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Abstract: Chronic pain (CP) is a severe clinical entity with devastating physical and emotional
consequences for patients, which can occur in a myriad of diseases. Often, conventional treatment
approaches appear to be insufficient for its management. Moreover, considering the adverse effects
of traditional analgesic treatments, specialized pro-resolving lipid mediators (SPMs) have emerged as
a promising alternative for CP. These include various bioactive molecules such as resolvins, maresins,
and protectins, derived from ω-3 polyunsaturated fatty acids (PUFAs); and lipoxins, produced
from ω-6 PUFAs. Indeed, SPMs have been demonstrated to play a central role in the regulation
and resolution of the inflammation associated with CP. Furthermore, these molecules can modulate
neuroinflammation and thus inhibit central and peripheral sensitizations, as well as long-term
potentiation, via immunomodulation and regulation of nociceptor activity and neuronal pathways.
In this context, preclinical and clinical studies have evidenced that the use of SPMs is beneficial in
CP-related disorders, including rheumatic diseases, migraine, neuropathies, and others. This review
integrates current preclinical and clinical knowledge on the role of SPMs as a potential therapeutic
tool for the management of patients with CP.

Keywords: chronic pain; specialized pro-resolving lipid mediators; inflammation; long-term potenti-
ation; central nervous system sensitization; polyunsaturated fatty acids; eicosanoids; nociception;
omega 3 fatty acids; pain management

1. Introduction

Chronic pain (CP) is one of the most frequent and difficult-to-manage clinical entities
in medical practice [1]. Multiple disorders featuring CP are the leading causes of disability
worldwide, corresponding to a significant public health issues [2–4]; as well as marked
reductions in quality of life related to restrictions of mobility and daily activities, anxi-
ety, and depression [5,6]. Current pharmacological options for the treatment of CP are
imperfect, including significant efficacy and tolerability issues [7]. In particular, opioid
abuse has been linked to increasingly larger mortality rates in recent years, representing a
large-scale epidemic [7,8].

These problems have invigorated neuropharmacological research on CP [9], centering
on neuroinflammation as a therapeutic target [10]. Inflammation as a pathophysiologic
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component of pain has long been recognized in neural phenomena such as peripheral
sensitization (PS), central sensitization (CS), and long-term spinal potentiation (LTP) [11].
Recent preclinical and clinical studies have described anti-nociceptive effects for special-
ized pro-resolving lipid mediators (SPMs), which derive from polyunsaturated fatty acids
(PUFA) [12–15]. These molecules are important regulators of the balance between pro-
inflammatory and anti-inflammatory substances, in addition, they might regulate the
excessive sensitization of nociceptors after inhibiting specialized channels and thus achiev-
ing the suppression of pain [13]. In this way, SPMs would function as a bridge between the
immune and nervous systems, and could be the future of CP therapy. The objective of this
review is to describe the molecular pharmacological mechanisms through which SPMs act
in CP, as well as summarize current preclinical and clinical evidence on SPMs as analgesic
agents, serving as a novel approach to CP management.

2. Materials and Methods

This is a narrative review in which an extensive literature search was performed
on Scopus, EMBASE, PubMed, ISI Web of Science, and Google Scholar databases, from
inception to August 2021. The terms “Chronic pain”, “Neuroinflammation”, “specialized
pro-resolving lipid mediators and chronic pain”, and “Chronic pain and nociception” were
among the ones used throughout the search.

3. Results
3.1. Specialized Pro-Resolving Lipids Mediators in Pain: The Molecular Basis

SPMs are synthesized in an active metabolic process in the latter stages of inflam-
mation, acting as a regulatory mechanism, decreasing pain caused after sensitization of
nociceptors, and limiting local tissue damage caused by the inflammatory response [11].
A variety of PUFA are well-recognized substrates for SPM synthesis, including both
ω-6 fatty acids such as arachidonic acid (AA), and ω-3 fatty acids such as eicosapen-
taenoic (EPA), docosahexaenoic (DHA), and docosapentaenoic acids (DPA) [16,17]. Thus,
after activation of intracellular phospholipases, these molecules can be used as the initial
substrate in the SPMs synthesis pathways, yielding products in two families: Lipoxins (LX),
derived from AA, and protectins (PD), maresins (MaR), and resolvins (Rv), derived from
theω-3 fatty acids [18] (Figure 1). The latter may be further categorized into two groups:
E-series (RvE) and D-series (RvD) resolvins. RvE synthesis involves cyclooxygenase-2
activity, as well as processing by lipoxygenases such as 5-lipoxygenase (5-LOX), which
forms RvE1.

Alternatively, RvD may be produced from DHA via 5-LOX and 15-lipooxygenase
(15-LOX) to form 17S-hydroperoxy-DHA, which can finally be converted to RvD1, RvD2,
RvD3, and RvD4. Interestingly, acetylsalicylic acid (AAS) appears to induce the synthesis
of RvD and LX by acetylating COX-2 and thereby changing its enzymatic properties [19,20].
DHA may also be a precursor of PD and MaR [21], which are abundant in murine and
human neurons and macrophages, respectively [22,23]. Despite the close relationship
between PUFAs, SPMs and inflammatory pathology improvements, the mechanism in
which COX-2 acetylation is involved continues to be discussed nowadays.

Furthermore, the synthesis of SPMs is key for promoting an anti-inflammatory and
pro-resolution state, and by extension, relieving peripheral inflammatory pain [17]. This
change from a pro-inflammatory to an anti-inflammatory state appears to hinge on a
phenotypic modification in 15-LOX functionality induced by a PGE2 peak, which propels
a shift from the production of leukotriene B4 (LTB4) to LX, leading to Rv, PD, and MaR
synthesis [24,25]. This process is driven by increased translation of key enzymes for
ARNm codification [26,27].
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Figure 1. Metabolism of specialized pro-resolving lipid mediators. EPA: eicosapentaenoic acid; DPA: docosapentaenoic 
acid; DHA: docosahexaenoic acid; RvE1: resolvins E1; RvE2: resolvins E2; RvE3: resolvins E3; RvD1: resolvins D1; RvD2: 
resolvins D2; RvD3: resolvins D3; RvD4: resolvins D4; RvD5: resolvins D5; RvD6: resolvins D6; NPD1: neuroprotectins 1; 
MaR1: maresins 1; LXA4: lipoxins A4; AT-RvD: aspirin-triggered resolvin D1; ATL: aspirin-triggered lipoxins; LOX: lipox-
ygenases; COX-2: cyclooxygenase 2; CYP: cytochromes P450 enzymes. 

In turn, SPMs activate a variety of receptors in several immune cells, for example, the 
N-formyl peptide receptor 2 (ALX/FPR2), widely recognized in neutrophils, monocytes, 
T cells, synovial fibroblasts, and glial cells; whose main ligands are LXA4 and ATL [28]. 
Moreover, LX have been observed to antagonize pro-inflammatory mediators such as IL-
6 and IL-8 in various cells in the respiratory tract and inhibit TNF-α release in human T 
cells [29]. In polymorphonuclear cells (PMN), LX also activate ALX/FPR2, decrease leuko-
cyte infiltration and inhibit transmigration, adhesion, degranulation, and chemotaxis of 
neutrophils, as well as the generation of superoxide. Rapid phosphorylation of Lympho-
cyte-specific protein 1 (LSP1) and polyisoprenyl phosphates is a paramount step in this 
process [30]. Likewise, LXA4 competes with other ALX/FPR2 ligands such as LTB4, PGE2, 
and N-formyl-Met-Leu-Phe peptide (fMLP), reducing their activity in PMN [30–35]. In 
addition, by disrupting chemotaxis, SPMs may also indirectly prevent the formation of 
neutrophil extracellular traps, thus attenuating further recruitment and favoring resolu-
tion of inflammation [36]. 

On the other hand, LX are the main products obtained from AA in this context, via 
5-LOX and 15-LOX oxygenation. This yields LXA4 and LXB4, which have been isolated 
from endothelial cells, leukocytes, and human platelets [37]. Notably, ASA appears to pro-
mote the production of 15R-hydroperoxy-eicosatetraenoic acid, a substrate for 5-LOX to 
form 15-epi-LXA4, an LX epimer. These aspirin-triggered lipoxins (ATL) may have unique 
and beneficial biological properties in comparison with the effects of other related agents, 
such as non-steroidal anti-inflammatory drugs (NSAID). Indeed, ATL may correlate to a 
key role for ASA specifically in the clinical management of inflammatory and CP-related 
disorders [26,38].  

The activation of ALX/FPR2 also appears to induce changes in the phosphorylation 
of cytoskeleton proteins, arresting the cell cycle and preventing phosphorylation in pro-

Figure 1. Metabolism of specialized pro-resolving lipid mediators. EPA: eicosapentaenoic acid; DPA: docosapen-
taenoic acid; DHA: docosahexaenoic acid; RvE1: resolvins E1; RvE2: resolvins E2; RvE3: resolvins E3; RvD1: resolvins
D1; RvD2: resolvins D2; RvD3: resolvins D3; RvD4: resolvins D4; RvD5: resolvins D5; RvD6: resolvins D6; NPD1: neuro-
protectins 1; MaR1: maresins 1; LXA4: lipoxins A4; AT-RvD: aspirin-triggered resolvin D1; ATL: aspirin-triggered lipoxins;
LOX: lipoxygenases; COX-2: cyclooxygenase 2; CYP: cytochromes P450 enzymes.

In turn, SPMs activate a variety of receptors in several immune cells, for example, the
N-formyl peptide receptor 2 (ALX/FPR2), widely recognized in neutrophils, monocytes,
T cells, synovial fibroblasts, and glial cells; whose main ligands are LXA4 and ATL [28].
Moreover, LX have been observed to antagonize pro-inflammatory mediators such as
IL-6 and IL-8 in various cells in the respiratory tract and inhibit TNF-α release in human
T cells [29]. In polymorphonuclear cells (PMN), LX also activate ALX/FPR2, decrease
leukocyte infiltration and inhibit transmigration, adhesion, degranulation, and chemo-
taxis of neutrophils, as well as the generation of superoxide. Rapid phosphorylation of
Lymphocyte-specific protein 1 (LSP1) and polyisoprenyl phosphates is a paramount step
in this process [30]. Likewise, LXA4 competes with other ALX/FPR2 ligands such as LTB4,
PGE2, and N-formyl-Met-Leu-Phe peptide (fMLP), reducing their activity in PMN [30–35].
In addition, by disrupting chemotaxis, SPMs may also indirectly prevent the formation of
neutrophil extracellular traps, thus attenuating further recruitment and favoring resolution
of inflammation [36].

On the other hand, LX are the main products obtained from AA in this context, via
5-LOX and 15-LOX oxygenation. This yields LXA4 and LXB4, which have been isolated
from endothelial cells, leukocytes, and human platelets [37]. Notably, ASA appears to
promote the production of 15R-hydroperoxy-eicosatetraenoic acid, a substrate for 5-LOX
to form 15-epi-LXA4, an LX epimer. These aspirin-triggered lipoxins (ATL) may have
unique and beneficial biological properties in comparison with the effects of other related
agents, such as non-steroidal anti-inflammatory drugs (NSAID). Indeed, ATL may cor-
relate to a key role for ASA specifically in the clinical management of inflammatory and
CP-related disorders [26,38].

The activation of ALX/FPR2 also appears to induce changes in the phosphorylation
of cytoskeleton proteins, arresting the cell cycle and preventing phosphorylation in pro-
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inflammatory pathways, like the activation of nuclear factor kappa B (NF-κB) [30,39].
Moreover, LXA4 can also antagonize CysLT1 receptors in PMN, endothelial and mesangial
cells [40]; and inhibit proliferation induced by leukotriene D4 by modulating platelet-
derived growth factor receptor (PDGF) transactivation, and therefore, phosphoinositoside
3-kinase (PI3K) activation and the mitogenic response [31]. In neurons, LXA4 signaling
can also be potentiated by sphingosine-1-phosphate, which can acetylate neuronal COX-2
to drive a skew towards the production of the powerfully pro-resolutive 15-epi-LXA4,
similarly to the events seen in the synthesis of ATL [41]. Lastly, both LXA4 and LXB4
may also inhibit the chemotaxis of neutrophils induced by LTB4, as well as eosinophil
degranulation by PDGF [31].

In other cell types, such as monocytes, LX promote the resolution of inflammation,
as they are capable of mediating chemotaxis and adhesion without the release of reactive
oxygen species (ROS) and degranulation [42]. Furthermore, in macrophages, LXA4 stim-
ulates phagocytosis of apoptotic PMN [12]. This process occurs via activation of small
GTPases, with the subsequent redistribution of cytoskeletal proteins for the assembly of
cytoplasmic extensions and pseudopods [43]. Meanwhile, in neutrophils, similar changes
are mediated by inhibition of protein kinase C-BII (PKCBII). This enzyme promotes in-
flammation by triggering the conversion of polysoprenyl diphosphate phosphatase 1 into
presqualene diphosphate and then presqualene monophosphate, a positive stimulus for
several functional cell responses in inflammation [44]. On the other hand, transforming
growth factor β (TGF-β) is synthesized during phagocytosis, which actively suppresses
the release of pro-inflammatory cytokines [45], and promotes SPMs biosynthesis, further
favoring resolution [46]. Finally, activation of ALX/FPR2 can inhibit IL-10 production by B
cells and TNF-α in T cells, highlighting the anti-inflammatory role of SPMs in the adaptive
immune response, as seen in chronic inflammation [47,48].

Other SPMs with notable mechanisms of action include RvD and RvE. Particularly,
RvD1 shares the affinity for the ALX/FPR2 receptors with LXA4; and also binds to other
GPCR, such as DRV1/GPR3. These receptors are found in PMN, monocytes, macrophages,
and endothelial cells. Their activation appears to involve upregulation of specific mi-
croRNA such as miR-208 and IL-10 while downregulating miR-219, which modulates
5-LOX and reduces LTB4 levels [21,49]. RvD1 can also reduce actin polymerization and
CDb11 activity [50], powerfully promoting leukocyte adhesion, migration, and phago-
cytosis [51]. Others, like RvD3 and RvD5, also act on these receptors [12]. Another
recently discovered receptor, DRV2/GPR18—found in bone marrow, monocytes, and
macrophages—is also activated by RvD2, in association with increased phagocytosis via
modulation of the protein kinase A (PKA) and STAT3 pathways [52,53]. RvD may also
inhibit the synthesis of INF-y and TNF-α in Th1 and Th17 cells, resulting in increased
production of Treg cells, lower IL-6 levels, and increased production of IgM and IgE by B
cells [54]. RvD1 can inhibit the class change of IgG to IgE by stabilizing regulatory protein
BCL-6. These events reflect the role of SPMs in allergic processes [48,55].

Interestingly, neuropathic pain in microglia activates by phosphorylation mitogen-
activated protein kinase (MAPK), increasing prostaglandin E2 (PGE2), which mediates
microglial activation and subsequent pain enhancement, as counter-regulators RvD1 and
LXA4 in microglia can inhibit TNF release, an important factor in pain mediation [56]. In
addition, RvD1 has functions as a promoter of conjunctival cell health using a different
mechanism than the one mentioned before, which is the stimulation of mucin secretion
by goblet cells. This is mediated by intracellular calcium increase [57]. In the case of
RvD2, it has a similar role but it also increases nitric oxide and prostacyclin production in
endothelial cells as well as microbial killing promotion. This results in controlled PMN
adhesion, thus acting as an anti-inflammatory substance [58].

Among RvE, RvE1, and RvE2 can bind to ERV1/Chem23 receptors, abundantly ex-
pressed in monocytes, and more sparsely on neutrophils, M2 macrophages, and dendritic
cells. RvE1 can compete with chemerin, a pro-inflammatory ligand of this receptor, result-
ing in inhibition of signaling by NF-kB, MAPK/ERK1-2, and PI3K/AKT [59,60], which
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are essential for inflammation and phagocytosis [12,61]. RvE1 is also a partial agonist of
the LTB4 receptor, blocking the calcium-mediated intracellular response induced by this
leukotriene in leukocytes, and inhibiting chemotaxis [62,63]. Furthermore, RvE1 is one of
the few SPMs that can inhibit cytokine production in Th2 cells [54].

On the other hand, MaR activity is prominent in macrophages, where they may
be synthesized from DHA [64]. 13S, 14S-epoxide maresin induces the differentiation of
pro-inflammatory M1 macrophages to M2 macrophages, which poses anti-inflammatory
and pro-resolving properties, releasing PDGF, IL-10, and TGF-β [65]. MaR1 increases
phagocytosis and activates PKC isoforms, which limit neutrophil infiltration, decrease IL-6,
TNF-α, and chemokine production. It also prevents the activation of NF-κB by inhibiting
IkB kinase (IKK), not allowing the dissociation of the inhibitor of NF-κB (IκBα) from
NF-kB itself [66–69]. Even though it is not part of the SPMs family, flavonoids-derivate
pharmaceutics, such as Flavocoxid, have been studied as pro-resolving therapeutics that
have a similar mechanism to MaR, specifically as a possible inhibitor of NF-kB. It also
acts as a dual inhibitor of COX-2 and 5-LOX. Furthermore, it has been associated with
increased levels of LXA4 production [70]. Finally, other SPMs may also modulate immune
cell functionality and cytokine synthesis: PD appears to inhibit T cell migration and
promote their apoptosis in vivo, in association with lower TNF-α levels [71]. It also reduces
signaling by NF-kB, expression of COX-2, and infiltration by PMN. PD1 is also a ligand
for GPR37, promoting phagocytosis of apoptotic cells in inflammation. However, the
underlying mechanisms remain unclear [72–74].

3.2. Specialized Pro-Resolving Lipids Mediators in the Neurobiology of Pain: Anti-Inflammatory
and Analgesic Mechanisms

A large part of the pharmacological interest in SPMs focuses on their capacity for
modulation of neuroinflammation, as pain results from the interplay between immune and
nervous cells. Historically, the resolution of the inflammatory response was construed as a
passive process depending on the spontaneous wane of pro-inflammatory factors. However,
at present, active modulation by various immune cells is recognized as a paramount factor
in this process [12,75]. SPMs may be the key mediators in this context, as explained before,
relieving peripheral inflammatory pain [17].

Peripheral inflammatory pain is a consequence of the sensitization of peripheral noci-
ceptors by various signals, such as the recruitment of macrophages and neutrophils, which
secrete mediators that promote the sensitization of such nociceptors [76]. These include
pro-inflammatory cytokines such as TNF-α, IL-1β, IL-6, and IL-17, nerve growth factor
(NGF), serotonin, histamine, and prostaglandin E2 (PGE2), among others [77]. Further-
more, local release of nitric oxide (NO) by inflammatory stimuli is been associated with
peripheral nociception. Several studies have suggested PGE2 increased production of
PGE2 in the presence of NO, due to the ability of NO to activate COX-1 and up-regulate
COX-2, which leads to peripheral release of PGE2 and PGI2 [78]. Sensory neurons express
receptors for a number of these mediators, including IL-1βR, TNF-αR, IL-6R, and IL-17RA,
NGF receptors (TrkA), and G protein-coupled receptors (GPCR) for serotonin, histamine,
and PGE2 [77,79–81]. These are expressed in both type C and Aδ nociceptive fibers [82],
and their activation enhances membrane excitability, leading to subsequent stimulation due
to the hyperactivation of key transduction molecules, such as transient receptor potential
vanilloid subtype 1 (TRPV1) and ankyrin subtype 1 (TRPA1) ion channels, and conduc-
tion molecules such as tetrodotoxin-insensitive voltage-gated sodium channels Nav1.7,
1.8, and 1.9. This process results in PS, with decreased activation thresholds in primary
nociceptors [83]; and in turn, it augments the release of excitatory neurotransmitters at
terminal synapses within the dorsal horn (DH) of the spinal cord, a key site for sensory
signal modulation. This hyperactivation further sensitizes second-order sensory neurons,
triggering neuronal plasticity and CS, a circumscribed state of hyperexcitability in the
central nervous system with enhanced processing of nociceptive signals (Figure 2) [50].
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PKA: protein kinase A; ERK: extracellular signal-regulated kinase; MAPK: mitogen-activated protein kinases; JNK: JUN 
N-terminal kinase; NO: nitric oxide; sGC: soluble guanylyl cyclase receptor. 

Following the development of CS, nociceptive neurons can potently signal to higher-
order structures in the brain and brainstem, resulting in pathological pain perception. Fur-
thermore, expansion of receptive fields is often observed, resulting in pain perception 
from stimulation of uninjured tissue, a phenomenon termed secondary hyperalgesia [84]. 

Numerous neurobiological mechanisms have been identified in this scenario. Fol-
lowing intense stimulation or persistent injury, activated C and Aδ fibers release a variety 
of neurotransmitters, including glutamate, substance P, calcitonin gene-related peptide 
(CGRP), and ATP, onto output neurons of the superficial DH. In consequence, NMDA 
glutamate receptors (NMDAR) in postsynaptic neurons are activated, increasing intracel-
lular calcium levels and activating a host of calcium-dependent signaling pathways and 
second messengers, such as mitogen-activated protein kinase (MAPK), protein kinase C 
(PKC), PKA, and Src [50]. In addition, the increase of the intracellular levels of calcium 
triggers a cascade of events that include activation of neuronal NO synthase (Nnos), fol-
lowed by the increase of NO production. The subsequent activation of intracellular recep-
tor soluble guanylyl cyclase (sGC), leads to the activation of the NO-cGMP signaling path-
way, present in neurons of the spinal cord implicated in CS, secondary hyperalgesia, and 
modulation of ion channels. This cascade of events heightens the excitability of output 
neurons and facilitates the transmission of nociceptive signals to the brain [85].  

Figure 2. Role of specialized pro-resolving lipid mediators in central sensitization and long-term spinal potentiation in
pain. Inflammation caused by local or peripheral injury impacts the nervous system through pro-inflammatory mediators
secreted by immune and specialized cells, with the subsequent upregulation and hyperactivity of nociceptors and other
receptors related to pain perception, leading to uncontrolled synaptic activity and development of central sensitization
and long-term spinal potentiation. RvE1: resolvins E1; RvE2: resolvins E2; RvD1: resolvins D1; RvD2: resolvins D2;
RvD3: resolvins D3; RvD5: resolvins D5; NPD1: neuroprotectins 1; MaR1: maresins 1; LXA4: lipoxins A4; LTB4: leukotriene
B4; LTD4: leukotriene D4; PGE2: protaglandines E2; GPCRs: G protein-coupled receptors; TRP: transient receptor potential;
TRPV1: transient receptor potential vanilloid subtype 1; TRPA1: transient receptor potential cation channel subfamily
A member 1; CB1: cannabinoid receptor 1; NMDAR: N-Methy-D-Aspartate Receptor; ChemR23: chemerin receptor 23;
LTP: long-term potentiation; TNF-α: Tumoral nuclear factor; IL-1b: Interleucin 1b; IL-6: Interleucin 6; PKC: protein kinase
C; PKA: protein kinase A; ERK: extracellular signal-regulated kinase; MAPK: mitogen-activated protein kinases; JNK: JUN
N-terminal kinase; NO: nitric oxide; sGC: soluble guanylyl cyclase receptor.

Following the development of CS, nociceptive neurons can potently signal to higher-
order structures in the brain and brainstem, resulting in pathological pain perception.
Furthermore, expansion of receptive fields is often observed, resulting in pain perception
from stimulation of uninjured tissue, a phenomenon termed secondary hyperalgesia [84].

Numerous neurobiological mechanisms have been identified in this scenario. Fol-
lowing intense stimulation or persistent injury, activated C and Aδ fibers release a variety
of neurotransmitters, including glutamate, substance P, calcitonin gene-related peptide
(CGRP), and ATP, onto output neurons of the superficial DH. In consequence, NMDA glu-
tamate receptors (NMDAR) in postsynaptic neurons are activated, increasing intracellular
calcium levels and activating a host of calcium-dependent signaling pathways and second
messengers, such as mitogen-activated protein kinase (MAPK), protein kinase C (PKC),
PKA, and Src [50]. In addition, the increase of the intracellular levels of calcium triggers
a cascade of events that include activation of neuronal NO synthase (Nnos), followed by
the increase of NO production. The subsequent activation of intracellular receptor soluble
guanylyl cyclase (sGC), leads to the activation of the NO-cGMP signaling pathway, present
in neurons of the spinal cord implicated in CS, secondary hyperalgesia, and modulation
of ion channels. This cascade of events heightens the excitability of output neurons and
facilitates the transmission of nociceptive signals to the brain [85].
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SPMs regulate this aspect chiefly by interacting with TRPV1 and TRPA1 receptors [79,86–88].
Low-dose administration of MaR1 and PD1 can reduce TRPV1 activity in neurons in
the dorsal roots ganglia (DRG), with their subsequent inhibition caused by PKA and
ERK activity [86,87,89–93]. PD1 also decreases hyperexcitability by negatively regulating
synaptic transmission induced by TNF-α and LTP in the spinal cord [86,93]. Moreover,
RvD1, RvE1, RvD2, and ATL are also powerful TRPA1 and TRPV1 inhibitors [94]; and
RvD1 can also suppress TRPV3 and TRPV4 activity [94–97]. These effects appear to
converge in decreased glutamate release in presynaptic neurons, along with decreased
ERK phosphorylation, NF-κB translocation, and TNF-α and IL-1β expression [79,94,96,98].
TRPV1 are colocalized with ChemP23 receptors in DRG neurons, which can decrease the
hypersensitivity related to mechanical and thermal pain in advanced stages of inflammatory
processes by binding RvD1 and RvE1 [79,99]. Similarly, AT-RvD1, another type of Rv,
increases ChemR23 mRNA expression [100]. Rv may also modulate NMDAR involved in
CS and LTP [89,96].

Indeed, SPMs can modulate the activity of glutamate and NMDAR, which have been
linked to hyperalgesia, neuropathic pain, and decreased opioid activity [101–103]. In
particular, RvE1 can inhibit glutamate release in presynaptic terminals, and consequently
reduce NMDAR-mediated potentiation by blocking phosphorylation in the ERK pathway.
Importantly, this potentiation is associated with the development of changes in the am-
plitude and frequency of spontaneous excitatory postsynaptic currents (sEPCs), a neural
phenomenon implicated in the processes underlying the neuroplasticity associated with
CS and LTP. Therefore, decreasing glutamatergic activity may be a potential mechanism
for reducing CP [79,98]. Likewise, RvD1 can prevent the phosphorylation of NMDAR and
reduce the expression of proinflammatory cytokines, ameliorating allodynia [104].

Similarly, it has been demonstrated that when the µ opioid receptor is blocked,
antinociception of RVD1 and its ligand TRPA1 is prevented. This supports the hypothesis of
an imbalance in the endogenous pro and antinociceptive systems, or the TRPA1 and opioid
receptors. However, increased research is needed to comprehend this phenomenon [105].
Interestingly, the activation of leukocyte-specific opioid receptors was recently reported
to attenuate pain after nerve injury in mice by hyperpolarizing central and peripheral
sensory neurons and diminishing the release of excitatory mediators from these neurons,
including substance P [106,107], CGRP [108], and glutamate [109]. Indeed, convincing
evidence delineates analgesic effects for opioid peptides derived from immune cells in both
animal and human models [110–113].

Other receptors bear important implications in the resolution of inflammation and
pain, including GPR37, GPR18, and GPR32. RvD1, RvD3, and RvD5 are ligands for the lat-
ter, whose inhibition is related to analgesic properties that could be sex-dependent [114,115].
On the other hand, activation of GPR37 by PD1 modulates macrophage-mediated phago-
cytosis by increasing intracellular calcium mobilization related to signal transduction
mediated by Gi/o subunits, ERK and PI3K/AKT, all involved in the resolution of pro-
inflammatory and neuropathic pain states [74,93,116,117]. Furthermore, PD1/GPR37
interactions potentiate the activity of M2 macrophages, in association with the release of
β-endorphins [118,119]. On the other hand, GPR18 is a cannabinoid receptor whose ligand
is RvD2, which, when activated, increases cAMP levels without changes in intracellular
calcium traffic, downregulating various components related to CS such as TRP, MAPK,
and JNK phosphorylation, as well as NMDAR [52,120]. Finally, LXA4 also acts as a pos-
itive allosteric modulator in CB1 receptors, reducing neuronal excitability [121]. It has
been hypothesized that CB1 modulation could restore the levels of IL-1β and COX2 after
inflammatory stimuli [122].

Glial cells play a key role as mediators for the neuroactive effects of SPMs [123,124].
Both microglia and astrocytes express specific receptors for SMP such as ALX/FPR2,
which can inhibit phosphorylation and activation of MAPK such as p-p38, ERK, and
JNK [125–130]. LX activity has been linked with increased SOCS-1 mRNA levels, which is
related to decreased synthesis of pro-inflammatory cytokines induced by JAK-STAT [131,132].
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Likewise, MaR1, PD1, RvD1, and RvD2 appear to reduce inflammatory pain by inacti-
vating microglia and astrocytes through similar mechanisms, in addition to inhibiting
nuclear translocation of NF-κB and the subsequent release of TNF-α, IL-1β, and IL-6 in
peripheral and central nociceptor neurons [131,132]. In turn, both microglia and astro-
cytes express GRP18 cannabinoid receptors. Their activation by RvD2 may be related
to PI3K/AKT/GSK-3β pathway inactivation, triggering inhibition of NF-κB and the re-
lease of anti-inflammatory substances such as TGF-β1 in the spinal cord [133]. On the
other hand, PD1, LXA4, and MaR1 can decrease the expression of IBA-1 and P2Y12
in microglia and GFAP in astrocytes, with amelioration of mechanical allodynia and
thermal hyperalgesia [14,134,135].

Moreover, IL-1β also appears to promote BDNF release in enteric glial cells in subjects
with irritable bowel syndrome [136]; and levels of this cytokine have also been correlated
with the severity and frequency of abdominal pain in this context [137]. The contribution
of astrocytes to CS is less clear [10,77]; although they are also activated after spinal cord
injury. This process is typically delayed, yet more persistent, and it can last for up to
several months. Thus, astrocytes may be more critical to the maintenance, rather than the
induction of CS and persistent pain [77].

Likewise, ATP and the chemokine fractalkine (CXCL1) released from nociceptive fibers
may also contribute to CS, through the stimulation of spinal microglia. ATP mainly targets
microglial P2-type purinergic receptors, triggering the release of brain-derived neurotrophic
factor (BDNF). In turn, this activates TrkB in output receptors in lamina I neurons at the
DH—a process facilitated by IFN-γ in rodents [138]—which markedly changes chloride
ion traffic in these neurons, facilitating depolarization, and thus, increasing excitability and
decreasing the response threshold to both noxious and innocuous stimuli [139]. Activation
of fractalkine receptor CX3CR1 and Toll-like receptors in microglia also induces the release
of BDNF and various cytokines in the spinal cord, favoring CS [140,141].

Oxidative stress, an essential characteristic of neuroinflammatory states, is also tar-
geted by SPMs. LXA4 can increase Nrf2 expression and heme oxygenase translocation to
the nucleus [142]; while ATL inhibit the translocation of p47phox to the cell membrane,
resulting in lower NADPH oxidase activity and decreased ROS formation by BV2 mi-
croglia [143]. In these cells, RvE1 and RvE2 can compete with chemerin for ChemR23
receptors, attenuating pro-inflammatory activity [79,99,116,144]. Likewise, LXA4 may
increase superoxide dismutase activity [145]; similarly to MaR1 and RvD1, which appear
to upregulate glutathione peroxidase [146].

On the other hand, PD1 can suppress the activity of the transcription activating
factor 3 (ATF3), which is associated with axonal lesions in DRG and the development of
neuropathies [134,147]. In addition, MaR1 exerts neuroprotective effects against oxidative
stress by inducing the expression of SOD1 G93AA315T and TDP-43A315T [148]. Lastly,
17-oxoDHA, a metabolite of 17-HDHA, acts as an agonist of peroxisome proliferator-
activated receptors (PPAR)α and γ, which appear to have anti-nociceptive effects by lowering
LTB4 levels, augmenting LXA4 synthesis and facilitating nitric oxide activity [11,149,150].

3.3. Preclinical and Clinical Evidence on Specialized Pro-Resolving Lipids Mediators in the
Management of Pain

In light of the many mechanistic links between SPMs and the pathophysiology of
CP, their potential for clinical use has become a key emergent object of research. Pre-
clinical data underlines the efficacy of LX in various animal models of pain, including
chronic post-ischemic pain (CPIP) [151], carrageenan-elicited pain (CEP) [127,152], bone
cancer-induced pain (BCIP) [130], spinal cord injury (SCI) [15,129,153], chronic constric-
tion injury (CCI) [154], chronic compression of the dorsal root ganglion (CCD) [155], and
non-compressive lumbar disc herniation [128].

Notably, in a recent study by Liu et al., BML-111—an LXA4 receptor agonist—was
used in rats with SCI, resulting in significantly lower levels of TNF-α, IL-1β, and IL-6 in
serum and spinal cord tissue [129]. Sun et al. reported similar results in CCD models,
where LXA4 reduced mechanical hypersensitivity in association with decreased TNF-α,
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IL1β, and IL-6 [155]. Treatment with LXA4 and LXB4 has also been described to reduce
mechanical allodynia in rats with BCIP [130]; and LXA4, LXB4, and AT-LXA4 appear to
reduce mechanical hypersensitivity in carrageenan-treated rats [127,152]. Besides, treat-
ment with AT-LXA4 has been reported to decrease chronic morphine-induced thermal
hyperalgesia by blocking NALP1-derived IL-1β levels in vivo and in vitro, pinpointing a
promising pharmacological target for the treatment of pain [156].

Regarding SPMs derived from DPA and DHA, many studies have shown efficacy
for RvD, PD, and MaR in animal models of pain, such as CCI [134], formalin-induced
pain (FIP) [79,93,94,96], capsaicin-induced pain [89,93,94], complete Freund’s adjuvant
(CFA)-induced pain [79,93,94,96,105], osteoarthritis pain [95], and CEP pain [79,93,100,152].
They may also intervene significantly in temporomandibular joint inflammatory pain [92],
CPIP [151], chronic post-thoracotomy pain (CPTP) [120,157], post-operative pain induced
by tibial bone fracture (PTBF) [133], herniation-induced radicular pain [158], chronic
pancreatitis-induced visceral pain [104], and peripheral neuropathic pain induced by
chemotherapy (PNPC) [114].

A study performed by Zhang et al. evaluated intravenous perioperative treatment
with DHA (500 µg), RvD1 (500 ng), and MaR1 (500 ng) on a mouse model of PNPC,
revealing efficacy for these alternatives in pain prevention and delay. They may also
alleviate established pain, though this remains less clear [159]. Likewise, RvD2 has been
reported to reduce heat hyperalgesia, mechanical allodynia, second-phase spontaneous
pain, and thermal sensitization in FIP, CEP, capsaicin-induced pain, AITC, CFA, and
fibromyalgia-like pain [94,160]. Conversely, Luo et al. did not find analgesic effects with
intrathecal administration of RvD3 and RvD and reported a reduction in mechanical
hyperalgesia with RvD5 treatment only in CIPN male mice [114].

Finally, RvE has also been found effective in animal models of CFA-induced inflamma-
tory pain [79,161], FIP [37,161], CEP [79,161], CCI [123], and spinal nerve injury (SNI) [123].
Indeed, in an equivalent dose 1000 times lower than morphine, RvE1 appears to reduce
second-phase spontaneous pain in FIP models [79]. Furthermore, in two studies, Xu et al.
reported a decrease in mechanical allodynia, heat hyperalgesia, edema, neutrophil infil-
tration, and expression of pro-inflammatory cytokines and chemokines in diverse pain
models treated with RvE1 [79,123]. This is notable, since RvE1 has been shown to be
significantly increased by n-3 fatty acids supplementation in humans [162]. Even though
effective in reducing inflammation, no robust analgesic effects have been described for
RvE2 and RvE3 [163,164]. On the other hand, a phase 2 study examined the therapeutic
effectivity of RX-10045, a synthetic analog of RvE1, in the treatment of eye inflammation
and pain in cataract surgery [165].

Beyond mechanistic and animal studies, SPMs have also been tested as analgesics in
humans with various pain-related conditions (Table 1), such as chronic headaches [166],
migraines [167], joint discomfort [15,168], sickle cell disease [169], diabetic neuropathy [170],
and various rheumatic diseases [15,171–175]. Firstly, supplementation with certain doses
ofω-3 PUFAs appears to produce an increase in circulating anti-inflammatory mediators
in humans [176]. For example, in a meta-analysis by Goldberg et al. [15] included 17 trials
evaluating the pain-relieving effects of ω-3 PUFA in patients with rheumatoid arthritis
or joint pain related to inflammatory bowel disease and dysmenorrhea. The researchers
found that supplementation reduced patient-reported joint pain intensity (SMD: −0.26;
95% CI: –0.49 to −0.03, p = 0.03), minutes of morning stiffness (SMD: −0.43; 95% CI: −0.72
to −0.15, p = 0.003), number of painful and/or tender joints (SMD: −0.29; 95% CI: −0.48 to
−0.10, p = 0.003), and NSAID use (SMD: −0.40; 95% CI: −0.72 to −0.08, p = 0.01).
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Table 1. Summary of critical clinical evidence regarding specialized pro-resolving lipid mediators and pain-related conditions.

Authors (REF) Pain-Related Conditions Methodology Results

Goldberg et al. [15] Rheumatoid arthritis and
joint pain

Meta-analysis with 17
randomized controlled clinical

trials evaluating the
pain-relieving effects ofω-3 PUFA

in patients with rheumatoid
arthritis or joint pain related to

inflammatory bowel disease
and dysmenorrhea.

Treatment withω-3 PUFA for 3–4
months reduced patient-reported
joint pain intensity (SMD: −0.26;
95% CI: −0.49 to −0.03, p = 0.03),

minutes of morning stiffness (SMD:
−0.43; 95% CI: −0.72 to −0.15,
p = 0.003), number of painful

and/or tender joints (SMD: −0.29;
95% CI: −0.48 to −0.10, p = 0.003),
and NSAID use (SMD: −0.40; 95%

CI: −0.72 to −0.08, p = 0.01).

Geusens et al. [173] Rheumatoid arthritis

Randomized, double-blind
controlled trial that assessed the

long-term effects of
supplementation with various

doses ofω-3 PUFA in 90 patients
with active rheumatoid arthritis.

There was a significant
improvement in the patient’s global

evaluation and the physician’s
assessment of pain in patients

treated with 2.6 mg/day ofω-3
(p < 0.05).

Tajmirriahi et al. [167] Migraine

Randomized, single-blind clinical
trial that evaluated the effect of

dietary supplementation with fish
oil for migraine prevention in

67 patients taking
sodium valproate.

There was a significant decrease in
frequency (mean baseline from 13.7

to 2.4; p = 0.044), and severity of
migraines (mean baseline from 7.9

to 2.9; p = 0.046) in participants
treated with sodium valproate and
fish oil supplementation after the

first month of treatment.

Tomer et al. [169] Sickle cell disease

A double-blind clinical trial that
assessed the effects of dietaryω-3

PUFA on the frequency of pain
episodes in patients with sickle
cell disease in comparison with

controls on olive oil.

Treatment with dietaryω-3 PUFA
for 1 year reduced the frequency of

pain episodes (p < 0.01).

Durán et al. [170] Diabetic neuropathy

Interventional single-group study
to assess the efficacy of dietary
ω-3 PUFA in 40 participants with

type 2 diabetes.

There was a significant reduction in
pain-related neuropathy symptoms

after three months of treatment
withω-3 PUFA (change from
baseline −2.1 (p = 0.014) and

−9.2 (p = 0.002)).

Ramsden et al. [166] Chronic headache

Randomized, parallel-group and
12-week trial designed to test the

clinical effects of a diet high in
ω-3 and low inω-6 PUFA

compared to a diet low inω-6
PUFA in 67 subjects with

chronic headaches.

There was reduction of pain
frequency (p < 0.001), intensity
(p < 0.001), and psychological
distress (p = 0.022) in patients

treated with a diet high inω-3 and
low inω-6 PUFA.

Abbreviations: PUFA: polyunsaturated fatty acids; NSAID: non-steroidal anti-inflammatory drugs.

Likewise, a 12-month, double-blind, controlled study compared daily supplementa-
tion with various doses ofω-3 PUFA, reporting significant improvement in patients’ global
evaluation and physicians’ assessment of pain in those taking doses of 2.6 mg/day. This
group also significantly reduced the use of anti-rheumatic medications [173]. Similarly, in a
randomized, double-blind, placebo-controlled trial fish oil with ω-3 PUFA reduced symp-
toms of pain and stiffness significantly after nine weeks of treatment were observed [168].
In the “En Balance-Plus” study, an interventional study designed to assess the efficacy
of dietaryω-3 PUFA in diabetic patients, significant reductions in pain-related neuropa-
thy symptoms were reported after three months [170]. A randomized, parallel-group,
12-weeks trial with a diet high in ω-3 fatty acids and low in ω-6 PUFA demonstrated a
reduction in pain frequency, intensity, and psychological distress in patients with chronic
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headaches [166]. Various other clinical trials have evaluated the use of PUFA in conditions
such as pediatric sickle-cell anemia [177], post-traumatic headache [178], fibromyalgia [179],
among others [180–182], with promising results. Although these effects may not be wholly
attributed to SPM—with changes in sphingolipid metabolism also playing a purportedly
significant part—their significance in this context is notable.

4. Conclusions

Currently, CP remains one of the most prevalent clinical entities in clinical medicine,
related to a wide range of diseases. In response, in recent years there has been a search
for novel alternatives for its management. SPMs stand out in this scenario as a group of
bioactive lipids which play a fundamental role in the resolution of inflammation and can
ameliorate CP through various mechanisms.

These molecules have immunomodulatory properties which can diminish inflamma-
tion associated with peripheral and central nociception. Abundant preclinical and clinical
evidence supports the role of SPMs in neuroinflammation associated with CS and LTP,
either through the modulation of microglia, the regulation of nociceptors, or the regulation
of the neuronal pathways implicated in pain.

Nevertheless, further high-quality studies are necessary to better characterize the
clinical utility of SPMs in CP, especially attending to the large variety of etiologies, patho-
physiologic mechanisms, and clinical presentations that may be associated with this entity.
Likewise, deeper research in this area would allow the assessment of adverse effects, toler-
ability and pharmacological interactions of SPMs. Continued investigation in this field is
worthwhile, as SPMs could prove to be an invaluable treatment tool in the future.
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