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Abstract

Background

Anticipating an initial shortage of vaccines for COVID-19, the Centers for Disease

Control (CDC) in the United States developed priority vaccine allocations for specific

demographic groups in the population. This study evaluates the performance of the CDC

vaccine allocation strategy with respect to multiple potentially competing vaccination goals

(minimizing mortality, cases, infections, and years of life lost (YLL)), under the same frame-

work as the CDC allocation: four priority vaccination groups and population demographics

stratified by age, comorbidities, occupation and living condition (congested or non-

congested).

Methods and findings

We developed a compartmental disease model that incorporates key elements of the cur-

rent pandemic including age-varying susceptibility to infection, age-varying clinical fraction,

an active case-count dependent social distancing level, and time-varying infectivity

(accounting for the emergence of more infectious virus strains). The CDC allocation strategy

is compared to all other possibly optimal allocations that stagger vaccine roll-out in up to

four phases (17.5 million strategies). The CDC allocation strategy performed well in all vac-

cination goals but never optimally. Under the developed model, the CDC allocation deviated

from the optimal allocations by small amounts, with 0.19% more deaths, 4.0% more cases,

4.07% more infections, and 0.97% higher YLL, than the respective optimal strategies. The

CDC decision to not prioritize the vaccination of individuals under the age of 16 was optimal,

as was the prioritization of health-care workers and other essential workers over non-essen-

tial workers. Finally, a higher prioritization of individuals with comorbidities in all age groups

improved outcomes compared to the CDC allocation.
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Conclusion

The developed approach can be used to inform the design of future vaccine allocation strat-

egies in the United States, or adapted for use by other countries seeking to optimize the

effectiveness of their vaccine allocation strategies.

Introduction

Prior to the U.S. Food and Drug Administration’s Emergency Use Authorization of COVID-

19 vaccines, the Centers for Disease Control and Prevention (CDC), guided by the federal

Advisory Committee on Immunization Practices (ACIP), ranked population groups by prior-

ity for initial vaccination roll-out, based on available scientific evidence, the feasibility of differ-

ent implementation strategies, and ethical considerations [1, 2]. Phase 1a included health care

personnel and long-term care facility (LTCF) residents; Phase 1b included frontline essential

workers and individuals 75 years old or older; and Phase 1c included other essential workers,

16–64 year olds with high-risk conditions, and 65–74 year olds. Phase 2 included 16–64 year

olds without high-risk conditions or comorbidities [2].

COVID-19 vaccine prioritization strategies have been studied in many ways, by using

deterministic differential equation models [3–8], agent-based models [9, 10], network models

[11, 12], and various other approaches [13, 14], as well as by considering ethical factors [15,

16]. Most studies focused solely on age and age-dependent disease behavior [6–8, 14]. Some

studies included further characteristics such as occupation (e.g., distinguishing essential work-

ers) [3, 4, 13], comorbidities [5], and contact patterns [9, 10]. However, none of the model-

based studies considered together all characteristics included in the CDC recommendations

(age, occupation, comorbidity status, and living condition). More importantly, none of the

studies investigated all possible vaccine allocation strategies; rather, a small number of strate-

gies were typically selected for comparison based on expert opinion. The goal of this study was

to directly evaluate the CDC recommendation by comparing it to all potentially optimal allo-

cation strategies that stagger the vaccine roll-out in up to four phases (17.5 million strategies).

Methods overview

Model design

To achieve an accurate evaluation of the CDC vaccine allocation strategy, we developed a com-

partmental disease model that stratifies the U.S. population by all characteristics included in

the CDC recommendations. Using recent U.S. census data, we divided the population into dif-

ferent sub-populations based on age (four classes: 0 − 15, 16 − 64, 65 − 74, 75+ years old), co-

morbidity status (two classes: none or at least one known risk factor associated with more

severe COVID-19 disease other than age), job type of the working-age population (four classes:

healthcare workers, frontline essential workers, other essential workers, and all remaining peo-

ple), and living situation of individuals 65 and older (two classes: congested living or not). The

model also takes into account various important components of the COVID-19 pandemic (Fig

1): age-dependent susceptibility to infection and severity of disease [17, 18] (S1 Fig); age- and

comorbidity status-dependent case fatality rates [19]; average rates of contact that differ with

age, profession, and living conditions [20–22] (S2 Fig); population-wide social distancing lev-

els that depend on the active number of cases (S3 Fig); the exact speed of the U.S. vaccine roll-
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out and vaccine hesitancy (S4 Fig); and the emergence of more transmissible virus variants

over time [23] (S5 Fig).

We derived most model parameters from the literature (Table 1), and employed an elitist

genetic algorithm to estimate the remaining parameters by fitting the model to observed

cumulative deaths and cases between December 14, 2020 and April 29, 2021 [24] (S1 Table

and S6 Fig). The model was implemented in Python 3.8 using the open source JIT compiler

numba for improved run time.

Study design and outcomes

There are 417� 1.7 × 1010 ways to allocate 17 sub-populations into four phases, the number of

phases specified by the CDC recommendations. A large number of these allocations can be

ruled out as non-optimal, for the following reasons. First, any strategy that recommends vacci-

nation of a specific group of people (i.e., certain age, occupation and living condition) without

comorbidities before vaccination of that same group with comorbidities can be improved by

switching the two phase assignments, as this leads to a reduction of deaths while not changing

case numbers. This rule reduces the number of feasible allocations to 4 × 108. Second, individ-

uals of the same age and the same comorbidity status but with jobs with higher contact rates or

in congested living conditions should never be vaccinated later than people with a lower-con-

tact job or not in congested living conditions, as this leads to a reduction of cases and a

Fig 1. Overview of the model. Upon infection, susceptible individuals (left most column) transition through the various disease compartments (middle

columns) until reaching a final compartment (death or recovery; right most columns). All pre-clinical, clinical and asymptomatic individuals may cause

new infections (red dashed box). A detailed description of the various compartments and parameters can be found in Table 1 and the Detailed Methods

section.

https://doi.org/10.1371/journal.pone.0259700.g001
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subsequent reduction in deaths. This rule reduces the number of feasible, potentially optimal

allocations to 1.75 × 107.

In a novel global optimization approach, we compared all these 17.5 million potentially

optimal vaccine allocation strategies that stagger the vaccine roll-out in up to four phases using

four primary outcome metrics: total deaths, total cases, total infections (symptomatic and

asymptomatic), and total years of life lost (YLL) at the end of 2021, slightly more than one year

after the beginning of the public vaccine roll-out in the United States (Table 2). We computed

all strategies that are Pareto-optimal and compared with the CDC allocation strategy (Fig 2).

Pareto-optimal strategies cannot be improved in one metric without obtaining a worse out-

come in another metric. As a secondary outcome measure, we investigated how deaths were

distributed across different age groups as one element of health equity, as equitable vaccine

allocation has received attention both from government agencies and the media [36].

Results

Evaluation of vaccine allocation strategies

Overall, the CDC strategy performed well in all metrics but never optimally (Table 2). Accord-

ing to the established model, there were other allocations that resulted in 0.19% lower mortal-

ity, 0.97% lower YLL, 4.0% fewer cases and 4.09% fewer infections. Prioritizing the vaccination

of the working age population generally led to fewer cases and infections at the expense of

higher deaths and YLL, highlighting the anticipated trade-off in multi-objective decision mak-

ing. Indeed, pairwise Spearman correlations between the four metrics (Fig 2A) revealed that it

is not possible to find a single allocation strategy that is optimal under each objective.

Table 1. Model parameters, description and sources.

Parameter Description Value Source

Ni number of people in sub-population i see Table 2 [25]

Xij average daily number of contacts a person in sub-population i has with

sub-population j
see S2G Fig [21, 22]

c log10 value of active cases at which overall contacts are reduced by 50% c = 4.0346 (see S1 Table for fitted values used

in the sensitivity analysis)

fitted (see Model calibration)

k sensitivity of contact reduction to changes in active cases (shape of the

Hill function)

k = 5.0266 (see S1 Table for fitted values used

in the sensitivity analysis)

fitted (see Model calibration)

βi age-dependent susceptibility to infection see S1 Table fitted (see Model calibration)

1/μE incubation period 3.7 days [26]

qi age-dependent clinical fraction varied, see S1 Fig [27]

1/μA average time of virus spread by truly asymptomatic individuals 5 days [17]

1/μP average time of virus spread before symptom onset 2.1 days [17]

1/μC average time of virus spread after symptom onset 2.723 days estimated from CDC raw data

1/μQ + 1/

μC
average time between symptom onset and possible death 22 days estimated from U.S. deaths

and case counts [28]

CFRi sub-population-dependent case fatality ratio see Case fatality rates calculated from [29, 30]

fA relative contagiousness of truly asymptomatic individuals 75% (25% and 100% in sensitivity analysis) [27]

fV relative contagiousness of vaccinated individuals 50% (0% and 100% in sensitivity analysis) no data

none vaccine hesitancy 30% [31, 32]

ξ(t) daily number of available vaccines see S4 Fig [33]

none vaccine effectiveness: reduction of symptomatic infections among

vaccinated (compared to non-vaccinated)

90% [34]

σ and δ reduction in infections and symptomatic infections (when infected)

among vaccinated (compared to non-vaccinated) individuals

70% and 66.7% (varied such that 1 − (1 − σ)(1

− δ) = 90% in sensitivity analysis)

[35]

https://doi.org/10.1371/journal.pone.0259700.t001
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Rather, there exist several Pareto-optimal solutions to the multi-objective optimization

problem. The Pareto frontier consists of all strategies that cannot be further improved in one

objective without obtaining a worse outcome in another objective. The two-dimensional

Pareto frontier based on deaths and cases reveals that the strategy chosen by the CDC was

almost optimal (Fig 2B), and could only be outperformed by a few strategies (S2 Table). All

these Pareto-dominant strategies put more emphasis on a differential phase assignment of

individuals with and without comorbidities; that is, vaccinating individuals with COVID-19

risk factors earlier.

Equitable allocation in the vaccine roll-out has received attention both from government

agencies and the media [36]. Here, we investigated how deaths are distributed across different

age groups as one element of health equity. Interestingly, the allocation strategy that minimizes

overall mortality also leads to a more even distribution of deaths across the age groups, com-

pared to other single-objective optimal allocations or the CDC allocation (Fig 2C). Across all

17.5 million investigated allocations, the most age-equitable allocation strategy, measured

using the entropy of the mortality distribution across the four age groups, performed poorly in

all other objectives, as did an unstructured vaccine roll-out without phases (S7 Fig).

Table 2. Comparison of CDC and optimal vaccine allocation strategies. For each sub-population (characteristics and population sizes defined in the left columns) and

each objective (top row), the priority phase corresponding to the optimal allocation strategy is shown. At the bottom, absolute and relative outcomes are compared for the

CDC allocation and all optimal allocation strategies.

Age Job / living

situation

Comorbidity Number of

people [millions]

Sub-population

ID in model

CDC

allocation

fewest deaths

[thousands]

lowest YLL

[millions]

fewest cases

[millions]

fewest infections

[millions]

0-15 NA NA 64.71 1 4 4 4 4 4

16-

64

healthcare

workers

no 13.29 2 1 1 1 1 1

yes 7.71 3 1 1 1 1 1

frontline

essential

workers

no 18.98 4 2 2 2 2 2

yes 11.02 5 2 2 2 2 2

other essential

workers

no 12.66 6 3 3 3 2 2

yes 7.34 7 3 3 2 2 2

remaining

people

no 87.61 8 4 4 4 3 3

yes 50.85 9 3 3 3 3 3

65-

74

congested living no 0.28 10 1 2 3 3 3

yes 0.76 11 1 1 2 3 3

remaining

people

no 8.20 12 3 3 4 4 4

yes 22.34 13 3 3 3 4 4

75+ congested living no 0.39 14 1 3 3 3 4

yes 1.57 15 1 1 2 3 4

remaining

people

no 4.07 16 2 3 4 4 4

yes 16.47 17 2 2 3 4 4

Respective outcome of specific

allocation

CDC 652 11.6 38.1 56.4

fewest deaths 651 11.6 37.9 56.2

lowest YLL 657 11.5 37.3 55.3

fewest cases 688 11.8 36.6 54.2

fewest infections 695 11.9 36.6 54.2

% difference in outcome between

specific and respective optimal

allocation

CDC 0.19 0.97 4 4.07

fewest deaths 0 0.67 3.64 3.74

lowest YLL 0.88 0 1.9 2.08

fewest cases 5.75 2.44 0 0.01

fewest infections 6.73 2.84 0.03 0

https://doi.org/10.1371/journal.pone.0259700.t002
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Vaccinating children in any but the last phase always led to a worse outcome, irrespective

of the specific objective (Table 2 and Fig 2D). The CDC prioritization of healthcare workers is

validated by the model (Fig 2E). Similarly, the CDC assignment of the general public, 16–64

year-olds with non-essential occupations and no comorbidities, to the last phase is also vali-

dated (Fig 2F), with the following exception: If solely incidence (i.e., cases) is minimized irre-

spective of YLL and mortality, then this group (sub-population 8 in Table 2) should be

vaccinated before older individuals with comparably fewer contacts (sub-populations 12–17).

Interestingly, the CDC allocation is very similar to the allocation that minimizes mortality

except for the phase assignment of three older age groups with no comorbidities, two of which

are in congested living; these sub-population are vaccinated earlier under the optimal mortal-

ity allocation (Table 2).

Sensitivity of results to unknown parameters

Several parameters related to virus spread and vaccine function are still unknown [27]. We

therefore investigated the robustness of our findings when the relative contagiousness of

asymptomatic (compared to symptomatic or pre-symptomatic), fA, the relative contagiousness

of vaccinated (compared to non-vaccinated) individuals who are infected, fV, and the age-

dependent clinical fraction (scaled by q75+) were varied. Overall, variation of a single parameter

Fig 2. Comparison of CDC and optimal vaccine allocation strategies. (A) Spearman correlation between four measures of disease burden based on a complete

comparison of all 17.5 million meaningful four-phase vaccine allocation strategies. (B) Pareto frontier of all optimal strategies based on a global search of all 17.5

million meaningful vaccine allocation strategies. For strategies on the Pareto frontier, there exists no other strategy that performs better in one objective (minimizing

deaths or cases) while not performing worse in the other objective. The death and case count resulting from four specific allocations is highlighted. (C) For the four

strategies highlighted in (B), the distribution of all resulting deaths across the four age groups is shown as a measure of equity. (D-F) Pareto frontiers of all optimal

strategies are shown when restricting (D) children, (E) healthcare workers without comorbidities, (F) 16–64 year old without comorbidities and without an essential

occupation to a certain priority phase. S8 Fig contains Pareto frontiers for all sub-populations.

https://doi.org/10.1371/journal.pone.0259700.g002
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only led to slight changes in the optimal allocations (S3 Table). Interestingly however, if vacci-

nation does not reduce virus spread (fV = 1) other than through a reduction of infections, pri-

oritization of elderly people becomes less important as the vaccine does not act as a barrier to

infection among the elderly. This is evident from S3 Table when comparing the phase assign-

ment of individuals 65 and older in the scenarios fV = 0 and fV = 1: In the latter scenario, several

elderly sub-populations get vaccinated later when minimizing either deaths or cases.

We next investigated if variation in the population-wide level of vaccine hesitancy affects

allocation priorities. We computed the optimal vaccine allocation under four different levels of

vaccine hesitancy (30%, 20%, 10%, 0%). Despite minor variations, the optimal strategies for

each objective were mostly consistent across all levels of vaccine hesitancy (Fig 3A). Similarly,

for any level of vaccine hesitancy between 0% and 30%, the relative differences in outcomes

between the CDC and the respective optimal allocation were also comparable (Fig 3B–3D). As

expected, both the CDC and the respective optimal allocation led to a worse outcome the

higher the level of hesitancy in the population. In the absence of vaccine hesitancy, the United

States using the CDC allocation strategy would have suffered 579,804 COVID-19-related

deaths at the end of 2021, compared to 652,043 when 30% of the population refuse the vaccine.

Impact of vaccine function

While clinical trials provide a good estimate of vaccine effectiveness (around 90% for both the

Pfizer-BioNTech and Moderna vaccine, the first two vaccines used in the United States [34]),

vaccine function is less well understood. We therefore examined the dependency of our find-

ings on the way a vaccine works: through a reduction of infections (σ), and/or a reduction of

symptomatic infections and a proportional increase of truly asymptomatic infections (δ). A

longitudinal UK COVID-19 infection study indicated σ = 70% and δ = 67% for the

Fig 3. Dependency of findings on vaccine hesitancy. (A) For different levels of vaccine hesitancy (30%, 20%, 10%, 0%), the optimal vaccine

allocation strategies with respect to three objectives (top row) are shown, in addition to the CDC allocation. Sub-populations 1–17 are defined as

in Table 2. (B-D) Comparison of outcomes (total deaths (B), years of life lost (C) and total cases (D)) when using the respective optimal

allocation strategy from (A; black line) and the CDC strategy (red line), for any vaccine hesitancy between 0% and 30%. The background color

indicates which of the allocation strategies, identified in (A; bottom row), was optimal for a specific level of hesitancy.

https://doi.org/10.1371/journal.pone.0259700.g003
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AstraZeneca and Pfizer-BioNTech vaccines (the values used throughout this study) [35]. How-

ever, vaccine function can differ strongly between vaccines, as a continuum of combinations

of these two parameters can give rise to the same vaccine effectiveness (Fig 4A).

In addition, it is currently unknown how contagious vaccinated infected individuals are

compared to non-vaccinated individuals. Deaths under the CDC allocation were highest in

scenarios where vaccinated individuals were relatively more contagious and when a vaccine

was less effective at preventing infections and more effective at reducing symptoms (Fig 4B).

In scenarios with a higher relative contagiousness of vaccinated individuals, vaccine function

had a stronger influence on mortality. However, if vaccinated individuals were assumed to not

cause any new infections, mortality was similar no matter if the vaccine solely prevented infec-

tions (σ = 90%, δ = 0%) or solely prevented symptomatic infections among vaccinated infected

individuals (σ = 0%, δ = 90%).

Vaccine function did not affect the choice of optimal allocation when minimizing incidence

(Fig 4C and S4 Table). When minimizing mortality, however, vaccine function mattered. The

less effective a vaccine was at preventing infections (and correspondingly the more effective at

reducing symptoms) the more vaccination prioritizations shifted towards the elderly and

comorbid population, to the extent that e.g. healthcare workers without comorbidities were no

longer part of the first phase in the extreme case of a vaccine that only prevents symptoms (σ =

0%). The general trend towards the elderly and comorbid population was also prevalent when

minimizing YLL.

Fig 4. Dependency of findings on vaccine function. (A) A continuum of combinations of σ, the reduction of

infections among vaccinated, and δ, the reduction of symptomatic infections among vaccinated infected individuals,

can lead to a vaccine effectiveness of 50%, 75% or 90%. (B) Total deaths (y-axis) under a variety of scenarios, assuming a

vaccine effectiveness of 90% and the use of the CDC allocation strategy. Scenarios differ in the relative contribution of σ
and δ to the vaccine effectiveness (x-axis, see (A)), and the relative contagiousness of vaccinated individuals (compared

to non-vaccinated), specified by line type (dashed: 0%, solid: 50%, dotted: 100%). (C) For three different objectives, the

optimal vaccine allocation strategies are compared between two vaccines of extreme function: a vaccine that solely

prevents infections (σ = 90%, δ = 0%) and a vaccine that solely prevents symptoms among infected individuals ((σ =

0%, δ = 90%). Sub-populations (defined as in Table 2) that are allocated to a later (earlier) priority phase in the latter

vaccine are indicated by " (#). S4 Table contains the specific phase assignments for each sub-population.

https://doi.org/10.1371/journal.pone.0259700.g004
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Discussion

Any vaccine allocation strategy must balance several competing goals, including minimizing

mortality and infections, ensuring equity across demographic groups, and maintaining health

care capacity. Overall, the CDC allocation performed well in all metrics utilized in this study

(fewest deaths, lowest YLL, fewest infections, fewest cases); for each metric, the CDC allocation

was within 5% of the respective single-objective optimal allocation. Single-objective optimal

allocations tended to do poorly in other objectives, with the optimal YLL strategy best balanc-

ing trade-offs associated with minimizing mortality versus incidence (Table 2).

The most equitable allocation across age groups in terms of mortality performed poorly in

all other objectives (S7 Fig). The allocation that minimized overall mortality led to a more even

distribution of deaths across age groups than any other single-objective optimal allocation,

and led to almost identical equitability as the CDC allocation (e.g., 53.05% vs. 53.13% of deaths

occurred within the 75+ age group; Fig 2C). Our model also validates the CDC allocation with

respect to maintaining health care capacity [36]. All optimal strategies agree with the CDC

allocation in ranking healthcare workers as a higher priority than frontline essential workers,

who are a higher priority than other essential workers. In general, the optimal allocation strat-

egy depends strongly on the goal of the vaccination campaign: for example, sub-population 15

(age 75+ in congested living with comorbidities) should be vaccinated in the first phase to

minimize mortality, in the second phase to minimize YLL, in the third phase to minimize

cases, and in the last phase to minimize infections (Table 2).

The CDC allocation did not include children under 16 as part of its phased allocation

scheme, as clinical trials leading to the first Emergency Use Authorization authority (EUAs) did

not involve children [2], and most children seem at low risk for complications from COVID-19

[37]. However, this demographic comprises approximately 20% of the U.S. population and

through social contact with adults can act as disease vectors. Our model therefore investigated

the potential for possible indirect and/or cascade effects across the entire population if children

under 16 were not targeted for priority vaccination. Our model validated the CDC’s decision—

vaccinating children in any but the last phase always led to a worse outcome (Fig 2D).

Our model included several dynamic elements of the COVID-19 pandemic that were

important for a good fit to the data. First, the overall social distancing level at a particular time

depended on the number of current active cases. We modeled this response through a Hill

function, which allows for an initially slow response to changing case numbers reported by the

media, followed by a strong response that eventually tapers off (S3 Fig). This approach does

not account for changes in social distancing behavior over time, as, for example, people

experiencing quarantine fatigue may increase their social interactions later in the pandemic

even when case counts are high.

The model included two age-dependent biological parameters: the susceptibility to infec-

tion and the fraction of cases that develop symptoms (clinical fraction; S1 Fig). We modeled

both parameters as linearly increasing with age, and fitted the former parameter to observed

cumulative cases and deaths, using a weighted least squares approach that places larger weights

on more recent data. This choice of weights ensures that the fit is good toward the end of the

time series in order to obtain more realistic model predictions. Note that fitting both parame-

ters at the same time is not possible given only death and case counts (over-fitting), which is

why we conducted uncertainty analyses to examine the effect of variation of the age-dependent

clinical fraction on the choice of optimal allocation strategies 1.

Finally, a time-dependent transmission rate accounted for the emergence of more transmis-

sible variants of SARS-COV-2. The relative transmission rate was calculated based on biweekly

estimates of the prevalence of variants in the population and the estimated relative
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transmission rate of the circulating variants (S5 Fig). These four dynamic model elements—

case-dependent social distancing level, age-dependent susceptibility to infection, age-depen-

dent clinical fraction, and time-dependent transmission rate—were essential to capturing real-

istic dynamics in our model (S6 Fig). By identifying these elements as essential to the

modeling process, we have also identified important aspects of COVID-19 epidemic dynamics

that warrant further study, and should be included in realistic models of COVID-19

epidemiology.

Our model suggests one improvement that could be made to future vaccination allocations

should they become necessary. The allocations identified as optimal for minimizing deaths

and YLL distinguished between people with and without comorbidities in all age groups, and

assigned priority to those with comorbidities. The CDC allocation only prioritizes people with

comorbidities among the general working age population, and while accounting for comor-

bidity status in older populations leads to better model outcomes, segregating these popula-

tions may be impractical, especially in congested living conditions.

The level of vaccine hesitancy affected optimal vaccine allocation strategies only slightly

(Fig 3). The CDC allocation was most similar to the allocation that minimized mortality irre-

spective of the level of hesitancy, and generally as hesitancy decreased the difference in out-

comes between the CDC allocation and the respective optimal allocation increased. That is,

the CDC allocation performs closest to optimality at the high U.S. estimate of 30% vaccine hes-

itancy [32].

One limitation of this study is the simplifying assumption that all sub-populations exhibit

the same level of vaccine hesitancy, and that hesitancy does not change over time. Incorporat-

ing these additional dynamic elements into the model would improve the accuracy of the

results, but would significantly increase model complexity.

Further limitations stem from uncertainties regarding key model parameters. Rates of con-

tact between individuals of different age groups were based on extensive pre-pandemic survey

work in eight European countries and inferred for the United States [20, 21]. In the absence of

data, we assumed that contacts within a group in a congested living situation occur at double

the rate of the same age group not living in congested conditions, and the additional contacts

are with other individuals in the same congested living situation. Model results depend

strongly on the contact matrix, and better information about contact rates, especially during

the pandemic, could improve the accuracy of model predictions. The contagiousness of

asymptomatic as well as vaccinated individuals is still not well understood. The model results

were however robust to uncertainty in these parameters (S3 Table): variation in both phase

assignments and the overall shape of the Pareto frontier were small.

We did not consider reinfections in our model. Repeated infections have been reported in

the literature [38], but they seem rare and a recent study suggests prolonged immunity in most

successfully vaccinated or previously infected individuals [39]. We further assumed that indi-

viduals were immediately fully protected once they received their first vaccine dose. While this

model simplification overestimates the immediate effect of the vaccine, it does so uniformly

and should thus not affect relative comparisons between allocation strategies.

In conclusion, the CDC allocation strategy performed well in all considered vaccination

goals but never optimally, and the CDC allocation was most similar to the optimal allocation

strategy that minimizes mortality. Our model validates the CDC allocation strategy with

respect to equity across age groups, maintaining health care capacity, and assigning children

under the age of 16 to the lowest-priority vaccination phase. Vaccine strategies that prioritize

individuals with comorbidities led to slightly better outcomes than the CDC allocation strat-

egy. The developed global optimization approach can be used to inform the design of future

vaccine allocation strategies in the United States and elsewhere.
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Detailed methods

Compartmental disease model

We used a compartmental disease model comprised of a system of deterministic ordinary dif-

ferential equations to depict the dynamics of the COVID-19 epidemic in the United States.

Every individual is either susceptible to the virus (S), recently infected but not yet spreading

the virus (E: exposed), not yet showing symptoms but spreading the virus (P: pre-clinical),

showing symptoms and spreading the virus (C: clinical), showing symptoms but not spreading

the virus due to isolation or hospitalization (Q: quarantine), infected but asymptomatic (i.e.,

never showing symptoms) and spreading the virus (A), recovered (i.e., no longer spreading

virus) after having had symptoms (RC), recovered after an asymptomatic course of infection

(RA) or dead (D). In addition, every individual is either vaccinated (V), willing to be vaccinated

(W) or not willing to be vaccinated (N). Combined, this leads to 20 different compartments:

SN ; SW; SV ;EN ;EW; EV ;AN ;AW ;AV ;RAN ;RAW;RAV ; PN ; PW; PV ;C;CV ;Q;RC;D:

We assume that individuals who exhibit COVID-19 symptoms are not being vaccinated, there-

fore we only distinguish between vaccinated and non-vaccinated individuals in the clinical

compartment. Due to the initial shortage of vaccines we also assume that people who have

recovered from a symptomatic COVID-19 infection do not get vaccinated, since recovered

individuals have some immunity against the disease. People currently in quarantine and people

who have died from the disease also do not get vaccinated, therefore we only used one com-

partment for each of these three groups (Q, RC, D).

The model parameters governing transitions between compartments depend on an individ-

ual’s characteristics (Fig 1). We therefore divided the population into different classes based on

age (four classes: 0–15, 16–64, 65–74, 75+ years old), co-morbidity status (two classes: none or

at least one known risk factor associated with more severe COVID-19 disease other than age),

job type of the working-age population (four classes: healthcare workers, frontline essential

workers, other essential workers, and all remaining people), and living situation for the elderly

population of ages 65 and older (two classes: congested living or not). As of May 10, 2021, chil-

dren under the age of 16 were not eligible for vaccination, and are not stratified by co-morbid-

ity status. This leads to a total of 17 sub-populations (see Table 2) and 17 × 20 = 340 different

compartments, each governed by a differential equation (see Model equations).

Based on 2019 data from the U.S. Census Bureau, we used a total population size of

N = 328, 239, 523 [25]. 64.47 million are children under the age of 16, 209.46 million are 16–64

years old (an estimated 21 million health care personnel, 30 million frontline essential workers,

20 million other essential workers [2]), 31.58 million are 65–74 years old and 22.5 million are

75 and older. Around 1.35 million people live in nursing homes and 65.3% of them are 75 and

older [40]. Due to unavailability of data, we assumed the same age distribution for individuals

living in congested long-term care facilities, yielding an estimated 1.04 million 65–74 year old

and 1.96 million 75+ year old in congested living conditions. Using published population-level

estimates and U.S. census data, we inferred the proportion of individuals with co-morbidities

to be 36.72%, 73.15%, and 80.18% for the age groups 16–64, 65–74, and 75+, respectively [19,

25]. Altogether, this yields the number of people in each of the 17 sub-populations, denoted Ni

and shown in Table 2.

Infection

The force of infection depends on the number of contagious individuals, their contagiousness,

the age-dependent susceptibility to infection and the contact rates between the various sub-
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populations. The relative contagiousness of asymptomatically infected individuals, denoted fA,

is a heavily debated element in the spread of COVID-19 [27, 41]. Following the best estimate

of the CDC and the Office of the Assistant Secretary for Preparedness and Response (ASPR)

we assumed that asymptomatically infected individuals are 25% less contagious than pre-

symptomatic and symptomatic individuals [27]. In sensitivity analyses, we varied this number

from 25% to 100%, the CDC’s lower and upper bound for that reduction. Similarly, we

assumed that vaccinated infected individuals may have lower contagiousness, denoted by fV
where fV = 1 implies equal contagiousness as non-vaccinated infected individuals (see Vaccine

function for details).

Previous work indicates that the rate of susceptibility to infection may vary with age [17].

Here, we assumed that this rate depends linearly on age, while it does not depend on job type,

living situation or comorbidity status (these latter three characteristics are incorporated into

the model via the interaction matrix, see Contact rates). That is,

bi ¼ b0 þ b1 �mean age of sub-population i; ð1Þ

for i = 1, . . ., 17, where b0 and b1 are parameters, which we fitted using the observed cumula-

tive cases and deaths between December 14, 2020 and April 29, 2021 (see Model calibration

for details).

To account for the emergence of variants with up to 50% increased infectivity, we included

in the model a time-dependent relative infectivity ϕ(t) 2 [100%, 150%], which we calculated

from CDC genomic surveillance data as follows [42]. For each available time point, we com-

puted the average infectivity based on the prevalence of variants B.1.1.7 and B.1.351 with an

estimated 50% increased transmissibility [23, 43], variants B.1.427 and B.1.429 with an esti-

mated 20% increased transmissibility [44], and the rest with standard transmissibility (S5 Fig).

The force of infection for sub-population i, i = 1, . . ., 17 at time t, is then given by

Li ¼ �ðtÞð1 � rðactive casesÞÞbi�

�
X17

j¼1

XijððfAðA
N
j þ AW

j þfVAV
i Þ þ PN

j þ PW
j þ fVPV

j þ Cj þ fVCV
j ÞÞ=Nj;

where r(active cases) represents the overall social-distancing level based on the current number

of active cases (see Population-wide social distancing level), and Xij denotes the average daily

number of contacts an individual in sub-population i has with individuals from sub-population j.

Contact rates

Rates of contact between individuals of different ages have been identified through extensive

survey work in eight European countries and subsequently inferred for a total of 152 countries

including the United States [20, 21]. The age-to-age interactions in these sources are provided

for 5-year age groups (e.g., 0 − 4, 5 − 9, 10 − 14, . . . years of age). Using 2019 U.S. census data

[25], we transformed the original contact matrix into a 4 × 4-contact matrix with age groups

corresponding to those used in this study (0 − 15, 16 − 64, 65 − 74, 75+ years of age; S2A and

S2B Fig). As they are based on empirical survey data, the original contact matrices are typically

not symmetric. We therefore symmetrized the 4 × 4-contact matrix using an established proce-

dure [45] (S2C Fig). Finally, we expanded the 4 × 4-contact matrix into a 17 × 17-contact

matrix, which describes the rates of contact among the 17 sub-populations (S2D and S2E Fig),

and adjusted this matrix for differences in contact rates due to the types of jobs and living con-

ditions as follows (S2F and S2G Fig).

A recent multivariate statistical analysis found that healthcare workers have a 3.4-fold

increase in their risk of infection compared to the general population [22]. Assuming this
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increased risk is due to increased contacts, we calculated the relative differences in overall con-

tacts for healthcare workers (sub-populations 2&3) compared to the general 16–64 year-old

population (sub-populations 8&9). In the absence of data, we assumed that frontline essential

workers (sub-populations 4&5) and other essential workers (sub-populations 6&7) have fewer

contacts than healthcare workers but more than the general public, and we assumed a linear

trend. The relative number of overall contacts for the different job types (healthcare workers,

frontline essential workers, other essential workers, and the remainder) is therefore [3.4, 2.6,

1.8, 1], respectively. Using the sub-population sizes as weights [46], we then calculated the

absolute daily contact numbers for the different job groups so that the overall total contact rate

is not changed (S2F Fig).

In the absence of data, we assumed that people in congested living conditions (sub-popula-

tions 10&11 and 14&15) have double the number of contacts than peers of the same age group

(sub-populations 12&13 and 16&17). We assumed that all increased contacts happen within

the congested living environment and increased the respective entries proportional to their rel-

ative values. In the end this procedure yielded a 17 × 17 contact matrix that describes the rates

of contact between the different sub-populations (S2G Fig).

Population-wide social distancing level

To adjust for various levels and intensities of lockdowns and other non-pharmaceutical inter-

ventions aimed at reducing virus spread, we included a variable social distancing level that

depends on the current number of active cases,
P17

i¼1
ðCi þ CV

i Þ. In particular, we used a Hill

function to model the contact reduction,

rðactive casesÞ ¼ 1 �
1

1þ
c

log
10
ðactive casesÞ

� �k ;
ð2Þ

where c and k, the two parameters governing the shape of this function, were fitted to the

observed cumulative cases and deaths between December 14, 2020 and April 29, 2021 (see

Model calibration and S3 Fig).

Model dynamics and disease parameters

Non-vaccinated susceptible individuals (SNi and SWi ) become infected at a rate of Λi. This rate is

reduced by a factor of σ for vaccinated individuals. Upon infection, susceptible individuals

move into the respective exposed compartment (EN
i , EW

i and EV
i ). Individuals remain in the

exposed compartment for an average of 1/μE = 3.7 days [26]. After this incubation period, indi-

viduals start to spread the virus. A fraction qi of exposed individuals (called the clinical frac-

tion) becomes pre-clinical (PN
i , PW

i and PV
i ), while the others will never develop symptoms and

remain asymptomatic (AN
i , AW

i and AV
i ). The rate of truly asymptomatic infections is still not

well known [41]. We assumed that the clinical fraction changes linearly with age:

qi ¼ q75þ � g �mean difference in age between age group 75þ and sub-population i; ð3Þ

for i = 1, . . ., 17, where q75+ is the probability of symptomatic infection for age group 75+ and

γ is chosen such that the overall (expected) clinical fraction across all ages is 70%, the CDC’s

most likely estimate [27]. In the model, we used q75+ = 85% as the base value and considered

q75+ = 70% and q75+ = 100% in uncertainty analyses (S1 Fig).

Pre-clinical individuals start exhibiting symptoms after an average of 1/μP = 2.1 days and

move into the clinical compartments, Ci and CV
i [17]. Symptomatic individuals continue to

spread the virus for an average of 1/μC = 2.72 days—the average time between the reported
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onset of symptoms and a positive test in individual case data released by the CDC [47]. We

assume that the clinical cases stop spreading the disease due to either isolation (moving into

compartment Qi). After an average of 1/μQ = 19.28 days, individuals either recover or die. A

sub-population-dependent case fatality rate CFRi describes the fraction of individuals who die

(move into compartment Di; see Case fatality rates for details). We used 1/μC + 1/μQ = 22 days

for the average time from symptom onset to death as the best fit for the delay between the

curves of reported U.S. cases and deaths [28].

Asymptomatic individuals (in AN
i , AW

i and AV
i ) spread the virus at a lower rate than symp-

tomatically infected. The parameter fA describes the relative contagiousness of asymptomatic

individuals, compared to individuals in the pre-clinical and clinical compartments. We used fA
= 75% and varied this important parameter from 25% to 100% in sensitivity analyses [27] (S3

Table). Asymptomatic individuals spread the virus for an average of 1/μA = 5 days [17], after

which they move into their corresponding recovered compartment, RAN
i , RAW

i or RAV
i . We

distinguish between recovered individuals who were symptomatically and asymptomatically

infected because the latter may receive a vaccine since we did not consider seropositivity tests

prior to vaccination. All individuals willing to receive the vaccine and without a history of

symptomatic COVID-19 infection (i.e., those in SWi ; E
W
i ; P

W
i ;A

W
i and RAW

i ) get vaccinated at a

rate νi(t), which depends on the vaccine allocation strategy and the number of daily available

vaccines (see Vaccine function), and transition into the corresponding compartment upon

vaccination (i.e, SVi ;E
V
i ; P

V
i ;A

V
i ; and RAV

i ).

Case fatality rates

We calculated the sub-population-specific case fatality rates, CFRi, by combining several

sources. First, we divided CDC age-structured death counts by case counts to estimate the age

group-dependent CFRs: 0.0129%, 0.4533%, 4.9781%, 16.7279% for the four age groups used in

this study, 0 − 15, 16 − 64, 65 − 74 and 75+ years of age [48]. From existing U.S. population

level estimates [19], we calculated the prevalence of comorbidities among individuals in each

age group to be 18.60%, 36.72%, 73.15%, 80.18%. A study of U.S. health insurance claims indi-

cated that 51.71% of all individuals diagnosed with COVID-19 had at least one comorbidity,

while the percentage was 83.29% in individuals who died from the disease [30]. We therefore

assumed that individuals with a comorbidity, irrespective of age, have a (0.8329/0.5171)/

(0.1671/0.4829) = 4.65 times higher CFR. Combining these calcuations yields an age-depen-

dent CFR of 0.1935%, 1.13551%, 4.2560% for adults without comorbidities and 0.8997%,

6.3012%, 19.7907% for adults with comorbidities in the age groups 16 − 64, 65 − 74 and 75+,

respectively. Note that in this study we do not distinguish between children with and without

comorbidities, and instead use the overall CFR of 0.0129% for this age group.

Vaccine function

Vaccinated individuals have a lower chance of developing a symptomatic COVID-19 infection.

After clinical trials reported efficacy rates of around 95% [49, 50], initial data from the US vac-

cine roll-out found the Pfizer/BioNTech BNT162b2-mRNA and Moderna mRNA-1273 vac-

cines to be 90% effective [34]. This means that, all other things being equal (e.g., age, contact

rates, comorbidity status), a vaccinated person is 90% less likely to develop a symptomatic

COVID-19 infection than a non-vaccinated person. In a compartmental model, this reduction

could be due to one or both of two mechanisms:

1. a vaccine-induced reduced susceptibility to infection, i.e., a reduction in the number of

individuals who move from the S compartment to the E compartment. We denote this

reduction factor by σ 2 [0, 1], or
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2. a vaccine-induced reduced probability of developing a symptomatic infection (when

infected), i.e., a reduction in the number of individuals who move from the E compartment

to the P compartment, with a corresponding increase in the number of individuals who

move from the E compartment to the A compartment. We denote this reduction factor by

δ 2 [0, 1].

Vaccine effectiveness and the two reduction factors are related by:

vaccine effectiveness ¼ 1 � ð1 � sÞð1 � dÞ:

Fig 4A shows all possible combinations of reduction factors that yield a particular vaccine

effectiveness. A longitudinal British study of the effectiveness of the AstraZeneca and the Pfi-

zer-BioNTech vaccine suggests that σ = 70% and δ = 66.7% [35]. In sensitivity analyses, we var-

ied both values from 0% to 90% (Fig 4). In practice, these two reduction factors as well as

vaccine effectiveness may differ among sub-populations (e.g., with age or comorbidity status)

or among different vaccines; in this study we only investigated fixed reduction factors.

In addition, vaccinated infected individuals may spread the virus at a lower rate than non-

vaccinated individuals. The reduced contagiousness of vaccinated individuals, fV 2 [0%, 100%]

accounts for this in the force of infection. fV = 0% corresponds to a complete stop of virus

spread while fV = 100% means no reduction compared to non-vaccinated individuals. Due to a

lack of data, we assumed fV = 50% in the base model—that is, a vaccinated infected person is

50% less contagious than a non-vaccinated infected person at the same stage of the disease. In

a sensitivity analysis, we varied fV from 0% to 100% (Fig 4B).

Vaccine hesitancy

Recent data indicates that up to 30% of the population are hesitant to receive COVID-19 vac-

cines [31, 32]. We evaluated the CDC allocation using a base value of 30% hesitancy but also

studied the effect of lower hesitancy on the choice of optimal vaccine allocations (Fig 3). That

is, we set SNi ð0Þ ¼ hesitancyðSNi ð0Þ þ SWi ð0ÞÞ. Note that we assumed uniform hesitancy levels

for all sub-populations.

Vaccination campaign

The public vaccine roll-out in the United States began on December 14, 2020, denoted by t0.

For simplicity, we considered a single vaccination event per individual. We assumed that the

number of individuals newly vaccinated at day t, denoted ξ(t), is half the 7-day average in total

doses administered, based on U.S. vaccination records released by the CDC and the two-dose

vaccine regimen [33]. After May 5, 2021, we projected future daily vaccination levels as fol-

lows: Non-vaccinated individuals willing to get vaccinated will likely become increasingly

harder to find. We thus assumed that the number of daily vaccinations decreases linearly at a

rate such that it becomes zero exactly when all individuals willing to be vaccinated have been

vaccinated (S4 Fig).

The CDC announced in December 2020 two phases of vaccine roll-out that were further

divided into a total of four priority phases (1a, 1b, 1c, 2; Table 2) [2]. To enable a direct evalua-

tion of the CDC vaccine allocation strategy, we also considered four phases, labeled 1, 2, 3, and

4, for brevity. All sub-populations i that are allocated to the current priority phase receive the

vaccine at the same time-dependent rate

niðtÞ ¼
xðtÞ

P
sub-population k part of the current phaseSWk ðtÞ þ EW

k ðtÞ þ AW
k ðtÞ þ RAW

k ðtÞ þ PW
k ðtÞ

:
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For all other sub-populations j, we have νj(t) = 0. That is, all individuals without a present or

past symptomatic COVID-19 infection are available to receive the vaccine, and we do not con-

sider seropositivity tests and the corresponding exclusion of currently or previously asymp-

tomatically infected people from vaccination. Once there are no more non-vaccinated

individuals who are willing to be vaccinated and are part of a certain priority phase, the vacci-

nation campaign moves to the next phase. Once all people willing to be vaccinated receive the

vaccine the campaign stops. We do not consider reinfections, so the lack of vaccination of pre-

viously symptomatically infected individuals has no effect on the model dynamics.

Model equations

A schematic illustration of the compartmental model is shown in Fig 1. The compartmental

model is described by the following system of differential equations, where i = 1, . . ., 17 enu-

merates the 17 sub-populations:

_SNi ¼ � LiSNi

_SWi ¼ � LiSWi � niS
W
i

_SVi ¼ � Lið1 � sÞSVi þ niS
W
i

_EN
i ¼ LiSNi � mEEN

i

_EW
i ¼ LiSWi � mEEW

i � niE
W
i

_EV
i ¼ LiSVi ð1 � sÞ � mEEV

i þ niE
W
i

_AN
i ¼ mEð1 � qiÞEN

i � mAAN
i

_AW
i ¼ mEð1 � qiÞEW

i � mAAW
i � niA

W
i

_AV
i ¼ mEð1 � qið1 � dÞÞEV

i � mAAV
i þ niA

W
i

_RAN
i ¼ mAAN

i

_RAW
i ¼ mAAW

i � niRA
W
i

_RAV
i ¼ mAAV

i þ niRA
W
i

_PN
i ¼ mEqiEN

i � mPPN
i

_PW
i ¼ mEqiEW

i � mPPW
i � niP

W
i

_PV
i ¼ mEqið1 � dÞEV

i � mPPV
i þ niP

W
i

_Ci ¼ mPðPN
i þ PW

i Þ � mCCi

_CV
i ¼ mPPV

i � mCCV
i

_Qi ¼ mCðCi þ CV
i Þ � mQQi

_RCi ¼ ð1 � CFRiÞmQQi

_Di ¼ CFRimQQi

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð4Þ
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Model calibration

Most model parameters were derived from the literature (Table 1). We used an elitist genetic

algorithm [51] to estimate four model parameters by fitting the modeled to the observed

cumulative cases and deaths between December 14, 2020 and April 29, 2021, obtained from

the COVID-19 Data Repository at the Center for Systems Science and Engineering at Johns

Hopkins University [24, 47]. Two of these parameters, b0 2 [0, 0.1] and b1 2 [0, 0.01], describe

the linearly changing age-dependent rate of susceptibility to infection (Eq 1). The other two

parameters, c 2 [4, 6] and k 2 [2, 16], describe the shape of the Hill function used to model the

population-wide social-distancing level, which depends on the number of active cases (Eq 2).

In the genetic algorithm, we chose meaningful ranges for the parameters that ensured posi-

tive rates and probabilities in [0, 1]. We used a fitness function f given by a weighted sum of

squared errors (wSSE) between the observed and predicted cumulative deaths and cases,

f ðdeaths; casesÞ ¼ wSSEðdeathsÞ þ wSSEðcasesÞ;

where

wSSEðdeathsÞ ¼
XApril 29; 2021

d¼December 14; 2020

wd � ðobserved minus predicted deaths up to day dÞ2;

wSSEðcasesÞ ¼
XApril 29; 2021

d¼December 14; 2020

wd � ðobserved minus predicted cases up to day dÞ2;

where we used quadratically increasing weights, wDecember 14, 2020 = 1, wDecember 15, 2020 = 4,

wDecember 16, 2020 = 9, . . .. This choice of weights ensures that the fit is particularly good at the

end, yielding more realistic future model dynamics than, for instance, an unweighted fit to

cumulative deaths would. To allow for equal weighing of the fit of deaths and case counts, we

divided the observed and predicted cumulative cases by 50 (corresponding to a CFR of 2%)

before calculating the wSSE of observed and predicted cumulative cases.

We let the genetic algorithm minimize the fitness function f using 50 iterations and a popu-

lation of 1000 parameter sets. Each iteration, we assigned the 300 best parameter sets as

“parents” from which we generated 700 new “children” parameter sets using uniform cross-

over with a probability of 50%. In addition, we randomly mutated each parameter choice

(within its respective range) with a probability of 10%, except for the top 10 parameter sets.

That is, we used an elite ratio of 1%, which ensures that the best parameter sets are never lost

due to random mutation.

Because genetic algorithms may get stuck at local optima, we performed 100 separate elitist

genetic algorithms and used the parameter set with the overall lowest fitness function values

for the study. For each scenario with different fA, fV or q75+ value, we ran 100 separate elitist

genetic algorithms to obtain the respective best parameter sets. S1 Table shows the fitted

parameter values under the CDC allocation strategy.

Model implementation and outcomes

The model is implemented in Python 3.8 using the open source JIT compiler numba for

improved run time. We ran the model for each of the 17.5 million possibly optimal allocation

strategies. At the end of each run, we recorded the total number of (i) deaths, (ii) (symptom-

atic) cases and (iii) infections per age group. Based on the 2017 period life table from the U.S.

Social Security Administration [52], we calculated that individuals in age groups 0 − 15, 16

− 64, 65 − 74 and 75+ have 71.49, 41.31, 15.97 and 7.97 expected years of life left. We used
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these numbers to derive, for each run, the total years of life lost (YLL) due to the COVID-19

pandemic. We also considered how deaths were distributed across the four age groups and

used the Shannon entropy to summarize the variation in the distribution in a single measure

of health equity in S7 Fig [53].

Supporting information

S1 Fig. Age-dependent probability of symptomatic infection. The probability of symptom-

atic infection is shown for the different age groups (x-axis) and different scenarios (colors).

The average probability of symptomatic infection is 70% in each scenario. This probability

increases linearly with year of age up to a fixed value of 70% (blue x), 85% (orange circles;

default), 100% (green diamonds) for the age group 75+.

(TIF)

S2 Fig. Multi-step generation of the contact matrix. (A) The original 4 × 4 U.S. age-age con-

tact matrix inferred from survey data [20, 21] was transformed, using (B) U.S. census data,

into (C) a symmetric 4 × 4 contact matrix [45]. Using (D) information on the number of indi-

viduals within each of the 17 sub-populations used in this study (characteristics defined in

Table 2), the symmetric 4 × 4 contact matrix was expanded into (E) a 17 × 17 contact matrix.

Some jobs require more physical contact than others. Inclusion of the average contact rates per

job type yielded (F) an adapted contact matrix. Similarly, elderly individuals in congested liv-

ing conditions have more contacts than their peers and all these increased contacts were

assumed to occur within the congested living environment, which yielded (G) the final contact

matrix used in this study.

(TIF)

S3 Fig. Case-dependent contact reduction. A variable contact reduction (Hill function)

accounts for changes in the population-wide activity level based on the severity (i.e., the num-

ber of active cases) of the epidemic in the United States. The shape of the case-dependent con-

tact reduction used in the base model (black line) is shown along with the shapes of the most

extreme parameter choices allowed in the genetic algorithm (dashed lines).

(TIF)

S4 Fig. Speed of the vaccine roll-out. In the model, the number of newly fully vaccinated indi-

viduals each day is set to 50% of the 7-day average of the total number of administered doses

(black line). Colored lines show predictions of the future speed of the vaccine roll-out for dif-

ferent levels of vaccine hesitancy.

(TIF)

S5 Fig. Time-varying infectivity of the circulating virus strains. (A) Prevalence of several

variants of concern based on> 40, 000 sequences collected through CDC’s national genomic

surveillance since Dec 20, 2020 and grouped in 2-week intervals [42]. (B) For the midpoint of

each two-week interval, the relative infectivity of circulating virus strains based on a 50%

increased infectivity for B.1.1.7 and B.1.351 and 20% increased infectivity for B.1.427 and

B.1.429 is shown (orange circles). A fitted logistic equation with asymptotes at 100% and 150%

projects the future relative infectivity (blue line).

(TIF)

S6 Fig. Model fit. The observed (dashed line) and model-predicted (solid line) cumulative

deaths (A) and cases (B) are shown. The model parameters used are described in Table 1 and

in the first row of S1 Table.

(TIF)
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S7 Fig. Death and case count for all vaccine allocation strategies. The death and case count

of all 17.5 million evaluated meaningful vaccine allocation strategies fall within the dotted

region. For strategies on the Pareto frontier (solid line), there exists no other strategy that per-

forms better in one objective (minimizing deaths or cases) while not performing worse in the

other objective. The death and case counts resulting from six specific allocations are

highlighted.

(TIF)

S8 Fig. Pareto frontiers when fixing one sub-population’s priority phase. Each subpanel

shows four Pareto frontiers. For each frontier, one sub-population’s priority phase is fixed (see

Table 2 for group characteristics). For strategies on the Pareto frontier, there exists no other

strategy that performs better in one objective (minimizing deaths or cases) while not perform-

ing worse in the other objective.

(TIF)

S1 Table. Parameters associated with the best fits for the different scenarios. For each sce-

nario (described by the parameters in the three most left columns), 100 separate elitist genetic

algorithms were performed and the parameters associated with the best fit are shown, in addi-

tion to the value of the cost function (wSSE) that the algorithm minimized.

(TIF)

S2 Table. Allocation strategies that outperform the CDC allocation in all three objectives.

This table shows the CDC allocation (first row) and all allocation strategies on the three-

dimensional Pareto frontier that lead to fewer deaths, cases and YLL at the same time (bottom

28 rows). Sub-populations 1–17 are defined as in Table 2; sub-populations with comorbidities

are highlighted in yellow.

(TIF)

S3 Table. Comparison of CDC and optimal allocation strategies for seven scenarios. For

each sub-population (characteristics and population sizes defined in the left columns) and

seven combinations of unknown disease parameters (q75+, the proportion of symptomatic

infections among individuals 75 and older; fA, the relative contagiousness of asymptomatic

infected individuals; fV, the relative contagiousness of vaccinated infected individuals), the pri-

ority phase corresponding to the optimal allocation strategy is shown. At the bottom, predicted

outcomes (deaths, YLL and cases) resulting from the CDC allocation and the respective opti-

mal allocation strategy are compared.

(TIF)

S4 Table. Variation of optimal allocation strategies with vaccine function. For different

types of vaccines with 90% effectiveness (specified by σ vs δ), the optimal vaccine allocation

strategies with respect to three objectives (top row) are shown. Sub-populations 1–17 are

defined as in Table 2.

(TIF)
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26. McAloon C, Collins Á, Hunt K, Barber A, Byrne AW, Butler F, et al. Incubation period of COVID-19: a

rapid systematic review and meta-analysis of observational research. BMJ Open. 2020; 10(8):

e039652. https://doi.org/10.1136/bmjopen-2020-039652 PMID: 32801208

27. CDC and ASPR. COVID-19 Pandemic Planning Scenarios, CDC and the Office of the Assistant Secre-

tary for Preparedness and Response (ASPR); 2020. https://www.cdc.gov/coronavirus/2019-ncov/hcp/

planning-scenarios.html (accessed June, 6, 2021).

28. Centers for Disease Control and Prevention. COVID-19 Case Surveillance Public Use Data; 2021.

https://data.cdc.gov/Case-Surveillance/COVID-19-Case-Surveillance-Public-Use-Data-with-Ge/n8mc-

b4w4.

29. Stokes EK, Zambrano LD, Anderson KN, Marder EP, Raz KM, Felix SEB, et al. Coronavirus disease

2019 case surveillance—United States, January 22–May 30, 2020. Morbidity and Mortality Weekly

Report. 2020; 69(24):759. https://doi.org/10.15585/mmwr.mm6924e2 PMID: 32555134

30. Makary M. Risk Factors for COVID-19 Mortality among Privately Insured Patients, Johns Hopkins Uni-

versity School of Medicine, November 11, 2020; 2020. https://www.fairhealth.org/publications/

whitepapers.

31. Reiter PL, Pennell ML, Katz ML. Acceptability of a COVID-19 vaccine among adults in the United

States: How many people would get vaccinated? Vaccine. 2020; 38(42):6500–6507. https://doi.org/10.

1016/j.vaccine.2020.08.043 PMID: 32863069

32. Sallam M. COVID-19 vaccine hesitancy worldwide: a concise systematic review of vaccine acceptance

rates. Vaccines. 2021; 9(2):160. https://doi.org/10.3390/vaccines9020160 PMID: 33669441

33. Centers for Disease Control and Prevention. Trends in Number of COVID-19 Vaccinations in the US;

2021. https://covid.cdc.gov/covid-data-tracker/#vaccination-trends (accessed May 8 2021).

34. Thompson MG. Interim Estimates of Vaccine Effectiveness of BNT162b2 and mRNA-1273 COVID-19

Vaccines in Preventing SARS-CoV-2 Infection Among Health Care Personnel, First Responders, and

Other Essential and Frontline Workers—Eight US Locations, December 2020–March 2021. Morbidity

and Mortality Weekly Report. 2021; 70.

35. Pritchard E, Matthews PC, Stoesser N, Eyre DW, Gethings O, Vihta KD, et al. Impact of vaccination on

SARS-CoV-2 cases in the community: a population-based study using the UK’s COVID-19 Infection

PLOS ONE Evaluation of the United States COVID-19 vaccine allocation strategy

PLOS ONE | https://doi.org/10.1371/journal.pone.0259700 November 17, 2021 21 / 22

https://doi.org/10.1111/bcp.14875
https://doi.org/10.1111/bcp.14875
http://www.ncbi.nlm.nih.gov/pubmed/33891340
https://doi.org/10.1001/jama.2020.18513
http://www.ncbi.nlm.nih.gov/pubmed/32910182
https://doi.org/10.1038/s41591-020-0962-9
https://doi.org/10.1038/s41591-020-0962-9
http://www.ncbi.nlm.nih.gov/pubmed/32546824
https://doi.org/10.1126/science.abb8001
https://doi.org/10.1126/science.abb8001
http://www.ncbi.nlm.nih.gov/pubmed/32350060
https://doi.org/10.3201/eid2608.200679
http://www.ncbi.nlm.nih.gov/pubmed/32324118
https://doi.org/10.1371/journal.pmed.0050074
https://doi.org/10.1371/journal.pmed.0050074
http://www.ncbi.nlm.nih.gov/pubmed/18366252
https://doi.org/10.1371/journal.pcbi.1005697
https://doi.org/10.1371/journal.pcbi.1005697
http://www.ncbi.nlm.nih.gov/pubmed/28898249
https://doi.org/10.1016/S2468-2667(20)30164-X
http://www.ncbi.nlm.nih.gov/pubmed/32745512
https://doi.org/10.1126/science.abg3055
https://doi.org/10.1126/science.abg3055
http://www.ncbi.nlm.nih.gov/pubmed/33658326
https://doi.org/10.1016/S1473-3099(20)30120-1
http://www.ncbi.nlm.nih.gov/pubmed/32087114
https://data.census.gov/cedsci/table?q=age&tid=ACSST1Y2019.S0101&hidePreview=false
https://data.census.gov/cedsci/table?q=age&tid=ACSST1Y2019.S0101&hidePreview=false
https://doi.org/10.1136/bmjopen-2020-039652
http://www.ncbi.nlm.nih.gov/pubmed/32801208
https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html
https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html
https://data.cdc.gov/Case-Surveillance/COVID-19-Case-Surveillance-Public-Use-Data-with-Ge/n8mc-b4w4
https://data.cdc.gov/Case-Surveillance/COVID-19-Case-Surveillance-Public-Use-Data-with-Ge/n8mc-b4w4
https://doi.org/10.15585/mmwr.mm6924e2
http://www.ncbi.nlm.nih.gov/pubmed/32555134
https://www.fairhealth.org/publications/whitepapers
https://www.fairhealth.org/publications/whitepapers
https://doi.org/10.1016/j.vaccine.2020.08.043
https://doi.org/10.1016/j.vaccine.2020.08.043
http://www.ncbi.nlm.nih.gov/pubmed/32863069
https://doi.org/10.3390/vaccines9020160
http://www.ncbi.nlm.nih.gov/pubmed/33669441
https://covid.cdc.gov/covid-data-tracker/#vaccination-trends
https://doi.org/10.1371/journal.pone.0259700


Survey. medRxiv; 2021. published online April 23, 2021. https://www.medrxiv.org/content/10.1101/

2021.04.22.21255913v1?versioned=true (preprint, version 1).

36. McClung N, Chamberland M, Kinlaw K, Matthew DB, Wallace M, Bell BP, et al. The Advisory Commit-

tee on Immunization Practices’ ethical principles for allocating initial supplies of COVID-19 vaccine—

United States, 2020. Morbidity and Mortality Weekly Report. 2020; 69(47):1782. https://doi.org/10.

15585/mmwr.mm6947e3 PMID: 33237895

37. Lee PI, Hu YL, Chen PY, Huang YC, Hsueh PR. Are children less susceptible to COVID-19? Journal of

Microbiology, Immunology, and Infection. 2020; 53(3):371. https://doi.org/10.1016/j.jmii.2020.02.011

PMID: 32147409

38. Iwasaki A. What reinfections mean for COVID-19. The Lancet Infectious Diseases. 2021; 21(1):3–5.

https://doi.org/10.1016/S1473-3099(20)30783-0 PMID: 33058796

39. Turner JS, Kim W, Kalaidina E, Goss CW, Rauseo AM, Schmitz AJ, et al. SARS-CoV-2 infection

induces long-lived bone marrow plasma cells in humans. Nature. 2021;p. 1–8. https://doi.org/10.1038/

s41586-021-03647-4 PMID: 34030176

40. Harris-Kojetin LD, Sengupta M, Lendon JP, Rome V, Valverde R, Caffrey C. Long-term care providers

and services users in the United States, 2015-2016. Vital Health Stat 3(43). 2019.

41. Oran DP, Topol EJ. The proportion of SARS-CoV-2 infections that are asymptomatic: a systematic

review. Annals of Internal Medicine. 2021;. https://doi.org/10.7326/M20-6976 PMID: 33481642

42. Centers for Disease Control and Prevention. Variant Proportions; 2021. https://covid.cdc.gov/covid-

data-tracker/#variant-proportions (accessed April 20, 2021).

43. Pearson CA, Russell TW, Davies N, Kucharski AJ, working group CC, Edmunds WJ, et al. Estimates of

severity and transmissibility of novel South Africa SARS-CoV-2 variant 501Y; 2021. https://cmmid.

github.io/topics/covid19/sa-novel-variant.html.

44. Deng X, Garcia-Knight MA, Khalid MM, Servellita V, Wang C, Morris MK, et al. Transmission, infectivity,

and antibody neutralization of an emerging SARS-CoV-2 variant in California carrying a L452R spike

protein mutation. medRxiv; 2021. published online March 09, 2021. https://www.medrxiv.org/content/

10.1101/2021.03.07.21252647v1 (preprint, version 1).

45. Funk S. Socialmixr: Social mixing matrices for infectious disease modelling, The Comprehensive R

Archive Network; 2018. https://cran.r-project.org/web/packages/socialmixr/index.html.

46. U S Census Bureau. Current Population Survey, Annual Social and Economic Supplement 2019, Age

and Sex Composition in the United States (Table 1); 2020. Data retrieved from https://www.census.gov/

data/tables/2019/demo/age-and-sex/2019-age-sex-composition.html.

47. Center for Systems Science and Engineering at Johns Hopkins University. COVID-19 data repository;

2021. https://github.com/CSSEGISandData/COVID-19 (accessed May 01, 2021).

48. Centers for Disease Control and Prevention. COVID-19 Case Surveillance Public Data Access, Sum-

mary, and Limitations (version date: March 31, 2021); 2021. https://data.cdc.gov/Case-Surveillance/

COVID-19-Case-Surveillance-Public-Use-Data/vbim-akqf.

49. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and efficacy of the

BNT162b2 mRNA Covid-19 vaccine. New England Journal of Medicine. 2020; 383(27):2603–2615.

https://doi.org/10.1056/NEJMoa2034577 PMID: 33301246

50. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and safety of the mRNA-

1273 SARS-CoV-2 vaccine. New England Journal of Medicine. 2021; 384(5):403–416. https://doi.org/

10.1056/NEJMoa2035389

51. Solgi R. Standard and elitist genetic-algorithm (GA) version 1.0.1; 2020. Available at: https://github.

com/rmsolgi/geneticalgorithm.

52. Office of the Chief Actuary. Actuarial Life Table by the United States Social Security Administration;

2021. Accessed: 2021-04-23. https://www.ssa.gov/oact/STATS/table4c6.html#ss.

53. Shannon CE. A mathematical theory of communication. The Bell system technical journal. 1948; 27

(3):379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

PLOS ONE Evaluation of the United States COVID-19 vaccine allocation strategy

PLOS ONE | https://doi.org/10.1371/journal.pone.0259700 November 17, 2021 22 / 22

https://www.medrxiv.org/content/10.1101/2021.04.22.21255913v1?versioned=true
https://www.medrxiv.org/content/10.1101/2021.04.22.21255913v1?versioned=true
https://doi.org/10.15585/mmwr.mm6947e3
https://doi.org/10.15585/mmwr.mm6947e3
http://www.ncbi.nlm.nih.gov/pubmed/33237895
https://doi.org/10.1016/j.jmii.2020.02.011
http://www.ncbi.nlm.nih.gov/pubmed/32147409
https://doi.org/10.1016/S1473-3099(20)30783-0
http://www.ncbi.nlm.nih.gov/pubmed/33058796
https://doi.org/10.1038/s41586-021-03647-4
https://doi.org/10.1038/s41586-021-03647-4
http://www.ncbi.nlm.nih.gov/pubmed/34030176
https://doi.org/10.7326/M20-6976
http://www.ncbi.nlm.nih.gov/pubmed/33481642
https://covid.cdc.gov/covid-data-tracker/#variant-proportions
https://covid.cdc.gov/covid-data-tracker/#variant-proportions
https://cmmid.github.io/topics/covid19/sa-novel-variant.html
https://cmmid.github.io/topics/covid19/sa-novel-variant.html
https://www.medrxiv.org/content/10.1101/2021.03.07.21252647v1
https://www.medrxiv.org/content/10.1101/2021.03.07.21252647v1
https://cran.r-project.org/web/packages/socialmixr/index.html
https://www.census.gov/data/tables/2019/demo/age-and-sex/2019-age-sex-composition.html
https://www.census.gov/data/tables/2019/demo/age-and-sex/2019-age-sex-composition.html
https://github.com/CSSEGISandData/COVID-19
https://data.cdc.gov/Case-Surveillance/COVID-19-Case-Surveillance-Public-Use-Data/vbim-akqf
https://data.cdc.gov/Case-Surveillance/COVID-19-Case-Surveillance-Public-Use-Data/vbim-akqf
https://doi.org/10.1056/NEJMoa2034577
http://www.ncbi.nlm.nih.gov/pubmed/33301246
https://doi.org/10.1056/NEJMoa2035389
https://doi.org/10.1056/NEJMoa2035389
https://github.com/rmsolgi/geneticalgorithm
https://github.com/rmsolgi/geneticalgorithm
https://www.ssa.gov/oact/STATS/table4c6.html#ss
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1371/journal.pone.0259700

