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Introduction

Despite improved clinical outcomes from multimodal
therapy, long-term survival of children with high-risk
neuroblastoma (NB) is only about 50%.1-3 Targeted
approaches may improve these patients’ outcomes.
The anaplastic lymphoma kinase (ALK) receptor ty-
rosine kinase (RTK) is one of the few oncogenes
identified in NB.4-8 ALK together withMYCN drives NB
in a variety of models.9-12 ALK is activated by ALKAL
ligands,13-16 and ALKAL2 overexpression increases
onset and penetrance of Th-MYCN–driven NB in
mice.10 ALKAL2 is located together with ALK and
MYCN on distal 2p, a region often gained in NB17 and
linked to poor prognosis.18,19

Another RTK involved in NB is tropomyosin receptor
kinase (TRK)A.20 High TRKA expression is a favorable
marker,20 whereas high expression of the related
TRKB is a marker of poor prognosis and progression in
NB.21 Alternative splicing adds further complexity: a
truncated TRKB isoform is preferentially expressed in
differentiating NB,22,23 whereas an isoform of TRKA
that does not bind nerve growth factor is found in
unfavorable NB.24

Here, we report robust response to RTK inhibition of a
patient with NB harboring a rare germline variant in the
ALKAL2 gene with a chromosomal 2p gain and ALK and
TRK activity. On the basis of this case, we suggest that
NB patients with 2p gain tumors should be investigated
for ALK and other RTK signaling activity when possible,
even in the absence of genetic mutations, and con-
sidered as candidates for targeted therapy.

Material and Methods

See the Data Supplement.

Consent. The patient’s parents have given their written
informed consent concerning the submission and
publication of this scientific clinical report.

Results

Patient presentation. A 6-month-old previously healthy
boy was referred with a history of vomiting, weight loss,
and profuse sweating. Ultrasound showed a tumor at the
left adrenal and suspected liver and lymph node me-
tastases. Computed tomography scans confirmed ap-
proximately 10 liver and 50 pulmonary metastases but no
intracranial metastases. Urine catecholamine metabolites
were extremely elevated (Fig 6A). Triple antihypertensive
treatment was required to control blood pressure. Further
investigations, including magnetic resonance imaging
(MRI) and histology, revealed a poorly differentiated un-
favorable NB (Figs 1A, 1D-1G). Metaiodobenzylguanidine
(MIBG) scan showed uptake in the primary tumor and
various metastatic sites (Figs 1B and 1C). Bone marrow
involvement was low at 0.1%-0.3%. Single-nucleotide
polymorphism (SNP) microarray analysis showed no
MYCN amplification or 11q deletion but other unfavorable
segmental genetic aberrations (Fig 2A, upper panel).

According to the LINES (Low and Intermediate Risk
Neuroblastoma European Study) protocol, the patient
was allocated to intermediate-risk group 10. The pa-
tient showed partial response in MRI and tumor-free
bone marrow and partial regression in MIBG after two
courses of etoposide and carboplatin (VP/CARBO), but
reassessment after courses 3 and 4 showed unaltered
tumor volume and persistent metastases. The infant
exhibited profuse sweating with persistent elevated
blood pressure and catecholamine metabolites. A
fourth antihypertensive drug was added and further
treatment with CADO (cyclophosphamide, doxorubicin,
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and vincristine) was scheduled. However, after four courses of
CADO, persistent metastases and NB cells in the bone
marrow, consultation with the international study lead
prompted a therapeutic switch to the high-risk protocol with
COJEC induction (cisplatin, vincristine, carboplatin, etoposide,
and cyclophosphamide) according to HR-NBL1/SIOPEN.1

Restaging after four courses of VP/CARBO, four courses of
CADO, and eight courses of COJEC showed NB-free bone
marrow. MRI scan showed unaltered findings as compared
with two months earlier, and only minor regression com-
pared with initial findings. Stem-cell harvest could not be
performed because of insufficient CD34-positive cells.

9.5 months after diagnosis, primary tumor resection with
biopsy of para-aortal and mesenteric lymph nodes, kidney,

lung and liver was performed. Histopathologic examination
revealed viable tumor at six out of eight sites, including
MIBG-negative sites. Stem-cell harvest was postponed
again because of high bone marrow NB cell involvement.
Salvage chemotherapy with topotecan, vincristine, and
doxorubicin (TVD)25 was initiated with concomitant
cyclooxygenase-2 inhibitor celecoxib.26 At this point, ad-
ditional genomic and proteomic studies of resected tumor
were initiated, during which time the patient completed four
courses of TVD and two ensuing courses of temozolomide
and topotecan (TOTEM).27

Genetics of the patient and his tumor. Genetic assessment
by SNP microarray and whole-genome sequencing (WGS)
on resected tumor showed several segmental alterations

FIG 1. Presentation at diagnosis: (A) T2-weighted MR image showing primary tumor in the left retroperitoneal space and abundant metastases in
liver and lungs; (B and C) MIBG scan showing uptake in the primary tumor, retroperitoneal lymph nodes, liver, lungs, femurs, pelvis, and right
humerus; (D and E) fine needle aspiration specimens from the primary tumor at 20× enlargement: (D) May-Grünwald-Giemsa staining and (E)
synaptophysin staining; (F and G) core needle specimens obtained from the primary tumor at diagnosis at 40× enlargement: (F) hematoxylin-eosin
staining and (G) NB84 staining. MIBG, metaiodobenzylguanidine; MR, magnetic resonance; NB, neuroblastoma.
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with 2p gain constituting an important change from the
genetic profile at diagnosis (Fig 2A). No structural or
nonsynonymous variants were detected in genes with
established relevance in NB although the 2p breakpoint is
located 183 kb distal to ALK and fused to GABRA2 intron 9
at chromosome 4 (Data Supplement). Analysis of consti-
tutional DNA revealed no underlying genetic predisposition

for NB, but a novel heterozygous missense variant was
detected in ALKAL2 (NM_001002919.2; c.158C.T,
p.(Ser53Leu)), inherited from his healthy mother (Figs 2B
and 2C).

ALKAL2S53L is a functional ALK ligand. As ALKAL2 muta-
tions have not been described in NB previously, the
ALKAL2S53L variant was evaluated in PC12 cells by neurite
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FIG 2. Genomic analysis of tumor samples. (A) Copy number profiling using the Affymetrix HD SNP microarray shows the patient’s genomic
profiles from tumor biopsy at time of diagnosis (upper panel) and from resected tumor material retrieved 9.5 months after diagnosis (lower panel).
Persistent segmental alterations detected in both specimens are deletion of 1p and 14q together with gain of 4q and 17q, whereas additional
alterations unique to each sample include 2q gain (at time of diagnosis) and 2p gain together with 4p-del (at time of resection). (B) WGS detected a
novel ALKAL2S53L constitutional variant. (C) Sanger sequencing verified the presence of the ALKAL2 variant, indicated by red arrows, in the
germline of the patient, and subsequent analysis of the patient’s parents showed that it was inherited from his healthy mother. WGS, whole-
genome sequencing.
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outgrowth activity assay.14,28-30 Cotransfection of ALKAL2S53L

with ALK results in neurite outgrowth at levels comparable
with wild-type ALKAL2 (Fig 3A), indicating sustained ability
to activate ALK. Further investigation in D. melanogaster,
which offers a clear readout of ALK activation,14,31 showed
that coexpression of either ALKAL2 or ALKAL2S53L ligands
with wild-type ALK resulted in a rough eye (Fig 3B), in-
dicating that both mutated and wild-type ALKAL2 are able
to activate human ALK. Taken together, these results in-
dicate that ALKAL2S53L is a functional ligand.

Protein analysis of tumor material. Immunoblotting of
resected primary tumor verified ALK activation, ALKAL2
expression, and phosphorylation of downstream targets:
ERK, AKT, and FRS2 (Fig 4A).32-34 RTK array analysis
identified several additional activated RTKs in the tumor
sample (Fig 4B). Specifically, active epidermal growth
factor receptor, platelet-derived growth factor receptor
beta, and TRKA were detected. High TRKA levels were
observed, and a differing molecular weight in comparison
with two NB cell lines was noted (Fig 4A). Careful reanalysis
of WGS did not identify any genetic aberrations affecting
these RTKs or corresponding ligands. The analyses indi-
cated both TRKA and ALK activation. Of the ALK tyrosine
kinase inhibitors available, only entrectinib targeted both
ALK and TRKA.

Entrectinib efficiently abrogates ALK activity in NB cell lines.
Entrectinib inhibits phosphorylation of TRKB upon brain-
derived neurotrophic factor stimulation in SH-SY5Y NB
xenografts35 and inhibits ALK signaling in NB cells.36 Nerve
growth factor stimulation of TRKA in PC12 cells caused
neurite outgrowth,37 which is abrogated by entrectinib
(Figs 5A and 5B), supporting a robust TRKA inhibition.35 To
investigate therapeutic efficacy of entrectinib in NB cells,
ALK-driven CLB-BAR and CLB-GE cells were used. A dose-
dependent decrease in cell viability was observedwith IC50s of
10.6 nM and 38.6 nM for CLB-BAR and CLB-GE, respectively
(Fig 5C). In agreement, decreased ALK phosphorylation and
inhibition of downstream targets were observed (Fig 5D). Thus,
in preclinical experiments, entrectinib inhibits activity of both
ALK and TRKA, the latter of which is expressed inmost NB cell
lines (Fig 5E). Given 2p gain, robust ALK and TRK signaling,
and ALKAL2 expression, together with the patient’s lack of
response to standard treatment, entrectinib therapy was
started.

Patient response to entrectinib. Because the patient was
too young for the ongoing entrectinib RXDX-101-03 trial
(inclusion age 2-22 years, NCT02650401), compassionate
use was granted by the study sponsor, Ignyta Inc. Treat-
ment with ALK-TRK-ROS1 inhibitor entrectinib started at an
oral dose of 200mg/day (393mg/m2) once daily, increasing
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to 300 mg (475 mg/m2) and 400 mg (540 mg/m2) once
daily after 10 and 29 months, respectively.

Entrectinib was well tolerated, and no overt acute or long-
term toxicity was observed. After 3 months, a solitary
episode of syncope with 5-10 seconds of unresponsive-
ness prompted evaluation with EEG, which turned out
normal. From age 2.5 to 3 years, the child developed
pathologic fractures occurring sequentially in both tibiae
and the right fibula. Suspected new metastases were
disproven, and fractures deemed to be caused by pre-
vious chemotherapy. One fracture necessitated surgical
intervention but all healed under continued entrectinib
and celecoxib therapy. No further adverse events or
hospitalizations related to medication have been recorded
over 4 years of treatment.

Two months after entrectinib treatment initiation, assess-
ment of a liver metastasis showed remaining viable, poorly
differentiated cells (Data Supplement) despite generally
improved patient condition. However, urine catecholamine
metabolites exhibited a gradual decrease to near-normal
values (Fig 6A), with repeated computed tomography and
MRI scans showing lung and liver metastases decreased to
detectability limits (Figs 6B-6J). After 48 months of treat-
ment, radiologic studies demonstrated further resolution of
lung and liver metastases (not shown). Bone marrow
remained tumor-free at repeated examinations.

The child is alive and well after more than 4 years of
continuous and still ongoing therapy with entrectinib and
celecoxib. Excluding chemotherapy-induced hearing loss,
the patient’s social life, development, and growth are
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completely normal 5.5 years from diagnosis, with catchup
in both height and weight during entrectinib, after growth
impairment during chemotherapy (Data Supplement).

Discussion

See the Data Supplement.

In conclusion, we report a patient with refractory metastatic
NB who, in the setting of exhausted therapeutic options,
responded favorably to entrectinib and reached a stable

clinical situation. Although it is unclear whether the
mechanism of entrectinib action is mainly via ALK or TRK,
this patient represents the first reported case of a 2p gain
ALKAL2 ligand variant, which potentially drives ALK
pathway activation in NB. Although the significance of ALK
ligand mutation requires further investigation, we suggest
that children with NB lacking ALK mutation, but with ALK
activation and/or mutations in ALK ligands, are considered
for ALK-inhibiting targeted therapy.
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FIG 6. Response to treatment. (A) Urine catecholamine metabolites, logarithmic scale. Catecholamine metabolites (do-
pamine in blue, HVA in red, and VMA in teal) as NB markers in the patient’s urine (molar concentrations/creatinine
concentration). Dashed lines represent age-specific reference values. At start of entrectinib treatment, the urine dopamine
level was still elevated 50-fold beyond the reference level. CT scans of the lungs showing (B) extensive metastasis at
diagnosis, (C) decreasing size and number of metastases after multiple courses of chemotherapy, and (D) further involution
after 29 months of entrectinib therapy. Abdominal MR images showing liver metastases (E and H) at diagnosis, (F and I)
before start, and (G and J) after 29 months of entrectinib treatment. The metastasis indicated by arrows has been chosen for
volumetric analysis [inserts] yielding 76 mL (H) at diagnosis, (I) 23 mL before start of entrectinib, and (J) 0 mL (un-
measurable) after 29 months of entrectinib treatment. MR image acquisition settings are as follows: (E) T2, (F) T1 + gd, (G)
T1 + gd (GRE) dixon, (H) T1, (I) T2, and (J) T2. CT, computed tomography; HVA, homovanillic acid; MR, magnetic
resonance; NB, neuroblastoma; VMA, vanillylmandelic acid .
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