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ABSTRACT

Motivation: Epistasis, the presence of gene–gene interactions, has
been hypothesized to be at the root of many common human
diseases, but current genome-wide association studies largely ignore
its role. Multifactor dimensionality reduction (MDR) is a powerful
model-free method for detecting epistatic relationships between
genes, but computational costs have made its application to
genome-wide data difficult. Graphics processing units (GPUs), the
hardware responsible for rendering computer games, are powerful
parallel processors. Using GPUs to run MDR on a genome-wide
dataset allows for statistically rigorous testing of epistasis.
Results: The implementation of MDR for GPUs (MDRGPU) includes
core features of the widely used Java software package, MDR.
This GPU implementation allows for large-scale analysis of epistasis
at a dramatically lower cost than the standard CPU-based
implementations. As a proof-of-concept, we applied this software
to a genome-wide study of sporadic amyotrophic lateral sclerosis
(ALS). We discovered a statistically significant two-SNP classifier and
subsequently replicated the significance of these two SNPs in an
independent study of ALS. MDRGPU makes the large-scale analysis
of epistasis tractable and opens the door to statistically rigorous
testing of interactions in genome-wide datasets.
Availability: MDRGPU is open source and available free of charge
from http://www.sourceforge.net/projects/mdr.
Contact: jason.h.moore@dartmouth.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Genome-wide association studies hold promise for the discovery
of the genetic factors that underlie common human diseases
(Hirschhorn and Daly, 2005; Wang et al., 2005). Unfortunately
this promise has largely not been realized (Shriner et al., 2007;
Williams et al., 2007). It is thought that this failure could be due to
epistasis, the role of gene–gene interactions, which has commonly
been ignored in these studies. Powerful and model-free methods
such as multifactor dimensionality reduction (MDR) have been
developed (Ritchie et al., 2001), but an exhaustive examination of
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even pair-wise interactions in a 550 000 SNP dataset would require
the analysis of 1.5×1011 combinations. While an analysis of this
scale is approachable with modern cluster computing, an analysis
that includes permutation testing to assess the statistical significance
of results remains infeasible with CPU-based approaches.

Rendering photo-realistic video games in real time is also
computationally difficult. For video game graphics, specific
hardware (the graphics processing unit or GPU) has been developed.
The GPU is a massively parallel computing platform that can be
adapted to some scientific tasks. We have previously shown that
MDR is one of these tasks (Sinnott-Armstrong et al., 2009). Here
we provide software which makes practical the analysis of epistasis
in genome-wide data through the use of GPUs and demonstrate
its application to a genome-wide analysis of epistasis of sporadic
amyotrophic lateral sclerosis (ALS).

2 METHODS
MDRGPU, a software tool capable of analyzing genome-wide data, is a
Python implementation of MDR, which uses the PyCUDA library to run
MDR on GPUs. MDRGPU 1.0 supports balanced accuracy, large datasets,
execution across an arbitrary number of GPUs, permutation testing and the
analysis of high-order interactions. It runs on GPUs which support CUDA
(i.e. the NVIDIA GeForce 8800 series and higher). Parallel execution of one
realization across multiple GPUs is supported with the pp library for Python.
MDRGPU provides a command-line interface for scripted analysis.

The GPU architecture has various memory spaces available. MDRGPU
uses the constant cache, global memory, shared memory and registers. Shared
memory is used to store the intermediate case and control counts for each
attribute combination and to store the number of true and false positives and
negatives. The global memory is accessed directly to fetch attributes. The
constant cache is used in MDRGPU to store the case–control status. Dataset
sizes of greater than 65 536 attributes require splitting which is handled
seamlessly by MDRGPU. This splitting does not cause linear slowdown;
there is simply more overhead of launching, so datasets with large numbers
of instances see less of a performance reduction than datasets with few
instances. The largest number of addressable attributes is 4 billion requiring
4 GB RAM per instance. In order for the case–control status to be held in
constant memory, there can be at most 16 384 instances.

Our proof of concept analysis was performed on three GPU workstations
(detailed in Supplementary Material S1). These systems contain three
GeForce 295 cards, each of which contains two GPUs. For the first stage
of this analysis, we used an ALS dataset from Schymick et al. (2007) as our
detection dataset. This dataset was obtained from QUEUE at Coriell, but
has since been moved to dbGaP. It contains 276 individuals with sporadic
ALS and 271 control individuals. These individuals are genotyped at 555 352
SNPs using the Illumina Infinium II HumanHap550 SNP chip. We processed
this dataset by removing SNPs with a minor allele frequency <0.2 or those
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in which >10% of values were missing for either cases or controls. We
further used Haploview’s tagSNP algorithm (Barrett et al., 2005) to select
representative SNPs from groups of correlated SNPs (r >0.8). After this,
210 382 SNPs remained and were used in the analysis. For the replication
stage, we used a dataset of Irish individuals containing of 221 sporadic ALS
patients and 211 controls described in Cronin et al. (2008).

We used MDRGPU to perform a two-way analysis across the entire
detection dataset. We selected the SNP combination with the best balanced
accuracy measure. We then permuted the dataset 1000 times while
repeating this analysis. We measured the accuracy of the best pair in each
permuted dataset. We then used the 50th best accuracy obtained from these
permuted datasets as our significance cutoff. This permutation test yields an
experiment-wise α of 0.05. A pair of SNPs with a significant association in
the detection phase was tested in the replication dataset. In this phase, the
two detected SNPs were selected from the dataset and MDR was used to
evaluate only this pair. A permutation test was performed here using MDR
on only these two SNPs, and an α of 0.05 was used to assess significance.

3 RESULTS
Our three GPU systems completed an analysis of pairwise
interactions in a single permutation approximately every 6 min. The
time to analyze the dataset itself for pairwise interactions is the same
as the time required for one permutation. One thousand permutations
were used to assess statistical significance which required ∼100 h.
The time to analyze the same dataset on a cluster with 200 AMD
Opteron 2384 (2.7 GHz) CPU cores was just over 1 h without
permutation testing and thus a CPU-based permutation test was
considered infeasible as the estimated time required on 200 CPU
cores was >40 days.

In the proof-of-concept analysis, the highest accuracy
combination in our dataset was SNPs rs4363506 and rs6014848
with a balanced accuracy of 0.6551. In our permutation test, this
accuracy was statistically significant (P<0.048). In the replication
dataset this pair had a balanced accuracy of 0.5821. Permutation
testing the replication dataset showed that this result was also
statistically significant (P<0.021). Therefore, not only have
we discovered a statistically significant pair of SNPs using an
experiment-wise α of 0.05, but we have replicated the significant
relationship in an independent dataset. Here is evidence of how the
permutation testing allowed by MDRGPU enables the discovery
of combinations of SNPs that are significantly associated with a
disease.

4 DISCUSSION
While SNP rs4363506 has been reported as associated with disease
in Schymick et al. (2007), it did not have a statistically significant
effect in Cronin et al. (2008) when considered alone (χ2, P=0.18)
and would have failed to replicate without considering pairwise
effects. SNP rs6014848 has not previously been described as
associated with sporadic ALS, although it shows main effects
(uncorrected χ2, P<0.05) in both datasets. Greene et al. (2009)

have shown that SNPs can fail to replicate a significant association
when the joint effect of those SNPs is ignored. This is particularly
likely when the populations from which patients are ascertained
differs. Schymick et al. (2007) collected individuals from the USA,
while Cronin et al. (2008) collected individuals from Ireland.
By considering the joint effect of SNPs, MDRGPU discovers
a novel association which replicates in an independent dataset.
GPUs provide a platform for epistasis analysis in genome-wide
data where computational requirements far exceed what CPUs can
cost-effectively provide. MDRGPU is a software package for this
emerging computing platform that enables human geneticists to
tackle analyses previously found to be intractable.
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