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ABSTRACT: In this work, we have computed the exfoliation
energy (the energy required to separate a single layer from the bulk
structure), the interlayer distance, and the thermodynamic state
functions for representative layered inorganic minerals such as
Brucite, Portlandite, and Kaolinite, while leaving the more classical
2D transition-metal dichalcogenides (like MoS2) for future work.
Such materials are interesting for several applications in the field of
adsorption and in prebiotic chemistry. Their peculiar features are
directly controlled by the exfoliation energy. In materials without
cations/anions linking different layers, the interactions keeping the
layers together are of weak nature, mainly dispersion London
interactions and hydrogen bonds, somehow challenging to deal with
computationally. We used Hartree−Fock (HF) and density functional theory (DFT) approaches focusing on the role of dispersion
forces using the popular and widespread Grimme’s pairwise dispersion schemes (-D2 and -D3) and, as a reference method, the
periodic MP2 approach based on localized orbitals (LMP2). The results are highly dependent on the choice of the scheme adopted
to account for dispersion interactions. D2 and D3 schemes combined with either HF or DFT lead to overestimated exfoliation
energies (about 2.5 and 1.7 times higher than LMP2 data for Brucite/Portlandite and Kaolinite) and underestimated interlayer
distances (by about 3.5% for Brucite/Portlandite). The reason is that D2 and D3 corrections are based on neutral atomic parameters
for each chemical element which, instead, behave as cations in the considered layered material (Mg, Ca, and Al), causing
overattractive interaction between layers. More sophisticated dispersion corrections methods, like those based on nonlocal vdW
functionals, many body dispersion model, and exchange-hole dipole moment not relying on atom-typing, are, in principle, better
suited to describe the London interaction of ionic species. Nonetheless, we demonstrate that good results can be achieved also
within the simpler D2 and D3 schemes, in agreement with previous literature suggestions, by adopting the dispersion coefficients of
the preceding noble gas for the ionic species, leading to energetics in good agreement with LMP2 and structures closer to the
experiments.

■ INTRODUCTION
Among all candidate materials for leading next-generation
electronic applications, two-dimensional (2D) materials have
also great relevance for topics related to prebiotic chemistry and
origin of life issues.1 These materials are composed of thin
atomic layers that can be up to one atom thick. To produce such
materials from bulk, the top single layer of the bulk material has
to be removed. The energy needed to remove an atomic layer
from the surface of a bulk material is known as exfoliation energy.
This quantity is of key importance in the engineering of 2D
materials.2 Indeed, knowing the exfoliation energy of layered
bulk material, it is possible to (i) explain why certain materials
easily exfoliate and (ii) provide insights to experimentalists for
predicting which 2D material can be separated from the bulk
compound. Interestingly, Jung et al.3 have proven that the
exfoliation energy is equal to the energy difference between the
bulk and a single isolated layer.
In this contribution, we focused on a specific family of 2D

materials only, i.e., inorganic layered materials, while leaving the

study of more classical 2D transition-metal dichalcogenides (like
MoS2) for the future. We computed relaxed geometries,
exfoliation energies, vibrational frequencies, and thermody-
namic state functions for Portlandite Ca(OH)2, Brucite
Mg(OH)2, and the Kaolinite (Al2Si2O5(OH)4) crystals, chosen
as a representative class of inorganic layered materials. These
systems are widely studied inorganic materials with several
applications and are adopted here as a benchmark set. Kaolinite
is employed in the paper industry and pharmaceutics, and it has
promising application in the field of biomedicine.4 Moreover, it
may play an important role in prebiotic chemistry.5 Brucite and
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Portlandite are used for health purposes (Antiacid) and for
several industrial applications (Portland concrete), respec-
tively.6 We have already investigated these materials with
different purposes in previous works, see refs 7 and 8.
We have run hybrid DFT simulations, using the B3LYP

functional with the D* and D3ABC dispersion schemes. Here, we
studied how the adopted parametrization of the dispersion
scheme affects the exfoliation energy and, thus, the interlayer
distance. To have a reference value for the exfoliation energy, in
the absence of experimental data, we used the orbital-localized
based version of the Møller−Plesset-2 level of theory (LMP2),
since it includes the dispersion energy contribution in a
parameter-free way. Within the HF framework, we also have
employed the recently proposed HF-3c method,9 which has
shown to be a cost-effective and reasonably accurate method for
studying molecular crystals,10 simple collagen models,11 and
microporous materials.12 Furthermore, for all systems, we have
tested the hybrid DFT-D//HF-3c approach, in which the
energetic is estimated by a single-point energy evaluation at the
DFT-D level on the geometry relaxed with a fast revised version
of the HF-3c approach. Our theoretical findings are compared
with experiments and to previously published theoretical values
when available.
We have excluded in the present comparison, more

sophisticated dispersion corrections methods, such as the
vdW-DF functional,13 many body dispersion (MBD) model,14

and exchange-hole dipole moment (XDM) dispersion model.15

These models for dispersion interactions do not rely on atom-
typing, and thus they should be, at least in principle, better suited
to describe the London interaction of ionic species.

■ COMPUTATIONAL DETAILS
We computedDFT andHF-3c relaxed geometries, energies, and
vibrational frequencies with the CRYSTAL14 code.16 Along
with the plain HF-3c method,9 we also employed a revised form
of the method, namely HF-3c-027.10 In the HF-3c-027
approach, the s8 term of the D3 scheme is scaled by a factor of
0.27. With this refinement, HF-3c-027 gave excellent results in
predicting protein and molecular as well as microporous
inorganic crystal structures, see refs 10−12. We also employed
the recently proposed revised form of the HF-3c-027 method,
(HFsol-3c17) specifically tuned for the efficient simulations of
crystalline materials.
Standard DFT simulations were run using the B3LYP hybrid

functional,18 corrected with the revised version of the D2
dispersion scheme, i.e., D*.19,20 Some results at the B3LYP and
B3LYP-D* levels were already presented in a previous paper
from some of us, see ref 7. Those data were rerun with the
CRYSTAL14 code to ensure accuracy when comparing different
methods. B3LYP simulations are run also with the most recent
D3 scheme coupled with the Becke-Johnson damping
function,21,22 including the Axilrod−Teller−Muto (ATM)-
three-body-term (D3ABC).23,24 It is known that the D2 approach
(D* in this case) is not suitable for inorganic systems with a large
amount of group I and II elements and transition metals.19 This
is caused by the inaccuracy on the C6 terms computed as average
of the (DFT-estimated) C6 coefficients of the preceding rare gas
and those of the following group III element. The failure of the
plain D2 approach to treat highly ionic systems has been
addressed by Tosoni and Sauer,25 when studying CH4
adsorption at the (001) surface of crystalline MgO. They
proposed to adopt for the Mg2+ ion, the C6 of the noble element,
i.e., Ne atom, to account for the smaller polarizability of Mg2+

compared to that of atomicMg, as encoded, by default, in the D2
method. We will also show that even the D3 scheme, in
principle, capable of accounting for the effect of the local
coordination of atoms on the value of C6, still overestimates the
dispersion interactions for cationic species. Therefore, we tested
several C6 coefficients forMg and Ca atoms, within the D2 (D*)
approach, see Table 1, which are summarized here:

• In the D*0 scheme, the C6 coefficients for the alkaline
metals are set to 0.

• In the D*N scheme, the C6 coefficients and the van der
Waals radii for the alkaline metals are set to the preceding
noble gas, i.e., Ne and Ar for Mg and Ca, respectively.

• In the D*A andD*I schemes, the C6 coefficients are set to
the atomic and single charged ions values, respectively, as
derived from the TD-DFT calculations performed in ref
26.

For Brucite and Portlandite, we also tested the B3LYP-D3(0),
B3LYP-D3(N), HF-3c(0) and HF-3c(N) methods to compute
exfoliation energy. These approaches account for dispersion
interactions by means of the D3 dispersion scheme without
three-body correction, with C6 and C8 coefficients of Ca andMg
atoms set either to zero or to the value of the preceding noble
gases, respectively.
Atomic positions and cell size optimization adopted the

analytical gradient method. The Hessian was upgraded with the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm.27−29

We have set the program default tolerances for the convergence
of the maximum allowed gradient and the maximum atomic
displacement. The recently introduced DIIS extrapolator
technique has been employed to speed up the SCF
convergence.30,31 Details on the tolerance values controlling
the Coulomb and exchange series in periodic systems32 and the
shrink factor used in the calculations are reported in the
Supporting Information. For the vibrational frequency calcu-
lations, the mass-weighted force-constant matrix was computed
at the Γ point by numerical derivative of the analytic nuclear
gradients. A value of 0.003 Å was chosen as the displacement of
each atomic coordinate. The IR intensity of each normal mode
of vibration was computed using the Berry phase approach.33

Tolerance on the energy convergence is set to 10−7 for single-
point energy calculations and geometry optimizations and to
10−11 in frequency calculations.
The exfoliation energy, EEXF, is computed by the energy

difference between the per layer energy, E(bulk crystal), of the
bulk material and that of a free relaxed single layer, EOPT(single
layer):

Table 1. C6 Coefficient (J·nm6·mol−1) and Atomic Radii (Å)
for Alkaline Element Used in the Definition of the D*
Dispersion Schemea

Mg Ca

scheme C6 coefficient atomic radii C6 coefficient atomic radii

D*20 5.710 1.432 10.80 1.548
D*0 0 0 0 0
D*N 0.630 1.305 4.610 1.675
D*I 9.383 1.432 33.54 1.548
D*A 38.08 1.432 135.1 1.548

aRevised D2 scheme for B3LYP, see ref 20.
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Similarly, we defineΔERIGID as the energy needed to extract a 2D
layer of material from the crystal bulk keeping the same
geometry assumed in the bulk. This differs from the exfoliation
energy for the geometrical relaxation, δERELAX, of the free layer.
The basis set superposition error (BSSE), affecting all
computational methods based on localized functions to describe
electron distribution, has been taken into account by the
counterpoise method (CP),34 to correct the exfoliation energy.
The HF-3c method is inherently BSSE free by construction;
therefore, no CP correction was carried out.
B3LYP calculations were carried out using molecular all-

electron Gaussian basis sets. For Mg(OH)2 and Ca(OH)2, O
and H atoms were described by a VTZP basis set from Ahlrichs
and co-workers.35 Conversely, a more compact 8-511G*(p,d)
basis set was chosen for Mg atoms, and a 86-511G*(p,d) set was
chosen for Ca atoms. For Kaolinite, we chose a basis set of
511G*(s,p) for H atoms, 8-4111G*(p,d) for O atoms, 88-
31G*(p,d) for Si atoms, and 88-311G*(p,d) for Al atoms. The
HF-3c method is implemented and parametrized only for the
MINIX basis set.9 Due to SCF convergence problems with the
HF/MINIX combination (HF-3c and HF-3c-027) for the
Portlandite system, we adjusted the Ca basis set of the MINIX
basis set by an incremental factor of 4 to the most diffuse

exponents of the Gaussian α4s and α5s orbitals (α4s =
0.20488961, α5s = 0.07930045). The extended details of the
basis sets used in this work are reported in the SI. This problem
does not occur with the newly developed HFsol-3c method, as
the basis set was carefully tuned to cope with the extended
nature of crystalline solids.
We also carried out periodic, frozen core, local second-order

Møller−Plesset perturbation theory (LMP2) single-point
energy calculations for all systems on structures optimized at
the DFT-B3LYP-D*N/TZVP level of theory. The LMP2
calculations were carried out with a development version of
the CRYSCOR software,36 which implements orbital specific
virtuals (OSVs) to represent the truncated pair-specific virtual
space.37 In the OSV-LMP2 formalism, it is not necessary to
manually define excitation domains for the virtual space as in the
previous implementation based on projected atomic orbitals
(PAO-LMP2). The OSV-LMP2 straightforwardly enables the
calculation of smooth potential energy surfaces and relative
energies of structural frameworks with different topologies.38

The HF reference wave function and the localized valence-space
Wannier functions (WFs) necessary for the LMP2 procedure
were obtained with CRYSTAL17. Very tight TOLINTEG
tolerance factors of 10, 10, 10, 20, and 50 were used in the
Hartree−Fock (HF) part. All-electron and triple-ζ-valence +
double polarization (TZVPP) basis sets have been reoptimized
in their valence and polarization part on the specific systems
starting from the Karlsruhe def2-TZVPP and using the recently
implemented BDIIS algorithm.39 All basis sets are provided
explicitly in the SI. For H and O atoms we further added a
polarization f-function. In the LMP2 calculations, we utilized the

Figure 1. A: Brucite and Portlandite bulk structure. View along the crystallographic b axis.B: Kaolinite bulk structure. View along the crystallographic b
axis. H1 (OH inner group) and H2, H3, and H4 (OH surface groups). Hydrogen bonds are reported as dotted lines. C: The octahedral coordination
around Mg/Ca ions in Brucite and Portlandite from different points of view.
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direct-space density-fitting technique for computing the two-
electron four-index integrals. A Poisson/Gaussian-type auxiliary
basis set of triple-ζ-valence quality was employed for the density-
fitting.40,41 From a practical point of view, the calculation of the
reference wave function with HF can be computationally even
more expensive than the actual LMP2 calculation. The graphical
visualization and structural manipulation of structures were
performed with MOLDRAW version 2.0.42 Images were
rendered with VDM.43

■ RESULTS AND DISCUSSION
Energy and Geometry for Brucite and Portlandite.We

will start the results discussion with the Brucite and Portlandite
crystals. These crystals belong to the same space group, e.g.,
P3m1, but differ for the alkaline-earth atom type. Each unit cell
contains one stoichiometric unit X(OH)2, with X= Mg or Ca,
see Figure 1A. In the crystal, the metal cations are coordinated
by 6 OH anions within an octahedral arrangement, see Figure
1C.
We have relaxed the crystal geometry for both Brucite and

Portlandite employing HF-3c, HF-3c-027, HFsol-3c, and
B3LYP-D methods. For the B3LYP functional, we have tested
several dispersion corrections (D), as we discussed in the
Computational Details section, see Table 1. The relaxed cell
vector length c, e.g., the interlayer distance, see Figure 1A, is the
geometrical parameter, which is most sensitive to the adopted
methodology, as it is mainly controlled by weak interlayer
interactions. Therefore, in Table 2 we only focused on its

absolute and percentage deviation compared to experiments.
We reported the full characterization of the relaxed geometries
to the SI, see Table S3. The main findings of the geometry
analysis are summarized as follows:

1 The interaction coming from the Mg/Ca ions with the
OH groups of the adjacent layer seems to drive the
interlayer distance between Mg(OH)2 and Ca(OH)2
layers. Indeed, the interlayer distances computed by the
plain B3LYP and B3LYP-D*0 (in which the Mg and Ca
dispersion is switched off but keeping OH/OH
contributions) are similar, due to the missing (Mg/
Ca)···(OH) dispersion components (see Table 2).
Switching-on the (Mg/Ca)···(OH) dispersion-driven
attraction, the interlayer distance shortens of an amount
depending on the parameters employed for the metal
atoms within the D scheme, see the next point.

2 The parameters used to define the dispersion scheme
have an important role on the value of the interlayer

distance.We have tested several dispersion parameters for
the alkaline-earth element within the B3LYP-D*
approach. Using different parameters, we have computed
errors on the interlayer distance spanning from 4.4% to
−6.5% and from 4.0% to −8.3%, for Mg(OH)2 and
Ca(OH)2 cases, respectively (Table 2).

3 Among all tested methodologies, the most accurate are
the B3LYP-D* and B3LYP-D*N (see the Computational
Details section). The percentage deviation on the
interlayer distance computed with these approaches is
lower than 2.5% for both Mg(OH)2 and Ca(OH)2
crystals. Conversely, the B3LYP functional, coupled
with the most recent D3ABC dispersion correction,
underestimates the interlayer distance, performing
similarly to the B3LYP-D*I, in which the alkaline-earth
elements are treated as single charge ion, see Tables 1 and
2. This may indicate that the dispersion coefficients
employed within the D3 scheme describe singly charged
metal ions. In this case, the most realistic electronic
configuration is a doubly charged metal ion. This may
explain the overestimation of the dispersion contribution
between layers by the B3LYP-D3ABC approach.

4 All B3LYP based methods (with and without D
correction) give coherent percentage deviations of the
computed interlayer distance from the experiments, for
both Mg(OH)2 and Ca(OH)2 cases, see Table 2. This
may indicate a general tendency of B3LYP to yield
consistent results for similar systems. Conversely, all the
HF-3c based methods shrink the c parameter of Ca(OH)2
to a larger extent compared to the Mg(OH)2, in
disagreement with the experimental trend. Indeed, the
interlayer percentage deviation of the c parameter
compared to the experimental value is −1.2% and
−9.1% for HF-3c, which improves to 3.1% and −4.1%
for HF-3c-027, while the HFsol-3c deviations are 3.5%
and −1.8%.

5 Our theoretical approach in predicting the lattice
parameters of crystals lacks thermal effects. These usually
lead to a prediction of the crystal volume smaller with
respect to the experimental one measured at a given
temperature. Interestingly, thermal effects on Brucite and
Portlandite interlayer distance are reported to be
negligible. Indeed, for Brucite, the interlayer distance
increases of 0.027 Å heating from 15 to 300 K.44 For
Portlandite, in ref 5, it was reported an expansion of the
interlayer distance of 0.026 Å by increasing T from 133 to
293 K. This experimental evidence validates the data
analysis carried out so far.

The same methodologies employed in the geometry
relaxation are used to compute the interlayer energy (exfoliation
energy) for Brucite and Portlandite, see Table 3. The difference
in the ΔERIGID and ΔERELAX is negligible in the case of Brucite
and Portlandite, see Table S4 of the SI, thus we reported only the
ΔERIGID in Table 3. Experimental data for the exfoliation energy
of the considered materials is, unfortunately, missing. Therefore,
the LMP2 results are used, in the following analysis, as reference
values. We expected the LMP2 method to be capable of
correctly describing the dispersion interactions, particularly for
large gap systems as in the present case, even though the absence
of diffuse functions in the basis set might lead to a mild
underestimation of dispersive effects. In detail, the LMP2 single-
point energy evaluation at the B3LYP-D*N geometries predicts

Table 2. Predicted Interlayer Distance, c (Å), with Percentage
Deviation vs Experiments (%) for Brucite and Portlandite

method c-Mg(OH)2 % c-Ca(OH)2 %

HF-3c 4.670 −1.2 4.436 −9.1
HF-3c-027 4.873 +3.1 4.681 −4.1
HFsol-3c 4.894 +3.5 4.792 −1.8
B3LYP7 4.927 +4.2 5.109 +4.7
B3LYP-D*7 4.658 −1.5 4.846 −0.7
B3LYP-D3ABC 4.576 −3.2 4.696 −3.8
B3LYP-D*0 4.934 +4.4 5.076 +4.0
B3LYP-D*N 4.837 +2.3 4.936 +1.1
B3LYP-D*A 4.424 −6.4 4.478 −8.2
B3LYP-D*I 4.604 −2.6 4.696 −3.8
exp44−46 4.727 4.880
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exfoliation energies for Brucite and Portlandite of 14.0 and 15.3
kJ·mol−1, respectively.
The interlayer distance, c, is directly related to the interactions

occurring between the layers and thus with the exfoliation
energy. Therefore, the results obtained for the exfoliation energy
parallel those for the interlayer distance. In summary:

1 Regardless of the adopted dispersion scheme, either
D3ABC or D*, or the Hamiltonian, either DFT or HF,
when the dispersion coefficients of the metals are
switched off (B3LYP-D3(0)//B3LYP-D3ABC, HF-
3c(0)//HF-3c, and B3LYP-D*0 methods), the exfolia-
tion energy drops significantly to values approaching
those computed with the purely electrostatic Hamiltonian
(B3LYP), intrinsically free from the London component
of the interaction energy (see Table 3). This is due to the
removing of the metal-ion···(OH) groups contribution.

2 The HF-3c and B3LYP-D3ABC exfoliation energies are
highly overestimated and close to each other. Interest-
ingly, these results are similar to those of the B3LYP-D*I
method, in coherence with the same trend for the
interlayer distance. This seems to confirm that the
dispersion coefficients of the alkali earth metal atoms
(Mg and Ca) within the D3 scheme describe singly
charged ions.

3 As expected, HF-3c-027, HFsol-3c, and B3LYP-D*
methods, in which the dispersion energy (D3 and D2
schemes, respectively) is damped following different
procedures, see refs 10, 17, and 20, give better results
than the plain D3 corrected methods (including the plain

HF-3c) but still overestimate the exfoliation energy with
respect to the LMP2 method, see Table 3. A larger
underestimation of the exfoliation energy occurred when
the dispersion of the alkali earth metal atoms is turned off
for the HF-3c and B3LYP-D (D3 and D*), with the
purpose of reducing the dispersion contribution.

4 Approximating the dispersion interaction of the alkaline-
earth metals with that of preceding noble gases (Ne and
Ar, for Mg and Ca, respectively) gives the best results.
Regardless of the type of method or dispersion scheme
employed, HF-3c(N)//HF-3c, B3LYP-D3(N)//B3LYP-
D3ABC, and B3LYP-D*N, the results obtained in this way
are the closest to the LMP2 ones, see Table 3.

5 The dispersion energy components of the interaction
energy, using the D*N scheme (see Table S10 in the SI)
keeping the Mg(OH)2 and Ca(OH)2 layers in place, can
be split in about (i) 33% and 47% for Mg···(OH)/Ca···
(OH), (ii) 61% and 41% for (OH)···(OH), and (iii) 2%
and 9% for Mg···Mg/Ca···Ca. This clearly shows the
negligible role of the direct metal-ion/metal-ion con-
tribution to the dispersion energy.

6 In general, the value of the exfoliation energy of
Portlandite is predicted to be slightly higher with respect
to Brucite, see Table 3. This difference may arise from the
higher dispersion contribution expected from an atom of
the IV period with respect to one of the III period, both
belonging to the II group of the periodic table.

7 We have demonstrated for different cases,10−12 a single-
point energy estimation with DFT at the optimumHF-3c-
027 geometry (SP-B3LYP-D approach) gives results in
agreement with those at the full DFT level. SP-B3LYP-
D*N and SP-B3LYP-D3ABC exfoliation energies are in
good agreement (percentage deviation <8%) with the full
DFT//DFT ones, see Table 3.

Energy and Geometry for Kaolinite. The third layered
material we have investigated is Kaolinite, a clay layered
aluminosilicate with composition Al2Si2O5(OH)4. It crystallizes
with a triclinic cell in the C1 space group. Each unit cell contains
one stoichiometric unit organized in one layer of tetrahedron of
silica (SiO4) linked through oxygen atoms to one layer of
octahedron of alumina hydroxide (Al(OH)3), see Figure 1B.
The contact between separate layers is modulated by H-bonds.
We have studied all possible configurations of H-bonds for
kaolinite in a previous work, and here we only focused on the
most stable one.7,8 As for the Brucite/Portlandite cases, we have
relaxed the geometry of Kaolinite using B3LYP, either without
dispersion correction or corrected with both the -D*, -D3ABC

schemes as well as the promising D*N one. Within the B3LYP-
D*N setup, the dispersion related coefficients and atomic radii
of the Al3+ ion are substituted with those of the preceding noble
gas, e.g., Ne. A collection of relaxed geometrical parameters is

Table 3. CP-Corrected Exfoliation Energy, ΔERIGID (kJ·
mol−1), for Brucite and Portlandite

method Mg(OH)2 Ca(OH)2

HF-3c −29.6 −40.5
HF-3c(0)//HF-3c −2.2 +0.3
HF-3c(N)//HF-3c −8.0 −14.3
HF-3c-027 −19.1 −23.6
HFsol-3c −17.4 −17.8
B3LYP7 −3.8 −4.6
B3LYP-D3(0)//B3LYP-D3ABC −9.9 −8.5
B3LYP-D3(N)//B3LYP-D3ABC −14.0 −18.7
B3LYP-D3ABC −34.4 −40.6
B3LYP-D*7 −22.0 −22.6
B3LYP-D*0 −9.8 −10.1
B3LYP-D*N −13.1 −17.1
B3LYP-D*I −26.3 −37.8
B3LYP-D*A −58.4 −104.8
SP-B3LYP-D*N −12.3 −16.3
SP-B3LYP-D3ABC −31.7 −41.4
LMP2//B3LYP-D*N −14.0 −15.3

Table 4. Experimental vs Optimized c Cell Parameter, Cell Volume, and O−O Distances for the Kaolinite Crystala

exp47 B3LYP7 B3LYP-D*7 B3LYP-D3ABC B3LYP-D*N HF-3c HF-3c-027 HFsol-3c

c 7.39 7.48 7.38 7.32 7.41 7.13 7.20 7.17
V 164.3 170.7 164.9 161.8 166.8 150.7 154.1 153.7
O2−O2′ 3.088 3.126 2.945 2.896 3.006 2.926 3.011 2.974
O3−O3′ 2.989 3.025 2.914 2.867 2.949 2.840 2.903 2.898
O4−O4′ 2.953 2.971 2.882 2.835 2.906 2.815 2.868 2.872

aCell parameter, c, and O−O distance in Å, volume, V, in Å3. Labeling after Figure 1B. Extended geometrical information reported in Table S9 of
the SI.
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reported in Table 4 and Table S9 of the SI. In Table 5 we have
gathered the exfoliation energies.

In line with the previous discussion for Brucite and
Portlandite, the B3LYP-D* and B3LYP-D*N methods give
accurate estimation of interlayer c lattice vector of the Kaolinite
crystal, see Table 4. Moreover, the B3LYP-D*N method
computes reliable H-bond contacts (see O−O distances in
Table 4). As expected, the D3ABC scheme enhances the
dispersion interaction linking the Kaolinite layers with respect
to the other B3LYP-D methods, also shrinking the unit cell c
parameter and, thus, the O−O distances.
The HF-3c family of method severely underestimates the unit

cell c parameter and consequently the O−O distances. This is
mitigated by reducing the dispersion energy, as when adopting
the HF-3c-027 or HFsol-3c methods, which both give very
similar results.
For the exfoliation energy, at variance from the Brucite and

Portlandite cases, a single 2D layer of kaolinite has a very
different geometry when free or within the crystal bulk. This
large geometrical reconstruction is essentially due to the dipolar
nature of the kaolinite layers, see Figure 1B, and to the missing
H-bond contacts for the free layer. This argument has already
been discussed extensively elsewhere.7,8 The difference in the
geometry of the relaxed and unrelaxed single Kaolinite layer
leads to large differences between ΔERIGID and ΔERELAX values,
see Table S7 of the SI. The relaxation energy computed with the
DFT approaches spans the 72−86 kJ·mol−1 range and is higher
compared with the Brucite/Portlandite cases. Therefore, for this
case we will focus only on theΔERELAX exfoliation energy values
in the main text and in Table 5.
The exfoliation energy computed with the B3LYP methods

spans the 32.3−78.8 kJ·mol−1 range, depending on the
treatment of the dispersion forces. The trend values follow
that computed for the Brucite/Portlandite cases: B3LYP <
B3LYP-D*N < B3LYP-D*<B3LYP-D3ABC. LMP2 gives an
exfoliation energy of −45.7 kJ·mol−1, definitely lower than each

of the DFT-D methods. Interestingly, among all DFT-D
approaches, the B3LYP-D*N is the closest to LMP2.
As expected, the HF-3c methods overshoot ΔERELAX of at

least 12 kJ·mol−1 with respect to B3LYP-Dmethods, but the SP-
B3LYP-D results are in agreement with the full DFT-D ones,
with an average deviation of only ≈6 kJ·mol−1.

Thermodynamic State Functions. Exfoliation enthalpies
(ΔH) and free energies of exfoliation (ΔG) are important
quantities that can be directly compared with the experiments,
when available. Here we computed ΔH and ΔG using both
B3LYP-D and HF-3c methods for all layered materials. The
results are gathered in Table 6. As expected, the difference
between ΔH and ΔG is very small, so we will carry out the
analysis for ΔG only.
The full B3LYP-D*N method, that yields the best agreement

with LMP2 for the exfoliation energy, givesΔG values of −10.4,
−14.9, and −57.9 kJ·mol−1 for Brucite, Portlandite, and
Kaolinite, respectively. Conversely, the B3LYP-D3ABC scheme
gives ΔG values that are much higher than the B3LYP-D*N
ones and that are close to the HF-3c ones, see Table 6. The HF-
3c-027 method, due to the reduced dispersion, gives results that
are in better agreement with the B3LYP-D*N than plain HF-3c.
TheHFsol-3c results are not included in Table 6, as they are very
close to the HF-3c-027 ones. This trend is consistent with the
results for the exfoliation energy. Interestingly, using the SP-
B3LYP-D*N method and including the vibrational corrections
at the HF-3c-027 level, we computed ΔG values of −11.1,
−13.9, and −57.4 kJ·mol−1 for Brucite, Portlandite, and
Kaolinite, respectively. These results differ by less than 0.5 kJ·
mol−1, in absolute value from the full B3LYP-D*N results. From
this point of view, the hybrid DFT-D//HF-3c approach seems
to be a cost-effective and robust approach also to model the
thermodynamics of the inorganic layered materials of the kind
studied in the present work.

■ CONCLUSIONS

In this work we have computed and analyzed the equilibrium
geometry, exfoliation energy, and thermodynamic state
functions of Portlandite Ca(OH)2, Brucite Mg(OH)2, and
Kaolinite (Al2Si2O5(OH)4) layered materials. We adopted
several ab initio techniques, all using Gaussian basis sets, based
on Grimme’s HF-D, DFT-D, and post-HF theories, focusing on
the role of the dispersion forces in modifying the materials
properties. As HF based methodology, we relied on both plain
and dispersion-scaled versions of the HF-3c method. As a post-
HF treatment, we used the periodic LMP2 approach with a
triple-ζ quality basis set to ensure an accurate and parameter-free
description of the dispersion interactions. Concerning the DFT
method, we used the hybrid B3LYP functional with a flexible
polarized Gaussian basis set. Our main goal is to find the best
approach for computing the exfoliation energy for the above-
mentionedmaterials chosen as reference 2D inorganic materials,

Table 5. CP-Corrected Exfoliation Energy (ΔERELAX) for
Kaolinite (in kJ·mol−1)

method ΔERELAX

HF-3c −107.8
HF-3c-027 −90.8
HFsol-3c −88.8
B3LYP7 −32.3
B3LYP-D*7 −71.6
B3LYP-D*N −59.2
B3LYP-D3ABC −78.8
SP-B3LYP-D* −77.6
SP-B3LYP-D*N −62.3
SP-B3LYP-D3ABC −87.9
LMP2//B3LYP-D*N −45.7

Table 6. Exfoliation Enthalpy (ΔH) and Free Energy of Exfoliation (ΔG) at T = 298.15 K and P = 1 atma

HF-3c HF-3c-027 SP-B3LYP-D*N B3LYP-D3ABC B3LYP-D*N

ΔH ΔG ΔH ΔG ΔH ΔG ΔH ΔG ΔH ΔG
Mg(OH)2 −26.8 −26.2 −17.5 −17.1 −11.5 −11.1 −31.3 −29.8 −11.2 −10.4
Ca(OH)2 −37.4 −37.2 −22.0 −21.9 −14.0 −13.9 −38.4 −37.3 −15.6 −14.9
Al2Si2O5(OH)4 −105.7 −104.1 −88.7 −85.8 −60.2 −57.4 −77.8 −76.9 −58.7 −57.9

aData in kJ·mol−1.
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due to the importance of this quantity in the 2D materials
engineering.
Regarding the geometrical analysis, we focused on the c crystal

unit cell axis, which directly controls the interlayers distance.
This is the geometrical parameter mostly dependent on the
computational method. Predicting a correct interlayer distance
is important also to compute the exfoliation energy, as the two
quantities are obviously highly correlated to each other. For
Brucite and Portlandite, the main findings can be summarized as
follows:

• The inclusion of dispersion correction is mandatory to
bring the computed interlayer distances in agreement
with the experiments. Pure B3LYP overestimates the
interlayer distance by more than 4% with respect to
experiments in both hydroxides. When Grimme’s
dispersion correction is included in the calculation, the
interlayer distance shrinks to a value highly dependent on
the methodology.

• The atomic parameters of the D3ABC scheme seem to
describe Mg and Ca atoms as single charged ions, instead
of double charged ions, as we would expect in highly ionic
Brucite and Portlandite crystals. This, in turn, causes an
overestimation of interlayer dispersion contribution,
which leads to an underestimation of the interlayer
distance (more than 3% for the B3LYP-D3ABC method).

• Since the dispersion parameters for Mg2+, Ca2+, and Al3+

ions are not available in the literature, we have
approximated them by using the values parameters of
the preceding noble gases (Ne and Ar). This is in line with
a previous suggestion by Tosoni and Sauer for the Mg2+

ion of the MgO (001) surface.25 The resulting B3LYP-
D*N approach gives results in good agreement with the
experiments, with interlayer distance deviation of 2% and
1% for Brucite and Portlandite, respectively. Similar
accuracy is achieved with the B3LYP-D* method.

The key role of dispersion is mitigated in the Kaolinite crystal,
in which interlayer H-bond interactions are an important
fraction of the exfoliation energy, also controlling the interlayer
distance. This type of interaction is well-described even by the
plain B3LYP. Indeed, all DFT methods have interlayer distance
deviations from experiment within the 1% of error. As for
Brucite and Portlandite cases, both B3LYP-D* and B3LYP-D*N
methods give slightly better results than B3LYP-D3ABC and plain
B3LYP. Conversely, plain and scaled HF-3c methods over-
compress the layers with deviation of up to 4%.
The interlayer distance depends directly on the interlayer

interaction energy. Therefore, the reasons discussed for the
exfoliation energy are also useful for understanding the trend in
the interlayer distance. Worth noting are the following points:

• Due to missing experimental exfoliation energies for
Brucite, Portlandite and Kaolinite, we adopted, as a
reference values, those computed with the periodic LMP2
method, a method which can describe weak interactions
in a rather accurate and parameter-free way. The LMP2
computed exfoliation energies are −14.0, −15.3, and
−45.7 kJ·mol−1 for Brucite, Portlandite, and Kaolinite,
respectively.

• Regardless of the type of method (HF or DFT) or of the
adopted dispersion scheme (D* or D3), the best
exfoliation energies are those in which the dispersion
parameters of the alkaline-earth metal are approximated
by using that of the preceding noble gas. This mimics the

actual ionic state of Mg, Ca, and Al within the Brucite,
Portlandite, and Kaolinite crystals. Among the above-
mentioned methods, the B3LYP-D*N approach is the
most accurate one. This approach indicates that the
dispersion driven attraction between adjacent layers arises
mainly from the Mg···(OH)/Ca···(OH) and (OH)···
(OH) contributions, the direct Mg···Mg/Ca···Ca ones
being negligible.

• The hybrid SP-DFT-D approach, in which the geometry
of the system is relaxed with the fast HF-3c-027 method
and the energy is computed through an inexpensive single
energy point calculation with the DFT approach, gives
results in good agreement with those of full DFT.10−12

The present results at the B3LYP-D*N level of theory
indicates that Brucite, Portlandite, and Kaolinite are easy
exfoliable materials,2 a fact which can be verified experimen-
tally.48 The computed exfoliation energies are−27.1,−27.3, and
−26.3 meV/Å2, respectively, which are comparable with a well-
known exfoliable material, e.g., graphite, which has an
experimental exfoliation energy of −28.7 meV/Å2.49 Con-
versely, by using the state-of-the-art B3LYP-D3ABC method, the
exfoliation energy rises up to −72.5, −65.7, and −35.5 meV/Å2,
for Brucite, Portlandite, and Kaolinite, respectively. These
results indicate Brucite and Portlandite crystals, in agreement
with the definition of ref 2, only “potentially exfoliable”
materials. Therefore, the adoption of an inaccurate computa-
tional approach may lead to misleading findings, with high
impact on the possible use of a specific 2D material as a
promising exfoliable material. Another, more general potential
solution to this problem is the recently introducedD4 dispersion
scheme, which has also been applied to correct the over-
estimation of cation polarizability in inorganic ionic systems, in
line with the empirical methodology proposed here.50

Unfortunately, this option is not available in CRYSTAL17, but
we propose the present calculations as a benchmark for future
testing of the D4 approach.
We also computed the enthalpy and free energies of

exfoliation for all considered layered materials. These quantities
vary only slightly from the pure energy of exfoliation (less than 5
kJ·mol−1), but to be computed, they require expensive
vibrational frequency calculations. Such calculations can be
performed with the HF-3c methods using DFT-D/VTZP only
for the energy estimation (SP-DFT-D approach). This method
gives results in good agreement with full DFT/VTZP. Indeed,
the B3LYP-D*N/VTZP and the SP-B3LYP-D*N/VTZP free
energies of exfoliation differ by less than 1 kJ·mol−1.
Interestingly, the expected speed up factor of the SP-DFT-D
approach with respect to full DFT is ≈40 for organic systems
simulations,10−12 due to the minimum basis set (MINIX)
employed in HF-3c. Unfortunately, the MINIX basis set has
large and diffuse basis sets for Ca, Mg, and Al atoms. These basis
sets are more representative of neutral atoms than of positive
charged ones as they are in this case. This slows down the HF-3c
method, as the number of computationally demanding exchange
integrals grows dramatically. To remedy that problem, the new
HFsol-3c method was recently proposed,17 with internal
parameters and basis sets specifically derived for efficiently
studying inorganic and ionic systems. TheHFsol-3c gives results
closer to the HF-3c-027 for interlayer distance, exfoliation
energy, and thermodynamic functions with a much-reduced
computational cost. For instance, the ratio between the
computational time of the B3LYP/VTZP//HFsol-3c with
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respect to the full B3LYP/VTZP one is better than 1 order of
magnitude. Therefore, we are confident that the DFT-D//
HFsol-3c scheme will provide a promising and robust approach
to model much more complex 2D systems of technological and
fundamental interest.
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