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ABSTRACT

Objective: The growing availability of rich clinical data such as patients’ electronic health records provide great

opportunities to address a broad range of real-world questions in medicine. At the same time, artificial intelli-

gence and machine learning (ML)-based approaches have shown great premise on extracting insights from

those data and helping with various clinical problems. The goal of this study is to conduct a systematic compar-

ative study of different ML algorithms for several predictive modeling problems in urgent care.
Design: We assess the performance of 4 benchmark prediction tasks (eg mortality and prediction, differential

diagnostics, and disease marker discovery) using medical histories, physiological time-series, and demo-

graphics data from the Medical Information Mart for Intensive Care (MIMIC-III) database.
Measurements: For each given task, performance was estimated using standard measures including the area

under the receiver operating characteristic (AUC) curve, F-1 score, sensitivity, and specificity. Microaveraged

AUC was used for multiclass classification models.
Results and Discussion: Our results suggest that recurrent neural networks show the most promise in mortality

prediction where temporal patterns in physiologic features alone can capture in-hospital mortality risk

(AUC>0.90). Temporal models did not provide additional benefit compared to deep models in differential diag-

nostics. When comparing the training–testing behaviors of readmission and mortality models, we illustrate that

readmission risk may be independent of patient stability at discharge. We also introduce a multiclass prediction

scheme for length of stay which preserves sensitivity and AUC with outliers of increasing duration despite de-

crease in sample size.
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INTRODUCTION AND BACKGROUND

The increasing adoption of electronic health records (EHR) sys-

tems has brought in unprecedented opportunities for the field of

medical informatics. There are lots of research works on utiliza-

tion of such data on different tasks such as predictive modeling,1

disease subtyping,2 and comparative effectiveness research.3 Ma-

chine learning (ML) approaches are common tools for implement-

ing these tasks.

Because of the popularity of artificial intelligence (AI) in recent

years, ML, as a way of realizing AI, has been developing rapidly.

Tons of ML approaches have been proposed. However, from an

application perspective, the users would have difficult times on

choosing the right ML algorithm for the right problem. This is the

reason why we usually see different papers adopted different

approaches but without explicit explanations on the motivation and

rationale.

In this article, we aim to fill in such gap by conducting a system-

atic comparative study on the applications of different ML
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approaches in predictive modeling in health care. The scenario we

care about specifically is in Emergency Room/Urgent Care, where

fast pace decisions need to be made to determine acuity of each visit

and allocate appropriate amount of resources. A growing commu-

nity in medical informatics focusing on quality improvement has

elucidated the relevance of these factors to medical errors and over-

all quality of care.4 Accurate predictive modeling can help recognize

the status of the patients and environment in time and allow the de-

cision makers to work out better plans. Many research on predictive

modeling in emergency room has been conducted in recent years,

such as identification of high-risk patients for in-hospital mortality,5

length of intensive care unit (ICU) stay outliers,6 30-day all-cause

readmissions, and predicting differential diagnoses for admis-

sions,7,8 which have been proven to be useful in different aspects in-

cluding decreasing unnecessary lab tests9 and increasing the

accuracy of inpatient triage for admission decisions.10,11

In terms of ML algorithms, many of them have been applied in

those tasks.12–15 In particular, since 2012, deep learning models

have achieved great success in many applications involving

images,16,17 speech,18 and natural language processing.19 Research-

ers in medical informatics have also been exploring the potentials of

those powerful models.20 Lipton et al showed that recurrent neural

networks (RNN) using only physiologic markers from EHR can

achieve expert-level differential diagnoses over a wide range of dis-

eases.21 Choi et al showed that by using word embedding techniques

for contextual embedding of medical data, diagnostic, and proce-

dural codes alone can predict future diagnoses with sensitivity as

high as 0.79.22 More recently, benchmark performances for decom-

position and length of stay (LOS) predictions have also been investi-

gated.23 The key technical differences in these studies come from 2

major components: (1) patient representation which represents each

patient into a structured data point for modeling, and (2) learning al-

gorithm which infers patterns from the patient representations and

delivers a predictive model. In this article, we will compare several

state-of-art patient representation and ML algorithms across 4 bench-

mark tasks and discuss clinical insights derived from the results.

METHODS

Data set description
The Medical Information Mart for Intensive Care (MIMIC-III) data-

base obtained from Physionet.org was used in our study.24 This data

set was made available by Beth Israel Hospital and includes deiden-

tified inpatient data from their critical care unit from 2005 to 2011.

MIMIC-III captures hospital admission data, laboratory measure-

ments, procedure event recordings, pharmacologic prescriptions,

transfer and discharge data, diagnostic data, and microbiological

data from 46 520 unique patients. In total, there were 58 976 unique

admissions and 14 567 unique International Statistical

Classification of Diseases and Related Health Problems (ICD)-9 di-

agnostic codes.24 When considering only nonpediatric patients (age

18) and discounting admissions without multiple transfers or length

of ICU stay <24 h, there were a total of 30 414 unique patients and

37 787 unique admissions. A summary of demographic distribution

of patients can be found in Supplementary Table S1.

Predictive tasks in assessment
Four learning tasks are adopted in our study as the benchmarks of

those ML algorithms.

In-hospital mortality

In-hospital mortality task was modeled as a binary classification

problem. In total, there were 4155 adult patients (13%) who experi-

enced in-hospital mortality, of which 3138 (75.5%) were in the ICU

setting. Traditionally, SAPS and SOFA scores are used to evaluate

mortality risk.25 Depending on the disease, SAPS-II predicts within a

wide range (0.65–0.89) of area under receiver operating characteristic

curve (AUC) scores, depending on the critical conditions being stud-

ied.26 Our study evaluates performance of predictive models using

AUC. Sensitivity, specificity, and f1-scores were included to aid the in-

terpretation of AUC scores due to the presence of class-imbalance.

Length of stays

Prediction of length of ICU stays remain an important task for iden-

tifying high-cost hospital admissions in terms of staffing cost and re-

source management.6 Accurate predictions of outliers in ICU stays

(eg 1–2 weeks) may greatly improve inpatient clinical decisions. We

formulated LOS as a multiclass classification problem using bins of

lengths (1, 2), (3, 5), (5, 8), (8, 14), (14, 21), (21, 30), (30þ, ) to re-

flect the range of possible LOS values in terms of days. As shown in

Figure 1, this binning scheme smoothly captured the exponential de-

cay of LOS with increasing number of days.

To evaluate the performance on LOS task, AUC, f1-score, sensitiv-

ity, and specificity were calculated for each bin, and a microaveraged

AUC and f1 scores were calculated for the overall performance of the

model across all bins. AUC and f1-scores were chosen to facilitate the

interpretation of LOS performance in comparison with other tasks.

Differential diagnoses

We examined the top 25 most commonly appearing conditions

(ICD-9 codes) in MIMC-III using a multilabel classification frame-

work (see Supplementary Material Section S8.3). Supplementary

Table S2 shows these diagnoses with their associated absolute and

relative prevalence (%) among the MIMIC-III population. To evalu-

ate the performance of predictions, AUC, f1-score, sensitivity, and

specificity scores were calculated for each disease label, and a micro-

averaged AUROC and f1-score were calculated for each admission.

Readmission prediction

We investigate 2 types of readmissions: all-cause 30-day readmis-

sion, where number of positive cases amount to 1884 (5.1%) of to-

tal admissions; and variable length readmissions. For the latter, we

use bins to generate 6 classes (bins) associated with each admission

that correspond to observed time-to-readmission: (1, 30), (30, 90),

(90, 180), (180, 360), (360, 720), (720þ, ), measured in days, and

the prediction problem is formulated as a multiclass prediction

problem. Both approaches are evaluated with AUC, F1, sensitivity,

and specificity scores.

Patient features
Diagnosis codes

There are 14 567 unique ICD-9 diagnostic codes in MIMIC-III data,

which would lead to high-dimensional very sparse representations

for patients if we treat each distinct code as 1D.27 Therefore, we use

the ICD-9-CM instead. The ICD-9-CM codes are designed to

capture the group-level disease specificity by only using the first 3

letters of their full length codes. In this way, we reduce the feature

dimension to 942 ICD-9 group codes. Supplementary Figure S1

shows distribution of diagnostic codes and diagnostic categories in

MIMIC-III.
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Temporal variables

To capture the temporal patterns of complex diseases, we also con-

sider temporal variables of the 6 most frequently sampled vital signs

and top 13 most frequently sampled laboratory values for downstream

prediction tasks. Since sampling frequency differs greatly per inpatient

admission, we took hourly averages of time-series variables up to the

first 48 hours of each admission across all prediction tasks. This ap-

proach resembles hourly sampling methods from previous studies.21,23

Each temporal variable was standardized by taking the difference with

its mean and dividing by its standard deviation. Figure 2 further sum-

marizes the distributions of these variables. Missing data were imputed

with the carry-forward strategy at each time-stamp.

Demographics

In addition, we also consider patients’ demographic variables such

as age, marital status, ethnicity and insurance information for each

patient. Age was quantized into 5 bins (18, 25), (25, 45), (45, 65),

(65, 89), (89þ, ).

Feature representations

Based on the aforementioned types of features, performances were

compared across 4 types of feature representation strategies: (i) Physi-

ologic features only which is denoted x19 (19 physiologic time-series

variables) for sequential and x48 (48 h average) for classic models.

(ii) Diagnostic histories only, denoted as w2v for word2vec embed-

dings28 and onehot29 for one-hot vector representations. (iii) Com-

bined visit-level and demographic information-level representation as

denoted by w48 for classic models and x19_h2v or x19_demo for se-

quential models. (iv) Embedded sentence-level representation,15

denoted as sentences for all kinds of models. Specifics of these repre-

sentations can be found in the Supplementary Material of this article.

Visit-level representation (physiologic features only)

For collapse models [Support Vector Machines (SVM), Logistic Re-

gression (LR), Ensemble Classifiers, and Feed-Forward MLPs), raw

hourly averages for each time-series variable was converted into 5

summary features per variable: minimum value, maximum value,

mean, standard deviation, and number of observations for the

duration of the admission. We denote this representation as X48.

For sequential models, we simply use the standardized hourly aver-

age data per admission to establish this baseline, denoted as X19.

History-level representation (diagnostic history only)

In more recent papers, it has been proposed that sequential data

may be more effectively represented in embedded representations,

where each event is mapped onto a vector space of related

events.22,28 Embedding techniques such as word2vec allow for

sparse representations of medical history to be transformed into

dense word vectors whose mappings also capture contextual infor-

mation based on co-occurrence.

As shown in Figure 3, each admission was treated like a sen-

tence, with medical events occurring as neighboring words. In a slid-

ing window fashion, word2vec takes the middle word of each

sliding window and learns the most likely neighboring words. This

representation strategy was denoted as w2v. As an additional base-

line, sum of one-hot vectors was also used to represent diagnostic

history for collapse models, denoted as onehot.

Combined representation

Mixed time-series and static representations were used for both se-

quential and collapse models. For collapse models, Word2Vec

embeddings of diagnostic history was concatenated with summary

features from time-series data as features for prediction. This was

denoted as W48 (w2vþx48). For sequential models, we utilized 2

separate layers of input: the x19 input was fed into recurrent layer,

and its output was merged with the w2v input layer. The hierarchi-

cal sequential models were labeled as x19_h2v when both diagnostic

and demographic histories were used for the w2v input, and

x19_demo when only demographic word2vec inputs were used. The

latter case applied only to the prediction of differential diagnoses,

where diagnostic history of admissions were used as labels rather

than as features.

Embedded representation

In this representation scheme, both diagnostic history and time-

series variables were treated as word vectors for representation. For

each admission, time-series data (l_) and diagnostic history (d_) in

the sequence they were encountered during the admission.

Figure 1. Distribution of length of stays (LOS) and readmission in MIMIC-III. A, The Distribution of patient volume for each ICU length of stay range. This binning

scheme allowed for patient volumes to follow smooth exponential decay with increasing LOS time. Bins 5–8 and 8–14 are of particular interest, as these are fre-

quently used as lower thresholds for defining “LOS outliers” for identifying high-cost admissions. B, The distribution of patient volume for each time-to-readmis-

sion range, measured in days. Due to the fact that few patients in MIMIC-III had multiple admissions, the amount of patients that fall under the 720þ days

category greatly outnumbers the rest. MIMIC-III, Medical Information Mart for Intensive Care.
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To differentiate the type of event, each feature is labeled with prefix

“l_” for labs or vital signs and “d_” for diagnosis. Time-series varia-

bles were discretized and included in the feature vector depending

on whether or not the observed event was within 1 standard

deviation of its mean value. For example, if an observed lab value

(eg l_51265, sodium) was 2 standard deviations above its normal

value, the sentence vector for the admission would include the

ITEMID of the lab (eg [ .., l_52165, d_341, . . . ]). In this setting, we

were able to map abnormal time-series values with frequently co-

occurring diagnostic codes in the same word-vector space.

Figure 2. Distribution of physiologic time-series variables in MIMC-III. A, The kernel density distribution of lab values used in the comparative study. Each variable

follows a Gaussian distribution with magnesium and PH having the lowest variance. B, The histogram view of laboratory variable distributions. BUN, creatinine,

platelets, and serum lactate measurements demonstrate right-skew behavior while PH is left-skewed.
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Figure 2. Continued
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Types of predictive models
Collapse models

Collapse models are standard ML models which do not consider

temporal information. In this study, we examined SVM, Random

Forest (RF), Gradient Boost Classifier (GBC), LR, and Feed-forward

Multi-Layer Perceptron (MLP).

Sequential models

Two RNN models were examined in this study: the bidirectional

Long Short-term Memory (LSTM) model30,31 and the Convolu-

tional Neural Network w/ LSTM model (CNN-LSTM).32 Regulari-

zation was implemented with Dropout and L2 regularization at

each LSTM layer. For binary and multilabel classification tasks, sig-

moid activation function was used at the fully connected output

layer, and binary cross-entropy was used as loss function. For the

multiclass case (eg LOS and readmission bins), softmax activation

was used at the output layer with categorical cross-entropy as loss

function. Adam optimizer with initial learning rate of 0.005 was

used in both cases.

Refer to Supplementary Material Section S8.2 for details about

the mechanics of these models as well as the hyperparameter tuning

procedures. Our code is available at https://github.com/illidanlab/ur-

gent-care-comparative for the features and models presented in this

article. Figure 4 provides an overview of the workflow of our experi-

ment from preprocessing to prediction.

RESULTS

In-hospital mortality prediction
Table 1 summarizes the top performances of models on the mortal-

ity prediction task. Sequential models significantly out-performed

the collapse models in AUC (P-value <.05 for all sequential vs col-

lapse comparisons, see Supplementary Table S6.) and achieved the

highest AUC score of 0.949 (0.003 std). In general, diagnostic codes

alone yielded the poor performance for both classic and sequential

models. Time-series data alone achieved the closest performance to

combined visit- and history-level representations for both sequential

and classical models. In fact, the highest sensitivity score (0.911)

was achieved by vanilla LR with only physiologic data (x48).

Sentence-level representation yielded consistent scores in the 0.70–

0.76 range across most models, but it did not capture the same level

of sensitivity and specificity as did exclusively time-series and mixed

feature representations.

When comparing mortality prediction performance between var-

ious embedding techniques, the most notable performance boost oc-

curred when RNN models achieved significantly greater AUC

(0.907 for LSTM and 0.933 for CNN) and f1-scores (0.526 for

LSTM and 0.587 for CNN) while using visit-level features when

compared to the next best model (feed-forward MLP architecture w/

0.816 AUC, 0.519 f1-score). Similarly, when using mixed visit- and

history-level features, LSTM and CNN preserved around 10% AUC

increase and 15% f1-score increase in comparison to MLP and en-

semble models. The key advantage of sequential models over MLP is

that they capture temporal relationships between time-steps with se-

quentially presented data. While previous studies have cited ability

of inflammatory markers and vital signs for in-hospital mortality

prediction,13,33 notable performance difference between our col-

lapse and sequential models suggests that 48 h temporal trends may

greatly augment the predictive ability of physiologic markers.

LOS prediction
Table 2 summarizes performance for various models across 8 LOS

ranges. In admissions resulting in 1–5 ICU days, MLP w/ x48

achieved the highest AUC and f1-scores. LR w/ w48 achieved the

highest AUC and f1-scores for durations greater than 5 days. In fact,

the highest performance achieved by LR w/48 was in predicting out-

lier cases >30 days with AUC of 0.934 and f1-score of 0.173. In pre-

dicting LOS outliers between 8 and 14 days, LR w/48 achieved AUC

of 0.840 and f1-score of 0.372. Performance patterns were similar

between sequential and LR, where the lowest performance occurred

for predictions between 2 and 5 days (AUC ranging from 0.62 to

0.74) and highest performance occurred for predictions between

8 and 30þ outlier days (AUC ranging from 0.83 to 0.89).

One notable trend was that while the AUC scores consistently in-

creased as the outlier days increased, the f1-scores decreased, as did

the sample size of the bins. For example, LR with mixed physiologic

and diagnostic features produced average AUC scores of 0.748,

0.579, 0.705, 0.84, 0.887, and 0.917 for LOS ranges (1, 2), (2, 3),

(3, 5), (5, 8), (8, 14), (14, 21), and (21, 30). The progression of f1-

scores were: 0.704, 0.372, 0.34, 0.298, 0.372, 0.264, and 0.173. In-

terestingly, the sensitivity values also progressively increased for in-

Figure 3. word2vec embedding of medical events. A, The general architecture of skip-gram embedding used to map sparse one-hot representation of medical

codes into dense word vector embeddings. Given a series of discrete medical events, center, and neighboring events are generated in a sliding window fashion,

where the neural network learns the relationships nearby words for contextual representation. The weights which map input events onto the hidden layers are

used as a filtering layer for future inputs for prediction tasks. B, An overview of the word2vec pipeline for transforming input features from the EHR into word vec-

tor representations. Sentence-level representation is being shown here, but word2vec can be used exclusively for diagnostic codes in visit-level representations

as well.
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creasing LOS bins: 0.804, 0.695, 0.659, 0.748, 0.878, 0.916, 0.953,

and 0.955. Such pattern suggests that the trade-off occurred for pos-

itive predictive values (PPV), which dramatically decreased for lon-

ger LOS days. This can be attributed to the fact that the absolute

number of outlier patients decreased dramatically with increasing

LOS days. Since PPV is sensitive to the proportion of positive sam-

ples while sensitivity is not, the change in f1-score can be explained

by the distribution of labels rather than a decrease in true-positive

prediction by the models. In fact, the AUC, sensitivity, and specific-

ity increased with LOS bins for most models, suggesting that our

binning technique was especially helpful in discriminating LOS out-

liers with increasing duration of stay.

Differential diagnoses prediction
Table 3 summarizes the performances of models across various key

differential diagnoses in MIMIC-III. Overall, sequential models did

not significantly improve performance when compared to MLP (see

Supplementary Table S7). CNN-LSTM using hierarchal inputs from

visit- and history-level information performed best among sequential

models, but differences were not significant (P-value>.05).

Our models were able to predict renal diseases with the highest

performance (0.887–0.895 AUC between MLP and CNN-LSTM

models) presumably due to the inclusion of blood urea nitrogen lev-

els (BUN) and creatinine as features. BUN-to-creatinine ratio is

commonly used as a clinical metric for evaluating glomerular

Figure 4. Overview of workflow. A, The overview of our experimental pipeline from preprocessing to prediction. Raw EHR data is first processed into Uniform

Feature Matrix (UFM), where key features such as hourly averaged vital signs, ICD-9 group codes and lab values are extracted per patient and aligned. Labels for

each task is then extracted for each relevant patient. Additional preprocessing is performed for different features (eg embedding, described below). Once features

are normalized and aligned, prediction is performed for each task. B Uniform Feature Matrix (UFM) used for prediction. The “prediction window” refers to the

elapsed time between data used for feature construction and the event of prediction (eg 30 days postdischarge in readmission).

Table 1. Summary of top performing mortality models w/ representation schemes

Rank Model AUC F1 Sn Sp P-value

Classic models

1 MLP w/ W48 0.855 (0.0058) 0.546 (0.011) 0.877 (0.0071) 0.834 (0.007) .0019

2 RF w/ W48 0.843 (0.0073) 0.523 (0.005) 0.864 (0.019) 0.821 (0.0052) .0018

3 GBC w/ W48 0.773 (0.0098) 0.437 (0.013) 0.759 (0.024) 0.786 (0.017) .014

Sequential models

1 LSTM w/ x19 1 h2v 0.949 (0.003) 0.623 (0.012) 0.883 (0.016) 0.887 (0.0073) .0001

2 CNN-LSTM w/ x19þh2v 0.940 (0.0071) 0.633 (0.031) 0.852 (0.04) 0.895 (0.023) .0022

3 CNN-LSTM w/ x19 0.933 (0.006) 0.587 (0.025) 0.854 (0.016) 0.868 (0.018) .0025

Note: Each performance metric is evaluated across 5 stratified shuffle splits. The mean performance is reported with the standard deviation in parenthesis. The

P-value is calculated by comparing the AUC of a given model with the baseline performance with LR and physiologic markers. More extensive pairwise statistical

t-tests are shown in Supplementary Table S6.

Abbreviations: AUC: area under receiver operating characteristic curve; F1: f1-score; Sn: sensitivity; Sp: specificity; MLP: Multi-Layer Perceptron; RF: Random

Forest; LSTM: Long Short-term Memory; CNN: Convolutional Neural Network; GBC: Gradient Boost Classifier.

Bold values indicate best performance.
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performance and intactness of renal nephrons. Similarly, essential

hypertension yielded high AUC scores across most models due to

our inclusion of systolic bood pressure and diastolic blood pressure

data across time. However, interesting patterns emerge when we

were able to identify disease phenotypes without using the gold stan-

dard clinical markers typically associated with those conditions.

Table 2. Summary of top performing LOS predictors w/ representation schemes

Bins Model AUC F1 P-value

Classic models

1–3 d MLP w/ x48 0.791 (0.0043) 0.746 (0.0072) .0034

3–5 d MLP w/ w48 0.653 (0.018) 0.444 (0.029) .081

5–8 d LR w/ w48 0.705 (0.006) 0.298 (0.007) .121

8–14 d LR w/ w48 0.840 (0.0079) 0.372 (0.014) .029

14–21 d LR w/ x48 0.887 (0.019) 0.264 (0.015) .033

21–30 d LR w/ x48 0.917 (0.011) 0.182 (0.01) .0016

30þ LR w/ w48 0.934 (0.011) 0.173 (0.0041) .0028

Micro LR w/ w48 0.747 (0.0025) 0.419 (0.0018) .051

Sequential models

1–3 d CNN-LSTM w/ x19 0.758 (0.0055) 0.615 (0.015) .013

3–5 d CNN-LSTM w/ x19 0.645 (0.0047) 0.139 (0.031) .092

5–8 d CNN-LSTM w/ x19 0.736 (0.0029) 0.103 (0.012) .088

8–14 d CNN-LSTM w/ x19 0.838 (0.0055) 0.181 (0.037) .055

14–21 d CNN-LSTM w/ x19 0.877 (0.009) 0.112 (0.025) .0046

21–30 d LSTM w/ x19þh2v 0.879 (0.025) 0.135 (0.032) .011

30þ LSTM w/ x19þh2v 0.889 (0.027) 0.165 (0.07) .005

Micro CNN-LSTM w/ x19 0.846 (0.001) 0.368 (0.010) .00014

Note: Each performance metric is evaluated across 5 stratified shuffle splits. The mean performance is reported with the standard deviation in parenthesis. The

P-value is calculated by comparing the AUC of a given model with the baseline performance with random forest classifier and diagnostic histories. More extensive

pairwise statistical t-tests are shown in Supplementary Table S8.

Abbreviations: LOS: length of stay; AUC: area under receiver operating characteristic curve; F1: f1-score; CNN: Convolutional Neural Network; MLP: Multi-

Layer Perceptron; LR: Logistic Regression; LSTM: Long Short-term Memory.

Bold values indicate best performance.

Table 3. Summary of top performing DDX predictors w/ representation schemes

DDX Model AUC F1 P-value

Classic models

CHF MLP w/ x48 0.784 (0.00238) 0.488 (0.00689) .000273

CAD MLP w/ x48 0.798 (0.00612) 0.52 (0.011) .000498

Afib MLP w/ x48 0.745 (0.00218) 0.401 (0.0121) .00260

Sepsis MLP w/ x48 0.883 (0.00422) 0.312 (0.0101) 9.99E�5

AKF MLP w/ x48 0.886 (0.00387) 0.505 (0.0106) 3.82E�5

CKD MLP w/ x48 0.870 (0.00612) 0.276 (0.0173) .000121

T2DM MLP w/ x48 0.742 (0.00584) 0.199 (0.0175) .00435

Hyperlipidemia MLP w/ sentences 0.751 (0.00519) 0.17 (0.00178) .00269

Pneumonia MLP w/ x48 0.723 (0.00492) 0.001 (0.00112) .00658

Micro MLP w/ x48 0.806 (0.0021) 0.328 (0.003) .000123

Sequential models

CHF LSTM w/ x19 þ demo 0.785 (0.00346) 0.455 (0.0211) .000469

CAD CNN w/ x19 þ demo 0.793 (0.00486) 0.480 (0.0382) .000629

Afib LSTM w/ x19 þ demo 0.768 (0.00534) 0.341 (0.0494) .00161

Sepsis LSTM w/ x19 0.862 (0.00892) 0.254 (0.0268) .000332

AKF CNN w/ x19 0.863 (0.00729) 0.488 (0.0285) .000208

CKD CNN w/ x19 þ demo 0.872 (0.00611) 0.172 (0.0154) .000115

T2DM LSTM w/ x19 þ demo 0.746 (0.00881) 0.144 (0.0213) .00736

Hyperlipidemia CNN w/ x19 þ demo 0.749 (0.0122) 0.175 (0.048) .0115

Pneumonia CNN w/ x19 þ demo 0.723 (0.0115) 0.006 (0.00106) .0216

Micro CNN w/ 19 þ demo 0.803 (0.00308) 0.306 (0.0105) .000224

Note: Each performance metric is evaluated across 5 stratified shuffle splits. The mean performance is reported with the standard deviation in parenthesis. The

P-value is calculated by comparing the AUC of a given model with the baseline performance using LR using physiologic markers. More extensive pairwise statisti-

cal t-tests are shown in Supplementary Table S7.

Abbreviations: DDX: differential diagnoses; AUC: area under receiver operating characteristic curve; F1: f1-score; Sn: sensitivity; Sp: specificity; CHF: conges-

tive heart failure; CAD: coronary arteriolar disease; Afib: atrial fibrillation; AKF: acute kidney failure; CKD: chronic kidney disease; T2DM: type II diabetes

mellitus; MLP: Multi-Layer Perceptron; CNN: Convolutional Neural Network; LSTM: Long Short-term Memory.

Bold values indicate best performance.
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For example, cardiovascular conditions such as atrial fibrillation

(Afib) and congestive heart failure (CHF) are often confirmed by

ECG (usually via 24 h Holtz monitor) and echocardiography (stress-

induced or otherwise), respectively. Our study shows that RNNs,

using only vital signs, demographic information, and a subset of

metabolic panel lab values, were able to capture their prevalence

with as high as 0.785 AUC and 0.395 sensitivity scores for CHF and

0.768 AUC and 0.328 sensitivity scores for Afib. In comparison, the

gold standard measurement with 24 h Holtz monitor detects Afib

with sensitivity of 0.319 at annual screenings and tops out at 0.71 if

done monthly.34 Because Afibs occur spontaneously in many cases,

they can be easily missed during physical exams unless Holtz moni-

tors or expensive implantable devices are used for longitudinal mon-

itoring. The predictive ability of physiologic-markers alone for CHF

and arrhythmic events suggest the possibility that arrhythmic car-

diac pathologies yield temporal changes in physiologic regulation

that is screenable in the acute setting.

There were several diseases for which sensitivity and f1-scores

were very low across all model predictions. For example, all classic

models with the exception of MLP failed to predict (AUC of 0.50)

depressive disorder (psychiatric), esophageal reflux (GI), hypothy-

roidism (endocrine), tobacco use disorder (behavioral), pneumonia

and food/vomit pneumonitis (infectious), chronic air obstruction (re-

spiratory, may be seasonal or trigger-dependent), and nonspecific

anemia (hematologic). The most surprising condition of the above-

mentioned cases was hypothyroidism, which is known to cause

long-term physiologic changes in metabolism and vital signs. While

it is possible that the physiologic markers did not capture the pro-

gression of these diseases, the cause of underperformance was likely

due to the duration of our observation window (48 h), which may

have failed to capture the longitudinal or trigger-based temporal

patterns of more chronic diseases.

Prediction for all-cause readmission within a 30-day

window
Table 4A summarizes the top performing models for binary and

multiclass classification of readmission events. Ensemble classifiers

(RF and GBC) produced comparable performances to RNN models

in both tasks. In both the multiclass and the binary classification

case, the best performing sequential model was hierarchal LSTM us-

ing mixed visit- and history-level features. However, this architec-

ture was only able to achieve a mean AUC score of 0.580 (0.009

std) and f1-score of 0.112 (0.004 std) on test sets across 5-fold

cross-validation. The best performing collapsed model was RF clas-

sifier using mixed physiologic and history features (RF w/ w48),

which achieved an AUC of 0.582 (0.007 std) and f1-score of 0.122

(0.003 std).

DISCUSSION

Key features and models for each task
Our results show that sequential models are most suitable for in-

hospital mortality prediction, where temporal patterns of simple

physiologic features are adequate in capturing mortality risk. Deep

models in general significantly out-perform nondeep models for the

differential diagnostic task (Supplementary Table S5), but temporal

information from sequential models did not provide additional ben-

efit when compared to MLP. For LOS prediction, collapse models

and deep models provided similar performance across various time-

ranges. More important difference was in feature selection, where

physiologic markers significantly out-performed diagnostic histories

in predicting LOS range for both deep and nondeep models (Supple-

mentary Table S8). Our results for all-cause readmission suggests

the need for additional features for this particular task. Physiologic

and diagnostic histories alone do not capture the defining elements

of this particular clinical problem. A summary table is provided in

Supplementary Table S9 which briefly summarizes the best model

and features for each task.

Readmission as a separate problem from patient

stability
Figure 5A and B shows the differences in generalizability of RNN

models for the mortality and readmission tasks. In both cases, bidi-

rectional LSTMs were trained with 5-fold cross-validation to illus-

trate learning behavior and test-set generalization for readmission

and mortality tasks. For both cases, it was clear that the training

AUC was increasing with each training iteration (epoch), while the

loss function was decreasing consistently. However, only in the mor-

tality case did we observe an increase in testing AUC, which should

ideally follow the training AUC behavior. In the readmission case,

the training AUC approached 0.90þ over 30 epochs, but the testing

AUC increased from 0.50 toward 0.57–0.61 range and fluctuated

for the following epochs (>5). Such behavior exemplified most, if

not all, of our model training behaviors for this task. This discrepancy

points to the idea that perhaps our feature representation was inade-

quate in capturing risk factors for readmission. In particular, examin-

Table 4. Summary of top performing readmission models w/ representation schemes

Rank Model AUC F1 Sn Sp P-value

Classic models

1 RF w/ w48 0.582 (0.0067) 0.122 (0.0025) 0.601 (0.02) 0.563 (0.0086) .0387

2 LR w/ w2v 0.577 (0.0067) 0.123 (0.0023) 0.574 (0.031) 0.592 (0.0211) .0469

3 RF w/ 48h 0.577 (0.009) 0.121 (0.003) 0.571 (0.021) 0.583 (0.004) .0657

Sequential models

1 LSTM w/ x19 þ h2v 0.580 (0.00914) 0.112 (0.0043) 0.548 (0.0192) 0.565 (0.0206) .0606

2 LSTM w/ x19 0.554 (0.00648) 0.108 (0.0028) 0.538 (0.0168) 0.554 (0.0214) .107

3 LSTM w/ w2v 0.552 (0.0154) 0.107 (0.0038) 0.567 (0.0404) 0.524 (0.0272) .199

Note: Each performance metric is evaluated across 5 stratified shuffle splits. The mean performance is reported with the standard deviation in parenthesis. The

P-value is calculated by comparing the AUC of a given model with the random classifier with AUC of 0.50 and variance of 0.0015.

Abbreviations: AUC: area under receiver operating characteristic curve; F1: f1-score; Sn: sensitivity; Sp: specificity; RF: Random Forest; LR: Logistic Regres-

sion; LSTM: Long Short-term Memory.
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ing patterns in diagnostic history, health care coverage (as represented

by insurance policy, marital status, and ethnicity in our case),

and physiological markers may be insufficient in capturing the key

contributing factors of hospital readmission.

We further examined the dependence of readmission on the

“stability” of patients. The all-cause 30-day readmission has classi-

cally been formulated as a problem of accurately depicting patient

stability upon discharge from inpatient facilities. If this were the

case, then there should exist parallel patterns in postdischarge mor-

tality and readmission. Figure 5C demonstrates a supplementary ex-

periment done with multitask learning of in-hospital mortality, 30-

day readmission, 30-day and 1-year mortality. Here, vanilla bidirec-

tional LSTM was used for training across 100 epochs over 5-fold

validation, with the average values across different k-folds visualized

in the summary plot. We see that while there was knowledge trans-

fer across in-hospital mortality, 30-day mortality and 1-year mortal-

ity, the 30-day readmission task did not stand to gain any additional

performance boost from the added knowledge captured by the mor-

tality prediction tasks. In fact, testing AUC patterns of 30-day mor-

tality differed greatly from that of testing AUC for 30-day

readmission. The LSTM model, using only temporal physiologic

data, was able to capture generalizable performance across all mor-

tality tasks but not the readmission task.

CONCLUSION

In this study, we leveraged performance differences between patient

feature representations and predictive model architectures to capture

insight from clinical tasks. One notable limitation of this study is the

exclusion of procedural and medication data from our analysis of clin-

ical outcomes. The fact that inclusion of demographic features such as

insurance policy, marital status, gender and race of the patients did

not benefit our readmission prediction models points to the possibil-

ity that accurate risk models for more complex tasks such as read-

mission may require feature selection to include environmental

factors such as medication progression, procedural follow-up and

access to transportation. For example, previous studies have cited

that system-level factors such as medicine reconciliation, access to

transportation and coordination with primary providers may play

Figure 5. Comparison of training performance for readmission and mortality tasks. A comparison between the training data of readmission and mortality tasks.

A, 5-fold validation training data of vanilla bidirectional LSTM trained on physiologic time-series data only. Training AUC is demarcated tr_auc while testing AUC

is demarcated te_auc. B, 5-fold validation training data of the same model architecture and feature selection on the readmission task. In both cases, the training

AUC scores increased with decreasing loss the training set, but only in the mortality task are the train-test results generalized. This suggests a wide disparity be-

tween in the readmission task samples which the models could not capture. C, A model training data captured in multitask learning of readmission, in-hospital

mortality, 30-day, and 1-year mortality. All AUC scores shown in C are testing data only. With increasing epochs, only mortality models improved. More impor-

tantly the training patterns show that knowledge transfer from mortality tasks did not improve readmission predictions.
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pivotal roles in unplanned readmission and postdischarge mortal-

ity.35–39 Future studies may include medication administration,

drug history and adverse effect data to build a more comprehen-

sive picture of postdischarge risk factors. Lastly, we note that the

scope of this study includes identifying the optimal model and fea-

ture representation techniques for various clinical tasks; future

investigations may address the interpretability of deep models and

differences in feature importance for the various tasks.
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