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ABSTRACT: Exposure to polychlorinated biphenyls (PCBs) is impli-
cated in adverse neurotoxic outcomes. However, the impact of PCBs on
the adolescent nervous system has received inadequate attention. We
conducted a comprehensive review to identify studies of neurotoxic
outcomes following PCB exposure during the adolescent period in rodents.
Only four papers were found to meet all inclusion criteria. PCB exposure
in adolescent rats caused disruptions in the main functions of the
prefrontal cortex, resulting in cognitive deficits. This comprehensive review
demonstrates that more research is needed to characterize how PCB
exposure adversely affects the adolescent nervous system.

1. INTRODUCTION
Polychlorinated biphenyls (PCBs) are a class of 209 industrial
chemicals that contain a biphenyl moiety with 1−10 chlorine
substituents. In the 1970s, the manufacturing of PCBs was
banned in the United States. However, PCBs are still used and
found in electrical equipment, building materials, and other
applications, leading to their ubiquitous presence in the
environment.1,2 PCBs can be detected in serum and adipose
samples of diverse human populations. In the United States,
recent studies show that PCBs are present in the indoor air of
older schools due to their release from building materials.1

This finding is especially problematic for children who spend
several hours a day in PCB-contaminated classrooms. The
adolescent time frame is critical for mammalian brain
development, including synaptic pruning, hormonal influences,
and behavioral adaptations that underlie maturation into
adulthood.3,4 Thus, exposure to PCBs in schools is predicted
to affect the adolescent brain and prevent students from
reaching their full academic potential.2 However, limited
information is available about neurotoxic outcomes following
exposure to PCBs during adolescence. Although PCB exposure
is lifelong, characterizing adolescence as a window of
susceptibility is important for understanding PCB neuro-
toxicity across the lifetime.

2. IDENTIFICATION OF STUDIES OF NEUROTOXIC
OUTCOMES FOLLOWING ADOLESCENT PCB
EXPOSURE

The objective of this comprehensive review was to identify
preclinical studies that characterized neurotoxic outcomes
following PCB exposure during the adolescent period of either

rats or mice because of their importance in neurotoxicology
research. Rodent adolescence is typically postnatal days
(PND) 28−55.4 However, early PCB exposure can alter
adolescent timelines, with male rats taking longer to reach full
adult maturity and female rats developing earlier with
precocious menarche.1 Thus, we defined adolescence in
rodents as PND21−PND60, expanding the window of
adolescence to encapsulate the full range of potential brain
growth during this period. This age range in rodents is relevant
to children in schools, from kindergarten, age 5, to high school,
age 18−19.4 Using this broader definition of adolescence, we
performed a comprehensive review and evaluated the scientific
rigor of relevant papers using the ToxRtool, an open-access,
user-friendly tool to evaluate toxicology studies (Figure 1).5−8

Pubmed, Scopus, and Embase were searched with broad
Boolean terms to identify all potentially relevant studies. The
search terms were generated with the help of a librarian (for
additional details, see the Supporting Information). The search
identified 1598 potential citations that were imported into
EndNote and screened for duplicates.9 A total of 589
duplicates were removed. The remaining 1009 articles were
evaluated based on their titles, abstracts, and methods to
identify manuscripts with PCB exposure during the adolescent
period for rodents and reported neurotoxic findings in
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adolescence or adulthood. Review criteria were predetermined
to avoid bias (Figure 1). Four papers met all of the criteria. As

described in the Supporting Information, scientific rigor was
then evaluated with the open access ToxRtool.5−8 The key
findings from these studies, including their ToxRtool rating,
are discussed below (Table 1).

3. OVERVIEW OF NEUROTOXIC OUTCOMES
OBSERVED IN RODENTS FOLLOWING PCB
EXPOSURE DURING ADOLESCENCE

A preclinical study investigated how exposure to PCBs first
perinatally and/or later in adolescence negatively impacts
behavioral and molecular outcomes in a sex and age-specific
manner.10,11 A “two-hit” model was used to test this
hypothesis. Briefly, Sprague−Dawley rats were exposed
prenatally (embryonic days 16, 18, and 20) or in adolescence
(PND24, PND26, and PND28) or at both time points to 1
mg/kg/bw of Aroclor1,2 1221 via intraperitoneal (IP)
injection. Offspring were tested behaviorally during adoles-
cence (PND30−PND39) and adulthood (between PND90
and PND110) to assess different domains of neural function.11

The results listed here focus primarily on adolescent-only
exposure (for a more comprehensive list of results, see Table
S2). Exposure for females during adolescent development led
to a longer latency to hop during affiliative behaviors along
with a longer latency to socialize with a stimulus animal. In
adolescent-only exposed males, no adolescent behaviors were
significantly altered, but during adulthood, exposed males
spent more time with females during sociosexual choice.11

Adolescent exposure also affected gene expression and
DNA-methylation in an accompanying paper.10 Specifically, in

Figure 1. Preferred reporting items for systematic reviews and meta-
analyses (PRISMA) flow diagram outlining the comprehensive review
methods and criteria. The flowchart was prepared following the
PRISMA 2020 statement.15

Table 1. Summary of Animal Studies Investigating Neurotoxic Outcomes Following PCB Exposure during Adolescencea

aFor additional details, see Table S2. bN, number of animals per group and sex. c(−) no change; (↑) significant increase; (↓) significant decrease.
dTool to report quality of toxicology results8 (>17, reliable without restrictions; 13−17, reliable with restrictions; <13, unreliable). eIP,
Intraperitoneal injection. fSD, Sprague Dawley. gE, embryonic day. hPND, postnatal day. iNAc, nucleus accumbens. jPFC, prefrontal cortex. kPOA,
preoptic area. lLS, lateral septum. mPO, oral. nLE, Long Evans. oInh, inhalation; whole-body inhalation.
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lateral septum (LS), adolescent exposure altered gene
expression of the androgen receptor (Ar) and the vasopressin
receptor 1a (Avpr1a). Adolescent PCB exposure in males
increased gene expression of the mu opioid receptor in
prefrontal cortex (PFC, Oprm1) and decreased expression of
Avpr1a in LS. Adolescent-only exposure also reduced
expression of Ar and Oprm1 in the male preoptic area
(POA).10 The main effect from adolescent exposure in females
was an increase of methylation of the Ar in the POA.10 Pearson
correlations were measured to determine whether adult
behaviors in males correlated with gene expression changes
from adolescent PCB exposure. A significant positive
correlation was reported between increased PFC Oprm1
expression and increased time males spent near a sociosexual
partner in the adolescent-only exposure group.10,11 Notably,
the two-hit paradigm revealed complex interactions between
PCB effects on the brain when exposed at multiple time points
during development. While this study provides valuable
insights into neurotoxic outcomes following PCB exposure
during the adolescent period, the IP route of exposure is less
relevant to humans, thus limiting the impact of this study.
Another study orally exposed Long Evans rats from

PND27−PND50 to 0, 3, or 6 mg/kg/bw/day of the Fox
River PCB mixture (FRM). This mixture mimics the PCB
congener profile found in fish consumed in the Green Bay,
Wisconsin region. The objective of this study was to determine
whether executive functioning tasks driven by the PFC are
affected in PCB exposed rats.3 Males exposed to the FRM
displayed higher rates of cognitive flexibility (less errors on
reversal learning) compared to controls in the set-shifting task,
but no group differences in response inhibition.3 Female
behavior at PND90 was not affected by adolescent exposure.
A final study investigated how PCBs affect executive

functioning using operant behavior tasks.12 Sprague−Dawley
rats inhaled an estimated 0.562 mg/kg/day of Aroclor 1248
vapor, a commercial PCB mixture, or vapors from PCB-
contaminated sediment from the St. Lawrence River from
PND35−PND65. These exposure paradigms are representative
of current human exposures to PCBs in schools. Inhalation
exposure to either Aroclor 1248 or PCB contaminated
sediment affected both male and female performance during
fixed interval trials. The exposed males expressed reduced
inhibition and lower control of responses (more activity and
lever pressing) compared to controls. The females, although
not statistically significant, responded less frequently in general
than the control littermates during fixed interval trials.12

The available evidence, while limited, demonstrates that the
PFC and behavioral tasks that rely on the PFC are influenced
following exposure to PCBs during adolescence.1,3,10−12 The
PFC is one of the major areas undergoing change and
development during adolescence. The PFC is responsible for
complex human behaviors, including socializing, critical
thinking, decision making, and regulating reward responses.3

In the preclinical studies identified in this review, PCB
exposure during adolescence caused disruptions in critical
functions of the PFC as evidenced by increased latency to
socializing in females,11 increased activity and impulsivity in
males during exploration,11,12 and males showing changes in
set-shifting abilities (Table S2).3 These changes are associated
with altered gene expression of Oprm1 in the PFC.
The higher-order functions displayed by the PFC and its

associated circuits require proper adolescent developmental
processes, which can be disrupted following PCB exposure.

Adolescent PFC development is heavily influenced by a late
wave dopaminergic innervation which plays a critical role in
the social, motor, and cognitive behaviors found to be
disrupted by PCBs in these studies. Disruption of dopamine
signaling can lead to behavioral dysregulation like impulsivity,
addiction, and maladaptive habit formation.12 PCB exposure
can affect dopamine levels, especially in adult mammals.13,14

Thus, disruption in dopamine circuits in the PFC following
PCB exposure during adolescence may be a factor in adverse
behavioral outcomes during adolescence and later in adulthood
observed in the preclinical studies identified by this
comprehensive review;12 however, changes in dopamine levels
following PCB exposure during adolescence were not assessed
in the studies discussed in this comprehensive review.

4. KNOWLEDGE GAPS AND RESEARCH NEEDS
Because adolescents continue to be exposed to PCBs via their
diet and by inhalation,1 there is a need to characterize further
sex- and dose-dependent effects of PCB exposure on the
adolescent brain using relevant routes of exposure and
environmentally relevant doses. For example, it is unknown
how PCBs and their metabolites accumulate in different brain
regions; the mechanisms (e.g., altered neurotransmitter
homeostasis) by which PCBs affect cellular targets in the
adolescent brain have not been characterized; and the circuits
involved in adverse behavioral outcomes following PCB
exposure have not been studied. Moreover, behavioral studies
assessing cognitive deficits through behavioral outcomes in
preclinical animal models are needed to translate laboratory
findings to humans. Without answering these knowledge gaps,
it will be impossible to prevent and mitigate the adverse
neurotoxic effects of PCBs in future generations.
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