the ethyl (–CH2CH3) and phenyl
(–C6H5) groups as the representatives for alkyl and aromatic
substitutions and considered AuCl as the catalyst instead of
AuCl3, in accordance with previously reported work (Straub,
2004). The endo or exo selectivity arises due to the two different
possibilities of oxygen (of the nitro group) attack on the C–C
triple bond (see Scheme 2), and our calculations indicate that the
exo transition state (TS_exo_Ph) is favorable by 0.6 kcal/mol over
the endo transition state (TS_endo_Ph) for phenyl substitution
(see Scheme 2). In contrast, the endo transition state
(TS_endo_Et) is favorable by 1.0 kcal/mol over the exo
transition (TS_exo_Et) state for ethyl substitution, which
corroborates with the experimental observations. Furthermore,
in the case of ethyl substitution, the endo intermediate
(Int_endo_Et) is more preferable than the exo intermediate
(Int_exo_Et) by 4.7 kcal/mol, but in the case of phenyl
substitution, the exo intermediate (Int_exo_Ph) is less
favorable than the endo intermediate (Int_endo_Ph) by
2.5 kcal/mol. In other words, the endo pathway to form the
first intermediate is favorable both kinetically and
thermodynamically for the ethyl substitution, but the exo
pathway is only kinetically favorable for the phenyl substitution.

Next, the energies of the six different possible oxo gold
carbenes (D to I in Figure 1) have been calculated to see their
relative stability. As shown in Figure 1, depending upon the
heteroatom of the nitroso group involved in the coordination,
there exists two possibilities for the oxo gold carbene resulting
from the 6-endo dig path – with the nitrogen atom, a
five–membered coordination (D and G for Ph and Et
respectively) and six-membered coordination with the oxygen
atom (E and H for Ph and Et respectively). Interestingly, with
both phenyl and ethyl, the [Au]-carbenes derived from the 6-endo
dig path are more stable. In case of the phenyl, E, the six-
membered coordination is more stable than the D, five-
membered coordination, by 4.2 kcal/mol. However, with the
ethyl substituent, this was seen to be exactly reversed. G, the
five-membered coordination was seen to be more stable than H,
the six-membered coordination, by 4.0 kcal/mol. When it comes
to the 5-exo dig path, in both the ethyl (19.9 kcal/mol
unfavourable compared to G) and phenyl (20.4 kcal/mol
unfavourable compared to E) cases, the energies associated
with resulting carbenes reveal that they are unfavourable.

Overall, these preliminary calculations indicate that the α-oxo
gold carbenes resulting from the 6-endo-dig mode of oxygen
transfer are favored in general, though the energies associated

FIGURE 1 | The relative free energies of α-oxo gold carbenes with
respect to the most stable one (E for the phenyl substitution and G for the ethyl
substitution). Values are in kcal/mol.
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with this process vary with respect to the substituent. For
example, as discussed already, the formation of the first
intermediate via the 6-endo-dig mode is kinetically and
thermodynamically favourable for ethyl substitution. However,
the corresponding mode is only thermodynamically favourable
for phenyl substitution. This indicates that energies associated
with the internal oxygen transfer lead to the α-oxo gold carbene B
and also, given its comparable stability, that the chances of the
carbene transfer from this reactive intermediate are greater.

CONCLUSION

To conclude, DFT calculations on the internal oxygen transfer of
the Au-catalyzed o-nitroalkyne cycloisomerization reactions have
been carried out to understand the relative energies associated
with the oxygen transfer and the energies of the resulting α-oxo
gold carbenes. These calculations clearly reveal that the α-oxo
gold carbenes resulting from the 6-endo dig addition of the
oxygen to the alkyne is thermodynamically stable, when
compared to the alternative α-oxo gold carbene that results
from the 5-exo dig addition. Our calculations also suggest that
the substitutions on the o-nitroalkynes have a significant role in
altering the regio-selectivity of the reaction.

COMPUTATIONAL DETAILS

All the calculations in this study have been performed with
density functional theory (DFT), with the aid of the
Turbomole 7.2 suite of programs (TURBOMOLE V7.2, 2017),
using the M06-2X functional (Zhao and Truhlar, 2008). The def-
TZVP basis set has been employed (Schäfer et al., 1994; Eichkorn
et al., 1997). The resolution of identity (RI) (Eichkorn et al., 1995),
along with the multipole accelerated resolution of identity (marij)
(Sierka et al., 2003) approximations have been employed for an
accurate and efficient treatment of the electronic Coulomb term
in the DFT calculations. Solvent correction were incorporated
with optimization calculations using the COSMO model (Klamt
and Schüürmann, 1993), with toluene (ε � 2.374) as the solvent.
The values reported are ΔG values, with zero-point energy
corrections, internal energy and entropic contributions were

included through frequency calculations on the optimized
minima, with the temperature taken to be 298.15 K.
Harmonic frequency calculations were performed for all
stationary points to confirm them as a local minima or
transition state structures. The XYZ coordinates of the
optimized geometries of all the structures are provided in
the Supplementary Material.
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