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Abstract: The coronavirus disease (COVID-19) is rapidly spreading around the world. Early diagnosis
and isolation of COVID-19 patients has proven crucial in slowing the disease’s spread. One of the
best options for detecting COVID-19 reliably and easily is to use deep learning (DL) strategies. Two
different DL approaches based on a pertained neural network model (ResNet-50) for COVID-19
detection using chest X-ray (CXR) images are proposed in this study. Augmenting, enhancing,
normalizing, and resizing CXR images to a fixed size are all part of the preprocessing stage. This
research proposes a DL method for classifying CXR images based on an ensemble employing multiple
runs of a modified version of the Resnet-50. The proposed system is evaluated against two publicly
available benchmark datasets that are frequently used by several researchers: COVID-19 Image Data
Collection (IDC) and CXR Images (Pneumonia). The proposed system validates its dominance over
existing methods such as VGG or Densnet, with values exceeding 99.63% in many metrics, such as
accuracy, precision, recall, F1-score, and Area under the curve (AUC), based on the performance
results obtained.

Keywords: COVID-19; chest X-ray; pneumonia; deep transfer learning; neural network (NN)

1. Introduction

Around the world, COVID-19 is wreaking havoc on people’s lives and healthcare
systems. It is a new virus strain discovered in 2019 that has never been seen by humans
before. The first COVID-19-positive case was discovered in Wuhan, China, in December
2019, and it quickly spread to a number of other Chinese cities as well as several other
countries around the world [1,2]. According to preliminary polls, COVID-19 causes minor
symptoms in about 99%, while the remainder of cases are serious or critical. The number of
people dying from pneumonia caused by the COVID-19 virus is rising every day [3].

The rapid global spread of COVID-19 put healthcare systems under tremendous
pressure; this spread could be significantly slowed if a reliable screening method for patients
with COVID-19 infections is established. Doctors and researchers found themselves facing a
daunting challenge to find ways to diagnose the disease quickly [4]. A COVID-19 infection
can cause serious problems such as acute kidney failure, septic shock, heart attack, and
pulmonary edema [5]. The early detection and isolation of patients with infection is critical
in combating and addressing the COVID-19 pestilence [6,7]. The prevalence of reported
COVID-19 occurrence in the most affected nations around the world is depicted in Figure 1.
The United States leads the world in terms of reported illnesses, accounting for 63,390,876
cases out of a total of 185,039,249 cases.
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Figure 1. Confirmed COVID-19 cases globally (15 January 2022) [8].

The most common COVID-19 detection technique is real-time polymerase chain
reaction (RT-PCR). It has a high percentage of false-negative findings and may take up
to two days to receive results, while having a sensitivity range of 70 to 90 [9]; it may also
produce a quite high number of false-negative effects and may take up to two days to obtain
results. In some countries, it may take up to five days or more due to the overwhelming
number of tests that need to be analyzed [4].

Additionally, COVID-19 is detected and diagnosed using radiological screening tests
such as CXR and computed tomography (CT). It has been noticed that CXR is one of the
most effective methods for diagnosing pneumonia around the world because it is a rapid,
inexpensive, and popular clinical method that exposes the patient to less radiation than
CTs [10,11].

However, radiologists are needed to look for the radiological signs that show COVID-
19 symptoms on a CXR. To save time and effort, it is important to automate the CXR
analysis, which is a long and error-prone process that takes a lot of time and effort [12].

Figure 2 shows a CXR scan image and a CT scan image.
As a result, fully automated and real-time radiography image analyses are required

to assist physicians in accurately detecting COVID-19 infection. Physicians may use
computer-aided diagnosis (CAD) systems based on DL methods to help them perceive
and understand the information in CXR images as well as to overcome the limitations of
the imaging acquisition techniques used, rapidly and correctly. DL methods are becoming
more common in medical imaging because of their ability to deal with massive datasets
that surpass human capabilities. Combining CAD techniques with radiologist medical
diagnostics decreases physicians’ stress as well as improves their accuracy and statistical
analysis [11].
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(a)

(b)

Figure 2. Samples of CXR images and CT images (a), and CXR image scan (b) CT image scan.

This paper propose a crossbred DL system for COVID-19 classification and prognosis
that uses two unique DL approaches to accurately detect early COVID-19 symptoms
from CXR images. The proposed system has two significant phases: preprocessing and
classification. The preprocessing phase is used to improve the overall contrast of the image
in order to reduce inconsistencies between images obtained from various X-ray devices.
The image is also resized and normalized to suit the size of the training model throughout
that process. The classification stage, on the other hand, involves a variety of classifiers,
and the most effective classifier are chosen based on the classification error for each case.

The following are the key contributions of this research:

1. To determine the feasibility of the proposed scheme, detailed comparative analyses
are conducted using various measurement criteria such as accuracy, precision, recall,
specificity, F1-score, and AUC.

2. COVID-19 shows radiological indications that are readily detectable on CXR. As a
result, DL-based methods can be used to automatically analyze CXR, significantly
reducing the analysis time.

3. The COV-PEN dataset is developed, which is a large-scale CXR image dataset. Among
those currently publicly available, it includes a large number of CXR images with
reported COVID-19 disease.

4. To fine-tune the weights of pre-trained networks on small datasets as well as to train
the weights of networks on large datasets, a modified version of Resnet-50 is used.

5. To improve the generalized effectiveness of the suggested method and to prevent
over-fitting, a different training protocol assisted by different combinations of training
policies (e.g., validation patience and data augmentation) is used.

The following are the remaining parts of this paper: Section 2 summarizes recent
related articles, Section 3 explains the methodology used to create the COVID-19 dataset
and the proposed system’s design requirements, Section 4 introduces the study findings,
and Section 5 ends with the conclusion and possible research opportunities.
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2. Related Works

This section provided an overview of some related studies for a better understanding
of the area under study and to provide the state-of-the-art picture. Convolutional neural
networks (CNNs), which are one of the most effective DL models, have successfully proved
their mastery over conventional methods in several disciplines, including image classifica-
tion and pattern recognition [13,14]. Currently, it has indeed been successfully implemented
in the field of medicine with impressive outcomes and outstanding performance in different
challenging settings. Various medical imaging systems using DL techniques have also been
developed to assist physicians and specialists in effective COVID-19 diagnosis, care, and
follow-up examination [15,16]. Narin et al. [11] used five-fold cross validation to enforce
various binary classifications. With an accuracy equal to 98%, specificity value of 100%,
and a recall with 96%, the pre-trained ResNet-50 method gives the best efficiency. On the
other hand, Wang et al. [17] have suggested using CXR images to automatically establish a
new deep architecture called COVID-Net to detect COVID-19 instances. Using a database
containing 13,975 CXR images, this model has the highest classification accuracy of 93.3%.
The key strength of this approach is that the conceptual composition could create a balance
between different goals such as accuracy and computational costs through architectural
design choices. Hemdan et al. [18] introduced COVIDXNet, a DL framework for detecting
COVID-19 infections in CXR images. A small dataset of 50 images was used to compare
seven DL techniques (e.g., MobileNetV2, ResNetV2, VGG19, DenseNet201, InceptionV3,
Inception, and Xception). DenseNet201 had the best performance, with a 91% accuracy
score. While Zhang et al. [19] derived useful feature representations from CXR image
using ResNet-18 model as a feature vector. Those derived features were then entered as
an input into a multi-layer perception. A dataset of hundred images taken from seventy
patients yielded the highest accuracy rate of 96%. A further supervised transfer-learning
method for COVID-19 infection detection in CXR using an extreme version of the Xception
model was developed by Das et al. [12], which achieved accuracy of 97.4%. Furthermore,
Ozturk et al. [20] introduced a new system for COVID-19 identification using CXR for
automatic detection. It was created to provide consistent and reliable diagnostics for
multi-class classifications (COVID-19, mild, and pneumonia) and binary classifications
(COVID vs. non-COVID). Using the DarkNet model, they were able to achieve a classi-
fication performance of 98.08% for binary classification and 87.02% for the classification
of multi-class.

Many studies have tried to find COVID-19 infections in CXR images by using different
DL methods [21–37], as indicated in Table 1. The investigation of COVID-19 identification
and diagnostic systems that rely on CXR images indicated that there are still a number
of vulnerabilities that need additional investigation. For starters, the majority of current
systems have been validated with limited CXR datasets as well as a small presence of
positive COVID-19 cases. The size of the datasets is insufficient to indicate the true output
of the proposed systems. Furthermore, despite the fact that several researchers have
achieved high reliability values using pre-trained models through transfer-learning, there
has been little focus on developing and training a customized DL model from scratch due
to a shortage of a large dataset including a substantial number of CXR images with reported
COVID-19 infection.



Healthcare 2022, 10, 343 5 of 19

Table 1. Literature comparison of COVID-19 diagnostic methods using CXR images.

Recent Work Techniques Used Number of Classes Accuracy

Khan et al. [21] CoroNet 4 89.6%
Ucar and Korkmaz [22] Bayes-SqueezeNet 3 98.3%

Apostopolus et al. [23] VGG-19 3 93.48%

Sahinbas & Catak [24] VGG-16, VGG-19, ResNet, DenseNet, InceptionV3 2 80%

Jamil and Hussain [25] Deep CNN 2 93%

Alzab et al. [26] VGG-16 2 -

Joaquin. [27] ResNet-50 2 96.2%

Sethy et al. [28] ResNet-50 + SVM 3 95.33%

Houssein et al. [29] hybrid quantum classical CNNs 3 88.6%

Saad et al. [30] CNN, GoogleNet, ResNet-18 2 99.3%

Apostolopoulos, & Mpesiana [31] MobileNetV2 3 96.78%

Oh et al. [32] ResNet-18 3 88.9%
Brunese et al. [33] VGG-16 3 96%

slam et al. [34] CNN+LSTM 2 99.4%

Ezzat et al. [35] DenseNet121+GSA 2 98.3%

Sahlol et al. [36] Inception + FO-MPA 2 99.6%

Toraman et al. [37] Capsule Network 2 97.24%

Rajaraman, S. and Antani, S. [38] VGG16 2 93.0%

Afshar, P. et al. [39] capsule network 2 97.2%

Elshennawy , N. & Ibrahim, .D [40] ResNet152V2, MobileNetV2 2 99.22%

Eventually, almost all of those studies only concentrated on training DL models used
on original images instead of preprocessed images, restricting the capacity of the last
classification network to generalize. To address these issues, the current study develops a
lightweight COVID-19 detection system that alters the architecture of pre-trained models by
inserting several layers, resulting in an optimized proposed system with greater satisfaction.

3. Proposed System

Figure 3 depicts the schematic methodology for the COVID19 detection system, which
requires retraining a transfer DL approach (Resnet-50) over preprocessed images in the
image datastore to learn discriminative and useful feature representations as illustrated
in Algorithm 1. First, the procedure for constructing the datastore is described briefly.
The proposed system’s implementation specifics are then discussed, including the pro-
posed preprocessing algorithms, the main design, and the adopted approach’s training
methodology.
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Figure 3. A schematic methodology for the COVID19 detection system.

Algorithm 1 Proposed System steps

Let ζε= chest X-ray, α =Augmentation, pp= pre-Processing, i= image, IEA= Image
enhancement algorithm, r= rotation, s=scaling, rf=reflection, sm= shifting methods
Step 1: Read( ζε )
Step 2: α(image) w.r.t. r, s, rf, sm
Step 3: Perform (pp (i))

3.1. Apply(IEA)
3.2. Resize (i)/224*24*3
3.3. Normalize pixelvalue(i)/interval [0, 1]

3.3.1. Conversion
3.3.2. Calculation (mean)
3.3.3. Scaling(i)
3.3.4. Convesrionback

3.4. Split (dataset)/training, testing
3.5. Extract(features)/ Resnet-50 pre-trained model
3.6. Optimize (Freeze layers, epochs, learning weights,
batch size)/optimization methods

Step 4: Calculate VPM (accuracy, confusion matrix, ROC, AUC, Precision, recall, F1)
Step 5: Comparison (recent studies)

3.1. COV-PEN Image Datasets

Data are at the heart of DL, and it is used as a fuel for these learning models. COVID-
19 is a novel disease, and a plethora of datasets are currently available. In this work, we
gathered CXR images from two publicly accessible image databases of reported infected
cases to create a dataset. There are 2790 CXR images in the dataset used to train and test
the proposed system, which we refer to as COV-PEN. To build the COV-PEN dataset, we
combined two publicly available data repositories:

1. COVID-19 Image Data Processing [41].
2. CXR Images (Pneumonia) [42].

COVID-19 X-ray files were created by Joseph et al. [41] and are available in an
open source Github repository. The authors gathered radiology photographs from various
authentic records of COVID-19 incidents for analysis purposes, and most COVID-19 studies
use images from this source. A free archive of COVID-19 cases of CXR or CT images is
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available in the registry, which is maintained on a regular basis. At the time of publication,
the archive had about 930 COVID-19 chest radiography files. Pneumonia and standard
CXR images were gathered from the Kaggle list “CXR Images (Pnemonia)” [42]. There
are 1583 mild cases and 4273 pneumonia cases in the dataset. The COV-PEN dataset, in
particular, includes 2790 CXR images from these two sources. Figure 4 summarizes some
CXR image samples from the COV-PEN dataset, showing the variety of patient cases in
the dataset. Since both databases are open access and publicly accessible to the scientific
community and the general public, they were chosen to create COV-PEN.

(a) (b) (c)

Figure 4. CXR images from COV-PEN dataset: (a) COVID-19, (b) pneumonia, and (c) mild.

3.2. Image Preprocessing Step

This step includes data augmentation, image enhancement, image rescaling, and
normalization, among other things. Since the model’s network becomes more sophisticated,
the number of parameters to learn increases as well, leading to overfitting. After dividing
the COV-PEN dataset into three mutually exclusive sets (e.g., preparing, verification, and
evaluating sets) to overcome the overfitting issue created by the small number of training
photos, data augmentation was used to prevent skewed prediction outcomes. Augmented
images with corresponding masks such as rotation, reflection, shifting, and scaling are
generated for each image in the dataset. The accuracy of a raw CXR image produced by
an electronic detector is simply inadequate, reducing the availability for detection and
diagnosis. To improve the quality of CXR images, image enhancement techniques should
be used. Furthermore, training deep neural networks (DNNs) on top of preprocessed
images rather than raw image data will significantly reduce the DNNs’ generalization
error and training time. As a result, an appropriate image enhancement technique was
proposed to improve the low quality of the CXR image before feeding it into the proposed
system. First, the CXR image’s small details, textures, and low contrast were improved
using adaptive contrast enhancement based on redistribution of the input image’s lightness
values by taking the image as an input and to give out an enhanced image based on
redistributing the histogram of the image, as shown in Figure 5. As a consequence, this
approach improves the visibility of the edges and curves in each part of an image while also
enhancing the image’s local contrast. Since the images in the dataset come from multiple
datasets and could also come from various cameras, the parameters of image acquisition
often vary because a portion of images have small pixel sizes and all of the images must
be rescaled. Therefore, there are significant changes in the image’s brightness and size.
Moreover, the images in the Kaggel dataset are grayscale; we must replicate the image
three times to obtain an RGB image. Most of the images in the CXR image dataset almost
certainly originated from various acquisition devices, each with its own set of requirements.
The intensity of the pixel of each image can vary significantly, so the pixels intensity of
all images is normalized between [–1, 1] to ensure that the data are within specific ranges
and noise is removed. Normalization has the benefit of ensuring that the model is less
vulnerable to slight variations in weights, making it easier to optimize.
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(a) (b)

Figure 5. Output of the proposed image enhancement process: (a) raw CXR image and (b) enhanced
image.

3.3. Proposed Transfer Learning for COV-PEN Detection

The proposed system’s main architecture is based on the Resnet-50 model. The mas-
sive number of structures and hyper-parameters to be determined is the most difficult
challenge when using DL models (e.g., learning rate, number of batch size, number of
frozen layers, and number of epochs, etc.). The effects of various hyper-parameters value
on the performance of the proposed systems is investigated. In this section, we describe in
detail the potential solution based on a modified version of one of the Resnet-50 [43] model.
In 2015, He K. et al. [43] developed Resnet-50, a residual learning component to the CNN
architecture. A standard layer with a skipped connection compensates the residual unit.
The skip connection enables a layer’s input signal to traverse the network by linking it to
that layer’s output. As a result of the residual units, an extremely deep 152-layer model
was trained, which won the 2015 LSVRC2015 competition. Its innovative residual structure
allows for a more straightforward gradient flow and more efficient training. It has a top-five
error rate of less than 3.6 percent. ResNet has 34, 50, and 101 layers in other versions. In
this work, we investigate two modified versions of the Resnet-50 model as well as the
original model, which are illustrated in Figure 6. The original Resnet-50 model is shown
in Figure 6a. In order to build the proposed two versions, we modify the latest layers by
adding one fully connected (FC) Layer with a size of 512 and two FC layers with sizes of
2048 and 1024. We also replace the original FC layer and softmax layer in both versions, as
shown in Figure 6b and Figure 6c, respectively. The original layers of the Resnet-50 model
are pre-trained on the ImageNet dataset [44]. Consequently, initially, the new added layers
are assigned random weights. Then, during training, all model weights are updated using
the back-propagation algorithm, which is the main algorithm for training neural network
models.

Experiments using Resnet-50 without adding an additional FC was performed and
the results were very poor, so that we took this trend of adding more FC at the end of the
Resnet. In the first modified version of Resnet-50, shown in Figure 6b, the first FC was
replaced with a new FC layer with a size of 512 and one FC layer with a size of 3; the
number of classes was added after the replaced FC layer and before softmax layer, which
also has been replaced with a new softmax layer. Based on what was mentioned by Basha,
S.S et al. [45], when dealing with small datasets, the network needs more FC layers than
when dealing with larger datasets. Any neuron from the previous layer is connected to
every other neuron in the next layer in the fully connected layer, and each value contributes
to predicting how well a value fits a given class. The output of the final FC layer is then
redirected to an activation function, which calculates the class scores. One of DNN’s most
common classifiers is Softmax which computes the probability distribution of the n output
groups through its equations. The only drawback to adding a single FC layer is that it is
extremely computationally intensive.



Healthcare 2022, 10, 343 9 of 19

(a) (b) (c)

Figure 6. Modified versions of the proposed Resnet-50 model: (a) original pre-trained model,
(b) adding one FC layer, and (c) adding two FC layers and one Sigmoid.

In the second modified version depicted in Figure 6c, we added two FC layers con-
nected between the first FC layer and the softmax layer, which also has been replaced by a
new FC layer and a new softmax layer, respectively. The size of the first FC layer is 2048,
the size of the second FC layer is 1024, and the size of the third FC layer is 3. We use batch
normalization because it is effective at combating network overfitting because of the fact
that overfitting occurs when the model learns the training data extremely well but does
not generalize well to other testing data. It is a common problem in DL models, and the
risk of falling into this problem increases in situations where the training dataset is small,
which is the case in this study. DNNs algorithms always produce results with a degree of
variability [46] because, in such algorithms, many steps involve a degree of randomness.
Thus, one way to improve the performance of DNNs algorithms is to use ensemble learning.
Ensemble has multiple definitions, one of this definitions used here is to run the network
for n times using the same network parameters (epochs, batch size, optimizer, etc.). In our
work, we propose to implement stacked generalization by performing multiple training
runs of the same model, which we refer to this as the multiple-runs ensemble.
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4. Experimental Results

Several sufficiently large experiments were performed on the COV-PEN dataset to
demonstrate the efficiency of the proposed DL systems and to equate their results to the
existing state-of-the-art approaches. The proposed system’s code was written throughout
MATLAB R2020b and evaluated on a Windows 10 machine with a Core i7-4650U CPU and 8
GB of RAM. All tests were carried out using an 80 percent random array of CXR images as a
training collection for the proposed DL systems, according to the proposed training scheme.
During the learning process, ten percent of the training data were chosen at random and
used as a validation set to assess their abilities and to save the weight combinations with the
highest accuracy value. The proposed framework is pre-trained on the COV-PEN dataset
using the Adam and sigmoid optimizer with a learning rate strategy that decreases the
learning rate when learning becomes stagnant for a period (i.e., validation patience). The
following hyper-parameters were used for training in the Adam optimizer: Number of
epochs = 15; batch size varying from 32 to 128, with a move of double its previous value;
patience = 6; loss function = categorical cross-entropy; and momentum= 0.95. Finally, we
incorporate a batch re-balancing strategy to enhance infection form distribution at the
batch stage.

4.1. Assessment Methods

To evaluate performance, we compared our proposed system with other systems using
the performance metrics listed in Equations (1)–(4),:

Accuracy =
TP+TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Sensitivity = Recall =
TP

TP + FN
(3)

F1-Score =
2 × Precision × Recall

Precision+Recall
=

2 × TP
2 × TP + FP + FN

(4)

Here, TP denotes true positives (patients correctly identified as having COVID-19), TN
denotes true negatives (patients correctly identified as not having COVID-19), FP denotes
false positives (patients with lung diseases other than COVID-19 or mild lung identified as
having COVID-19), and FN denotes false negatives (patients with COVID-19 identified as
not having the disease).

4.2. Results of the Proposed Systems

In this section, we report the different experiments’ results of the proposed systems
using the COV-PEN dataset with a 80–20% train–test split. That split is selected to ensure
that execution times were not prohibitive. In the first experiment, we trained the Resnet-50
first version and second version models for 10 epochs using 10% of the training set as a
validation set, a batch size of 128, and a learning rate ranging from 0.0002 up to 0.001 and
froze the weights of the first 50 layers of the model. We executed the training three times
and monitored the average accuracy measures over the validation set. Tables 2–5 show the
average accuracy of an ensemble of the modified models. As mentioned previously, we
built the model ensemble using multiple runs (three runs for the same parameters ) to train
the same model with the same parameters (Runs 1–3, Tables 2–5). An observation can be
made regarding the accuracy, which varies from run to run as the weights are initialized
randomly each run; only the best run result is saved. Comparing the two versions, the
best achieved accuracy for the first and second version models are 97.84% and 94.26%,
respectively.
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Table 2. Average accuracy for the first version model using the COV-PEN dataset with the first 50
layers frozen, epochs = 15, optimizer = Adam, and batch size = 128.

Learning Rate Ensemble Using Several Runs
Run 1 Run 2 Run 3

0.0002 0.949820789 0.924731183 0.955197133

0.0004 0.935483871 0.919354839 0.928315412

0.0006 0.964157706 0.978494624 0.935483871

0.0008 0.956989247 0.930107527 0.944444444

0.001 0.935483871 0.919354839 0.928315412

Table 3. Average accuracy for the first version model using the COV-PEN dataset with the first 50
layers frozen, epochs = 15, optimizer = sgmd, and batch size = 128.

Learning Rate Ensemble Using Several Runs
Run 1 Run 2 Run 3

0.0002 0.953405018 0.955197133 0.962365591

0.0004 0.931899642 0.910394265 0.949820789

0.0006 0.949820789 0.948028674 0.931899642

0.0008 0.919354839 0.944444444 0.9390681

0.001 0.931899642 0.910394265 0.949820789

Table 4. Average accuracy for the second version model using the COV-PEN dataset with the first 50
layers frozen, epochs = 15, optimizer = Adam, and batch size = 128.

Learning Rate Ensemble Using Several Runs
Run 1 Run 2 Run 3

0.0002 0.853046595 0.903942652 0.808960573

0.0004 0.749820789 0.907526882 0.892473118

0.0006 0.678136201 0.808960573 0.747311828

0.0008 0.88781362 0.62437276 0.716845878

0.001 0.683512545 0.679928315 0.617845867

Table 5. Average accuracy for the second version model using the COV-PEN dataset with the first 50
layers frozen, epochs = 15, optimizer = sgmd, and batch size = 128.

Learning Rate Ensemble Using Several Runs
Run 1 Run 2 Run 3

0.0002 0.933691756 0.937275986 0.933691756

0.0004 0.939068100 0.935483871 0.903942652

0.0006 0.942652329 0.917562724 0.907526882

0.0008 0.892473118 0.716845878 0.808960573

0.001 0.747311828 0.921146953 0.808960573
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We focus on the first version model in the second experiment because it outperformed
the second version model. Therefore, in the second experiment, we trained the Resnet-
50 first version model only for 10 epochs using 10% of the training set as a validation
set, a batch size of 128, and a learning rate ranging from 0.0002 up to 0.001 with no
freezing for the weights. We executed the training three times and monitored the average
accuracy measures over the validation set. Tables 6 and 7 show the average accuracies of
an ensemble of the first version model, which are 86.63% and 94.24% using the Adam and
sgmd optimizers, respectively. Eventually, Figures 6–8 demonstrate the three confusion
matrices of COVID-19 infected and non-COVID-19 test results using the first version model
with freeze = 0 and freeze = 50 and the second version model with freeze = 50, respectively.
Figure 7 indicates that two COVID-19-infected images were misclassified as non-COVID-19
images while two non-COVID-19 images were misclassified as COVID-19 images, and
Figure 8 reveals that two COVID-19-infected images were misclassified as non-COVID-19
images whereas no non-COVID-19 images were misclassified as COVID-19 images. Finally,
Figure 9 shows that three COVID-19-infected images were misclassified as non-COVID-19
images, and two non-COVID-19 images were misclassified as COVID-19 images.

Table 6. Average accuracy for the first version model using the COV-PEN dataset freeze = 0,
epochs = 15, optimizer = Adam, and batch size = 128.

Learning Rate Ensemble Using Several Runs
Run 1 Run 2 Run 3

0.0002 0.815412186 0.843010753 0.842175627

0.0004 0.607526882 0.772401434 0.607526882

0.0006 0.866308244 0.798207885 0.81172043

0.0008 0.610394265 0.678853047 0.607526882

0.001 0.756630824 0.733333333 0.734050179

Table 7. Average accuracy for the first version model using the COV-PEN dataset freeze = 0,
epochs = 15, optimizer = sgmd, and batch size = 128.

Learning Rate
Ensemble Using Several Runs

Run 1 Run 2 Run 3

0.0002 0.94265233 0.937275986 0.933691756

0.0004 0.933691756 0.908602151 0.919002151

0.0006 0.9390681 0.88172043 0.843010753

0.0008 0.935483871 0.869175627 0.81172043

0.001 0.734050179 0.790322581 0.756630824

The AUC receiver operating characteristic (ROC) curve, which is a graph that shows a
model’s classification performance on two parameters: true positives and false positives,
was used to evaluate diagnostic efficiency. By incorporating the areas of small trapezoidal
fragments under the ROC curve, the AUC can be determined. The proposed method’s
AUC evaluations as well as the first edition (with freeze = 0 and freeze = 50) and 2nd
version models are seen in Figures 10–11. In Figure 12, the AUC is also similar, which is
the best-case scenario. The proposed first edition framework classification model (with
AUC = 1) performs slightly better than existing COVID-19 classification models.
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Figure 7. The best result’s confusion matrix for the first version model freeze = 0.

Figure 8. The best result’s confusion matrix for the first version model freeze = 50.

Figure 9. The best result’s confusion matrix for the second version model.

Table 8 shows the best results obtained using the first version with freeze = 0 and freeze
= 50 and for the second version models. The disparity in performance can be explained by
the fact that the first version with freeze = 0 and the second version models have an extra
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layer that starts with random weights rather than pre-trained weights, as in the other layers.
These random weights add extra degrees of freedom to the model and should improve its
generalization ability.

Figure 13 illustrates the best results obtained in terms of overall accuracy, precision,
recall, F1-score, and AUC. It reveals that the best result is obtained when using the first
version model and freeze = 50.

Figure 10. ROC curve for the first version model freeze = 0.

Figure 11. ROC curve for the first version model freeze = 50.

Figure 12. ROC curve for the second version model.

Table 8. Best result for all models.

Quantitative Measures 1st Version Model (freeze = 0) 1st Version Model (freeze = 50) 2nd Version Model

Overall Accuracy 99.05 99.63 99.05

Precision 98.89 100 98.92

Recall 98.39 98.89 98.39

F1-score 98.63 99.44 98.65

AUC 99.99 100 99.98

The first version model is used in the efficiency comparison of the proposed COV-PEN
scheme with current state-of-the-art approaches, in addition to its usefulness in leveraging
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the great strengths of each classifier. These findings bolstered the case for implementing
the proposed COV-PEN method in real-world environments to help radiologists diagnose
COVID-19 infection more accurately using CXR images while also reducing their workload.

Figure 13. Best result for all models.

4.3. Comparison with State-of-the-Art Methods

The proposed system’s performance and reliability are compared with the most recent
state-of-the-art COVID-19 detection systems. In this section, we present the proposed
first version system’s outcomes and compare them with existing methods (see Table 9).
As revealed in Figure 14, the proposed system demonstrates remarkable results that are
more accurate than existing methods. Furthermore, compared with other models such as
VGG16 or DenseNet, the proposed improved Resnet-50 system is lightweight. In terms of
precision, accuracy, sensitivity, and F1-score, our proposed system outperformed existing
methods.

Figure 14. The proposed first version model performance in comparison with current systems.
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Table 9. Comparison of the proposed 1st version model with existing systems.

Reference Dataset Classifier Accuracy Precision Recall F1-Score AUC

Proposed 1st version COV-PEN Modified version of Resnet-50 99.63 100 98.89 99.44 100
Afshar, P. et. al. [39] - COVID-19 Image Data Collection — 97.2 97.67 97.5 97.70 —

- Chest X-ray Images (Pneumonia)
- COVID-19 Image Data Collection

Rajaraman, S. and Antani, S. [38] - Pediatric CXR dataset VGG16 93.0 93.15 97.53 94.57 95.0
- RSNA CXR dataset InceptionV3
- CheXpert CXR dataset Xception
- NIH CXR-14 dataset Densenet121
- Twitter COVID-19 CXR dataset NASNet-Mobile
- COVID-19 Image Data Collection

Narin, A., et. al. [11] - Chest X-ray Images (Pneumonia) ResNet-50 99.5 99.4 99.5 98.0 98.7
- COVID-19 Image Data Collection ResNet-101

ResNet-152
InceptionV3
InceptionRes

net-V2

- Chest X-ray Images (Pneumonia)

Hemdan, E. et. al. [18] COVID-19 Image Data Collection DenseNet201 90 83 — 91.00 —

Elshennawy , N. & Ibrahim, D. [40] Chest X-ray Images (Pneumonia) ResNet152V2 99.22 99.43 99.44 99.44 99.77
MobileNetV2

Wang et al. [17] - COVID-19 Image Data Collection VGG-19 93.3 — 91 — —
- COVID-19 Chest X-ray Dataset Resnet-50
- ActualMed COVID-19 Chest X-ray Dataset COVID-Net
- RSNA Pneumonia Detection Challenge dataset
- COVID-19 radiography database

Zhang et al. [19] - COVID-19 Image Data Collection ResNet-18 — — 96 — 95.18
- Chest X-ray Images (Pneumonia)

Das et al. [12] - COVID-19 Image Data Collection extreme version of the Inception (Xception) model 97.40 — 97.09 96.96 —
- ChestX-ray8 database (Pneumonia Normal)

Ozturk et. al. [20] - COVID-19 Image Data Collection DarkNet 98.08 98.3 95.1 96.5 —
- ChestX-ray8 database (Pneumonia Normal)
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5. Conclusions and Future Work

A reliable and automatic mechanism for COVID-19 diagnosis is presented using chest
radiography images to differentiate between patients with mild, pneumonia, and COVID-
19 infections. Image enhancement techniques were used in the proposed system to improve
the intensity of the CXR image and to eliminate noise. To avoid overfitting and to improve
the overall capabilities of the proposed DL systems, two different DL approaches (first and
second proposed versions of Resnet-50) were trained on top of preprocessed chest medical
imaging. To evaluate the reliability of the proposed system, a CXR image dataset labeled
the COV-PEN dataset was built. With an overall accuracy of 99.63%, a precision of 100%, a
recall of 98.89%, an F1-score of 99.44%, and an AUC of 100%, the proposed system performs
equally well for expert radiologists. The proposed system outperforms current models,
per the comparative studies. Experiments with a huge and challenging dataset containing
multiple COVID-19 cases are required to demonstrate the efficacy of the proposed system.
Other methods, such as Densenet, VGG, or Inception-Resnet network, may be used on the
COV-PEN dataset as a future work.
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