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Abstract: The automatic sleep stage classification technique can facilitate the diagnosis of sleep
disorders and release the medical expert from labor-consumption work. In this paper, novel improved
model based essence features (IMBEFs) were proposed combining locality energy (LE) and dual state
space models (DSSMs) for automatic sleep stage detection on single-channel electroencephalograph
(EEG) signals. Firstly, each EEG epoch is decomposed into low-level sub-bands (LSBs) and high-level
sub-bands (HSBs) by wavelet packet decomposition (WPD), separately. Then, the DSSMs are estimated
by the LSBs and the LE calculation is carried out on HSBs. Thirdly, the IMBEFs extracted from the
DSSM and LE are fed into the appropriate classifier for sleep stage classification. The performance of
the proposed method was evaluated on three public sleep databases. The experimental results show
that under the Rechtschaffen’s and Kale’s (R&K) standard, the sleep stage classification accuracies
of six classes on the Sleep EDF database and the Dreams Subjects database are 92.04% and 78.92%,
respectively. Under the American Academy of Sleep Medicine (AASM) standard, the classification
accuracies of five classes in the Dreams Subjects database and the ISRUC database reached 79.90% and
81.65%. The proposed method can be used for reliable sleep stage classification with high accuracy
compared with state-of-the-art methods.

Keywords: EEG; sleep stage; wavelet packet; state space model

1. Introduction

Automatic sleep stage classification is an important research focus due to its importance for
the study of sleep related disorders. There are currently two classification criteria for sleep stages.
According to Rechtschaffen’s and Kale’s (R&K) recommendations, sleep stages can be divided into six
stages: The Awake stage (Awa), rapid Eye Movement stage (REM), Sleep stage 1 (S1), Sleep stage 2
(S2), Sleep stage 3 (S3), Sleep stage 4 (S4) [1]. Another sleep stage classification standard was provided
by the AASM. In this standard, there are five sleep stages: Awa, N1 (S1), N2 (S2), N3 (the merging of
stages S3 and S4) and REM [2]. Usually, the detection of each sleep stage requires manual marking
by professionals, which requires a lot of work and may produce erroneous markings. Therefore, it is
imperative to study the method for automatic sleep stage classification.

According to the characteristics of the adopted features, currently commonly used automatic
detection methods can be divided into the following two categories. The first is the method based on
statistical features (such as spectral energy) extracted from the one-dimensional EEG signal. The other
is the implicit features, which can be obtained by training deep-learning based classifiers. Hassan et
al. computed various spectral features by Tunable-Q factor wavelet transform (TQWT) on sleep-EEG
signal segments [3]. With the random forest classifier, they achieved accuracies of 90.38%, 91.50%,
92.11%, 94.80%, 97.50% for 6-stage to 2-stage classification of sleep states on the Sleep-EDF database.
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Diykh et al. adopted different structural and spectral attributes extracted from weighted undirected
networks to automatically classify the sleep stages [4]. Kang et al. present a statistical framework to
estimate whole-night sleep states in patients with obstructive sleep apnea (OSA)—the most common
sleep disorder [5]. In this framework, they extracted 11 spectral features from 60903 epochs to estimate
per-night sleep stages with a 5-state hidden Markov model. Abdulla et al. used graph modularity of
EEG segments as the features to feed an ensemble classifier which achieved the accuracy of 93.1% with
20265 epochs from Sleep EDF database [6].

In [7], Ghimatgar et al. constructed a features pool by the relevance and redundancy analysis
on the sleep EEG epochs. With a random forest classifier and a Hidden Markov Model, this method
was evaluated on three public sleep EEG database scored according to R&K and AASM guidelines.
They achieved overall accuracies in the range of (79.4–87.4%) and (77.6–80.4%) for six-stage (R&K)
and five-stage (AASM) classification, respectively. Taran et al. proposed an optimized flexible
analytic wavelet transform (OFAWT) to decompose EEG signals into band-limited basis or sub-bands
(SBs) [8]. The experimental results yields classification accuracies for the classification of six to two
sleep stages 96.03%, 96.39%, 96.48%, 97.56% and 99.36%, respectively. Sharma et al. computed
the discriminatory features namely fuzzy entropy and log energy by the wavelet decomposition
coefficients [9]. This approach yielded an accuracy of 91.5% and 88.5% for six-class classification task
using small and large datasets, respectively. Hassan et al. extracted various statistical moment based
features decomposed by the Empirical Mode Decomposition (EMD) and achieved a good performance
on a small database [10]. They also decomposed EEG signal segments using Ensemble Empirical Mode
Decomposition (EEMD) to extract various statistical moment based features and achieved 88.07%,
83.49%, 92.66%, 94.23% and 98.15% for 6-state to 2-state classification of sleep stages on Sleep-EDF
database [11]. Sharma et al. adopted the Poincare plot descriptors and statistical measures which
are calculated by the discrete energy separation algorithm (DESA) as the features [12]. Moreover,
the classification accuracy of the two to six categories on 15136 epochs from the Sleep-EDF database
was 98.02%, 94.66%, 92.29%, 91.13% and 90.02%, respectively.

Besides the conventional features extraction method, some researchers choose the convolutional
neural network (CNN) to classify sleep stages with the time–frequency images which are converted by
one-dimensional EEG signals. Zhang et al. converted EEG data to a time–frequency representation via
Hilbert–Huang transform and employed an orthogonal convolutional neural network (OCNN) as the
classifier [13]. They achieved a total classification accuracy of 88.4% and 87.6% on two public datasets,
respectively. Similarly, Xu et al. employed multiple CNN on multi-channel EEG signals to classify
the sleep stages [14]. Mousavi [15] directly fed the raw EEG signals to a deep CNN with nine layers
followed by two fully connected layers, without involving feature extraction and selection. This method
achieved the accuracy of 98.10%, 96.86%, 93.11%, 92.95%, 93.55% for two to six class classification.
Long short-term memory (LSTM) is an artificial recurrent neural network (RNN) architecture used in
the field of deep learning. It can not only process single data points (such as images), but also entire
sequences of data (such as speech or EEG signal). Korkalainen et al. used a combined convolutional
and LSTM neural network on the public database and achieved sleep staging accuracy of 83.7% with a
single frontal EEG channel [16]. Michielli et al. proposed a novel cascaded RNN architecture based on
LSTM for automated scoring of sleep stages on single-channel EEG signals [17]. The network performed
four and two classes classification with a classification rate of 90.8% and 83.6%, respectively.

Most of the existing studies only adopted a few epochs or a single database when evaluating the
performance of these method and some do not use the k-fold cross-validation, which will cause large
fluctuations in the experimental results. Therefore, although the published researches have achieved
positive results in automatic sleep stage classification, there is still a need for further validation and
improvements to the existing methods. In this paper we proposed a novel IMBEFs extracted from
LE and DSSM for automatically detecting the sleep stages with a high degree of accuracy. LE and
DSSM are estimated from the two sets coefficients of LSBs and HSBs. The two sets coefficients are
coming from the WPD of the sleep EEG epoch based on two wavelet bases separately. After comparing
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with various kinds of classifiers, the Bagged Trees was finally selected as the suitable classifier for
this method to identify the sleep stages. In addition, experiments are conducted on three public sleep
databases and the results are compared with state of the art published work in order to fully evaluate
and validate the performance of the proposed method.

The paper is organized as follows: In Section 2, the experimental material and methodology of
the proposed method are descripted in detail. Section 3 resents the experimental results. In Section 4,
the results and findings of this paper are discussed. The conclusions of the paper are drawn in Section 5.

2. Materials and Methods

2.1. Sleep State Classes

According to the AASM and R&K standards, the classes of sleep stages can be divided into
two to six classes. Moreover, under the AASM standard, it can be divided into two to five classes.
The difference is that the N3 stage of AASM includes the S3 and S4 stages of the R&K standard.
The detailed description of classes considered in this work are shown in Tables 1 and 2.

Table 1. The class description considered in this work under the Rechtschaffen’s and Kale’s
(R&K) standard.

Classes 6 Classes 5 Classes 4 Classes 3 Classes 2 Classes

Stages Awa vs. REM
vs. S1 vs. S2
vs. S3 vs. S4

Awa vs. REM
vs. S1 vs. S2
vs. S3, S4

Awa vs. REM
vs. S1, S2 vs.
S3, S4

Awa vs. REM
vs. NREM (S1,
S2, S3, S4)

Awa vs.
Asleep (REM,
S1, S2, S3, S4)

Table 2. The class description considered in this work under the American Academy of Sleep Medicine
(AASM) standard.

Classes 5 Classes 4 Classes 3 Classes 2 Classes

Stages Awa vs. REM
vs. N1 vs. N2
vs. S3, S4

Awa vs. REM
vs. N1, N2 vs.
N3

Awa vs. REM
vs. NREM
(N1, N2, N3)

Awa vs.
Asleep (REM,
N1, N2, N3)

2.2. Datasets

2.2.1. Sleep EDF (S-EDF) Database

The S-EDF database have 197 whole-night Polysomnography (PSG) sleep recordings, containing
EEG, EOG, chin EMG and event markers [18,19]. All the Hypnograms (sleep patterns) were manually
scored by well-trained technicians according to the R&K criteria. In this study, 34 EEG recordings from
26 subjects aged 25 to 96 years are randomly selected.

2.2.2. DREAMS Subjects (DRMS) Database

The DRMS Database consists of 20 whole-night PSG recordings coming from healthy subjects,
annotated in sleep stages according to both the R&K criteria and the new standard of the AASM [20].
Data collected were acquired in a sleep laboratory of a Belgium hospital using a digital 32-channel
polygraph (BrainnetTM System of MEDATEC, Brussels, Belgium). The sampling frequency was
200 Hz.

2.2.3. ISRUC(Subgroup 3, ISRUC3) Database

The ISRUC3 database is the third subgroup of ISRUC database [21]. The data were obtained from
human adults, including healthy subjects, subjects with sleep disorders and subjects under the effect of
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sleep medication. Each recording was randomly selected between PSG recordings that were acquired
by the Sleep Medicine Centre of the Hospital of Coimbra University (CHUC).

The S-EDF database was only labeled under the R&K criteria. Moreover, the ISRUC3 database
was only labeled by the AASM criteria. The DRMS database was not only labeled by R&K criteria
but also the AASM criteria. The annotations of S-EDF database and DRMS database were produced
visually by a single expert. The ISRUC3 database was scored by two experts and the label made by
the second expert was used in this paper. The Pz-Oz channel of the S-EDF database is used according
to the recommendations of various studies [3–7]. At the same time, for the DRMS database, as the
researches [9–12] recommended, the Cz-A1 channel was adopted in this work. Moreover, for the
ISRUC database, the C3-A2 channel is the best choice [7]. Table 3 lists the detailed information of the
above three databases.

Table 3. The specification of the electroencephalograph (EEG) databases included in this study.

Scoring Manual R&K Criteria AASM Criteria

dataset name S-EDF database DRMS database DRMS database ISRUC3
database

Epoch length(Seconds) 30 20 30 20
Number of subjects 26 20 20 10
Recoding Files 34 20 20 10
Age 25–96 20–65 20–65 30–58
Gender(male-female) 17–17 4–16 4–16 9–1
Sampling frequency (Hz) 100 200 200 200
EEG channel Pz–Oz Cz–A1 Cz–A1 C3–A2

Stage Number of epochs

Awa 7,3835 5601 3559 1702
REM 6744 4555 3019 1238
S1(N1) 3017 1788 1480 1123
S2(N2) 1,7249 1,3274 8251 2850
S3(N3) 2288 2112 3956 1976
S4 1510 3071 – –
Total Number of Epochs 10,4643 3,0401 2,0265 8889

2.3. Method

Figure 1 shows the schematic outline of the proposed IMBEFs based sleep statge classification
algorithm comprising preprocessing, wavelet package decomposition, locality energy calculation,
state space models estimation, features extraction, classifier training and performance evaluation.

EEG 
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Low-pass 

filter

 Locality Energy 

Calculation

Features 

Extraction
Classifier
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EvaluationLow Level 

Wavelet 

Package 

Decomposition 

Dual State 

Space Models 
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Figure 1. A schematic outline of the proposed improved model based essence features (IMBEFs) based
sleep stage classification algorithm.

2.3.1. EEG Data Preprocessing

Firstly, all the single-channel data will be extracted by the Matlab and EEGLAB [22] tools from the
three database described previously. According to the prior work [5–11], the 0–35 Hz low pass filter can
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be used to eject the most of artifact. Once the dataset is filtered, it will be exported as one-dimensional
vector without time information and saved as txt file which also can be denoted as the Formula (1).

X = [x1, x2, . . . , xk, . . . , xM] , k ∈ [1, M], xk ∈ R (1)

where X is the vector containing the sampled EEG xk and where M is the length of vector.
Furthermore, we use a window of length j to divide the full data X across time without overlap.

That is X is converted into [X1, X2, . . . , Xi, . . . , XL]
T which can be described as (2).



X1

X2
...

Xi
...

XL


=



x1 x2 · · · xj
xj+1 xj+2 · · · x2j

...
... · · ·

...
x(i−1)j+1 x(i−1)j+2 · · · xi×j

...
...

...
...

x(L−1)j+1 x(L−1)j+2 · · · xL×j


L =

⌊
M
j

⌋
, i ∈ [1, L]

(2)

where j = Te × Fs. The Te is the length of each epoch. Moreover, the Fs is the sampling frequency of
the database. For the S-EDF database, the Te = 30 and the Fs = 100, so the j is 3000. Moreover, for the
ISRUC3 database, the Te = 20 and the Fs = 200, so the j is 4000.

2.3.2. Wavelet Package Decomposition

WPD is a powerful tool to analyze non-stationary EEG signals. In essence, WPD is a wavelet
transform where the discrete-time signal is passed through more filters than the discrete wavelet transform,
which can provide a multi-level time-frequency decomposition of signals [23]. Compared with discrete
wavelet transform, WPD can provide more frequency resolutions. In the discrete wavelet transform,
a signal is split into an approximation coefficient and a detail coefficient [24]. The approximation coefficient
is then itself split into a second-level approximation coefficients and detail coefficients and the process is
repeated. A wavelet packet function ωm

l,d(q) is defined as (3):

ωm
l,d(q) = 2l/2ωm(2lq− d) (3)

where l and d are the scaling (frequency localization) parameter and the translation (time localization)
parameter, respectively; m = 0, 1, 2, . . . is the oscillation parameter.

Wavelet packet (WP) coefficients of the EEG epoch Xi are embedded in the inner product of the
signal with every WP function, denoted by pi,m

l (d), d = ...,−1, 0, 1, ... and given below:

pi,m
l (d) = ∑ xi(q)ωm

l,d(q) (4)

where pi,m
l (d) denotes the m-th set of WPD coefficients at l-th scale parameter and d is the translation

parameter. All frequency components and their occurring times are reflected in pi,m
l (d) through change

in m, l, d. Each coefficient pm
l (d) measures a specific sub-band frequency content, controlled by scaling

parameter l and oscillation parameter m. The essential function of WPD is the filtering operation
through low-pass filter h(d) and high-pass filter g(d). For the l-th level of decomposition, there are
2l sets of sub-band coefficients Ci

l,m , of length j/2l . The wavelet packet coefficients of epoch Xi are
given as

Ci
l,m = {pi,m

l (d)|d = 1, 2, ..., j/2l} (5)
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It can be seen from the (5) that each node of the WP tree is indexed with a pair of integers (l, m),
where l is the corresponding level of decomposition and m is the order of the node position in the
specific level. Here, the level lLE and wavelet basis ωLE of WPD on the epoch Xi for LE calculation will
be confirmed in the Section 3. Moreover, the wavelet basis ωDSSM for DSSM will be confirmed in the
same section.

2.3.3. Locality Energy Calculation

The wavelet package energy Ei
lLE ,m at the m-th node on the level lLE of epoch Xi can be defined as

follows [25].

Ei
lLE ,m = ∑ |pi,m

l (d)|2 = |Ci
lLE ,m|

2, m = {1, 2, . . . , 2lLE} (6)

Then, the locality energy features (LEFs) of each Epoch can be defined as {Ei
lLE ,m|m =

1, 2, . . . , 2lLE}.

2.3.4. Dual State Space Models Estimation

As we have described before, after the wavelet packet decomposition, the low-level (the first level)
coefficients will be used to estimate the dual state space models which can denoted by the difference
Equation (7). {

uk+1 = Auk + Kek
yk = Buk + ek

(7)

The yk ∈ Ci
1,m is the coefficient at instant k ∈ [1, 2, . . . , j/2]. Vector uk ∈ Rn×1 is the state vector

of process at discrete time instant k and contains the numerical value of n states. Matrix A ∈ Rn×n

is the dynamical system matrix. K ∈ Rn×1 is the steady state Kalman gain. B ∈ R1×n is the output
matrix, which describes how the internal state is transferred to the outside world in the observations
yk. The ek ∈ R denotes zero mean white noise.

With the traditional subspace algorithm such as N4SID, the matrix Â, B̂, K̂ of the state space
model of dynamic system can be estimated [26]. In this paper, the order nDSSM of dual state space
models will be determined by the experiments in the Section 3. Moreover, the parameter matrixes of
state space model estimated by the first level wavelet coefficients Ci

1,m can be expressed as

Âi
1,m =


ai,m

1,1 · · · ai,m
1,nDSSM

... · · ·
...

ai,m
nDSSM ,1 · · · ai,m

nDSSM ,nDSSM


B̂i

1,m =
[
bi,m

1 bi,m
2 . . . bi,m

nDSSM

]
K̂i

1,m =
[
ki,m

1 bi,m
2 . . . ki,m

nDSSM

]T

i ∈ [1, L] , m = {1, 2}

(8)

Then the DSSM Si of the Xi can be defined as:

Si =

[
si

1
si

2

]
=

[
ai,1

1,1 · · · ai,1
nDSSM ,nDSSM bi,1

1 · · · bi,1
nDSSM ki,1

1 · · · ki,1
nDSSM

ai,2
1,1 · · · ai,2

nDSSM ,nDSSM bi,2
1 · · · bi,2

nDSSM ki,2
1 · · · ki,2

nDSSM

]
(9)

So, the parameters extracted from DSSM here is called DSSM Features (DSSMFs) can be defined
as DSSMFs =

[
si

1 si
2
]
.
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2.3.5. IMBEFs Construction

According to the previously calculated LEFs Ei
lLE ,m and the parameters Si of the DSSM, the features

IMBEFs of epoch Xi here are given by

Fi
DSSM =

[
Ei

lLE ,1 . . . Ei
lLE ,2lLE

si
1 si

2

]
(10)

The feature dimension can be calculated by the Equation (11).

DimDSSM = 2lLE + 2(n2
DSSM + 2× nDSSM) (11)

Here, the general form of features extracted from LE and multiple state space models (MSSM)
which are estimated by the lMSSM-th level WPD coefficients can be depicted as Equation (12).

Fi
MSSM =

[
Ei

lLE ,1 . . . Ei
lLE ,2lLE

si
1 . . . si

2lMSSM

]
(12)

The dimension of the Fi
MSSM can be calculated by

DimMSSM = 2lLE + 2lMSSM (n2
MSSM + 2× nMSSM) (13)

where nMSSM is the order of MSSM. Usually, the nMSSM range from 5 to 10. Assume the nMSSM = 5,
DimDSSM = 2lLE + 2lMSSM × 40. Then if lMSSM > 2, the DimMSSM will be too large. So the lMSSM is set
to 1 in this paper, which means there are two state space models.

3. Experiments and Results

In this section, there are four experimental parts. The first is the experiment for selecting a suitable
classifier among several candidate classifiers. Then is the determination of the most suitable wavelet
basis ωDSSM and model order nDSSM for DSSM estimation. Next is the selection of the wavelet basis
ωLE and the level lLE for the LE calculation. Finally, the test experiment will be conducted on the
S-EDF database and ISRUCS3 database with the ωDSSM, ωLE, nDSSM and lLE determined according to
the previous experiments.

In the process of selecting these parameters, the DRMS database was adopted for testing under the
both R&K and AASM standards. There are several conventional verification strategies, including k-fold
cross-validation, leave one-subject-out cross-validation (LOOCV) and corss-dataset validation, etc.
In this paper, many commonly-used databases are adopted to verify the performance of the algorithm,
in which the S-EDF database and the DRMS database contains lots of subjects. However, some subjects
contained in these database possess unevenly distributed samples, which means the incomplete sleep
stages. Consequently, the 10-fold cross-validation method would be more suitable for the performance
verification in this research. In 10-fold cross-validation, the original sample is randomly partitioned into
10 equal size subsamples. Of the 10 subsamples, a single subsample is retained as the validation data
for testing the model and the remaining nine subsamples are used as training data. The cross-validation
process is then repeated 10 times, with each of the 10 subsamples used exactly once as the validation
data. The 10 results from the folds can then be averaged to produce a single estimation. The advantage
of this method is that all observations are used for both training and validation and each observation
is used for validation exactly once. The accuracy (ACC) and Cohen’s Kappa Coefficient (Kappa) are
computed to evaluate the overall classification performance.

ACC =
TP + TN

TP + TN + TN + FN
× 100% (14)

Kappa =
ACC− pe

1− pe
(15)
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where TP, TN, FP and FN represent the number of true positive, true negative, false positive and false
negative examples respectively. And pe is the hypothetical probability of agreement by chance.

3.1. Classifier Comparison and Selection

In this section, an algorithm is designed to search the best classifier for the method proposed in
this paper. The detailed steps are shown in the Algorithm 1 below. In this algorithm, according to
the distribution and characteristic of the samples, the candidate classifiers are including Linear
Discriminant, Quadratic Discriminant, Quadratic SVM, Fine KNN, Bagged Trees and RUSBoosted
Trees. The candidate wavelet bases include the db1, db2, db3, db4, db5, db6, db8, db16, db32, sym2,
sym8, sym16, coif1, coif3 and dmey. The order of DSSM range from 5 to 10. Here only the DSSMFs are
used for training and validation.

Table 4 shows the experiment results of Algorithm 1. As can be seen from Table 4, the Bagged Trees
is the optimal classifier in the classification of two to six classes. At the meantime, the corresponding
order of DSSM is 6. In addition, in the two class classification, the optimal wavelet basis is sym2;
the others, however, are db1. Furthermore, the comparison of different classifiers in two classes
classification under the condition of nDSSM = 6 are listed in Table 5. It can be seen from Table 5 that
the accuracy of sym2 is 95.79%, which is a little higher than the 95.71% of db1 and 95.72% of db2.
Therefore, considering the results in Tables 4 and 5 , the Bagged Trees will be used as the classifier for
subsequent experiments.

Table 4. The outputs of Algorithm 1.

Classes Optimal Classifier ωDSSM nDSSM Accuracy(%)

2 Bagged Trees sym2 6 95.79
3 Bagged Trees db1 6 88.29
4 Bagged Trees db1 6 83.07
5 Bagged Trees db1 6 81.45
6 Bagged Trees db1 6 78.57

Table 5. Comparison of different classifiers in two class classification with different wavelet. The
nDSSM = 6. Highest values are highlighted in boldface.

Accuracy (%) db1 db2 db3 db4 db5 db6 db8 db16 db32 sym2 sym8 sym16 coif1 coif3 dmey

Linear Discriminant 94.21 93.94 94.33 93.93 93.52 93.17 92.53 91.72 91.66 93.90 92.35 91.68 93.98 92.59 92.24
Quadratic Discriminant 92.94 93.73 94.42 92.89 91.90 91.07 91.15 87.63 87.13 93.68 90.99 88.37 94.14 91.29 87.27

Quadratic SVM 95.13 95.01 95.16 94.88 94.62 94.43 94.14 93.71 93.47 95.09 94.13 93.59 95.12 94.25 93.68
Fine KNN 91.96 90.96 92.62 91.05 90.06 89.82 88.70 87.60 86.58 90.84 88.43 87.00 90.61 89.52 88.22

Bagged Trees 95.71 95.72 95.70 95.59 95.42 95.43 95.16 94.93 95.00 95.79 95.04 94.82 95.71 95.29 95.01
RUSBoosted Trees 94.28 94.08 94.68 94.41 94.07 93.94 93.75 93.02 93.08 94.05 93.78 92.79 94.20 93.76 93.20
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Algorithm 1: Search the Optimal Classifier.
Input:
WBS:the candidate wavelet base array, including the db1, db2, db3, db4, db5, db6 ,db8 ,db16,
db32, sym2, sym8, sym16, coif1, coif3, dmey;
CCA:the candidate classifier array,including the Linear Discriminant, Quadratic Discriminant,
Quadratic SVM, Fine KNN, Bagged Trees and RUSBoosted Trees;
SSMOV:the state space model order array range from 5 to 10;
Output: the optimal classifier array OCA , the corresponding order array COV and wavelet

basis array CWBA
1 Initialize the samples matrix SM, validation Accuracy VA = 0, the matrix VAM to store the

VA, the current classifier CC, the current wavelet basis CWB, the current model order CMO,
temp value TMP = 0 ;

2 for i ∈ [1, 5] do
3 for j ∈ [1, 6] do
4 CMO = SSMOV(j);
5 for k ∈ [1, 15] do
6 CWB = WBS(k);
7 Select and Construct the SM according to the CMO and CWB
8 for m ∈ [1, 6] do
9 CC = CCA(m);

10 Put the SM into CC for training and verification with 10-fold cross-validation
method, get the VA

11 VAM(m + (j− 1)× 6, k) = VA
12 end
13 end
14 end
15 for n ∈ [1, 36] do
16 for p ∈ [1, 15] do
17 TMP = 0
18 if VAM(n, p) > temp then
19 OCA(i)= CCA(n%6);
20 COV(i) = SSMOV(ceil(n/6));

/* the ceil(X) rounds X to the nearest integer greater than or
equal to X. */

21 CWBA(i) = WBS(p);
22 end
23 end
24 end
25 end
26 Output the OCA, COV, CWBA;

3.2. Wavelet Basis Comparison and Selection

After the classifier is determined, the model order nDSSM and wavelet basis ωDSSM should be
further confirmed through the grid search method. This process can be seen in the step 1 of the
Figure 2. The candidate wavelets include db1, db2, db3, db4, db5, db6, db8, db16, db32, sym2, sym8,
sym16, coif1, coif3 and dmey. The candidate model order is 5 to 10. The Following Tables 6–14 are the
experiments results of the DRMS database without LEFs, in which the highest accuracy values are
highlighted in bold.
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Figure 2. The diagram of the parameter optimization process.

Table 6. The accuracy (%) of the two class sleep stage classification with different wavelet bases and
different order of DSSM under R&K standard. Only DSSMFs are used, no LEFs.

ωDSSM

db1 db2 db3 db4 db5 db6 db8 db16 db32 sym2 sym8 sym16 coif1 coif3 dmey

n D
SS

M

5 95.52 95.55 95.69 95.59 95.17 95.16 95.09 94.98 94.96 95.72 94.94 94.92 95.54 95.07 95.24
6 95.71 95.72 95.70 95.59 95.42 95.43 95.16 94.93 95.00 95.79 95.04 94.82 95.71 95.29 95.01
7 95.63 95.54 95.57 95.70 95.61 95.38 95.28 94.70 94.80 95.59 95.31 94.58 95.60 95.21 94.94
8 95.47 95.51 95.51 95.64 95.50 95.23 95.15 94.85 94.47 95.45 95.16 94.75 95.44 95.20 94.62
9 95.57 95.52 95.54 95.62 95.71 95.34 95.12 94.93 94.33 95.49 95.26 94.55 95.45 95.21 94.45
10 95.38 95.45 95.46 95.57 95.54 95.28 95.23 94.72 94.12 95.48 95.10 94.76 95.44 95.23 94.32

Table 7. The accuracy (%) of three class sleep stage classification with different wavelet bases and
different order of DSSM under R&K standard. Only DSSMFs are used, no LEFs.

ωDSSM

db1 db2 db3 db4 db5 db6 db8 db16 db32 sym2 sym8 sym16 coif1 coif3 dmey

n D
SS

M

5 87.90 87.92 87.72 88.04 86.70 86.73 86.18 85.50 85.25 87.86 86.11 85.55 87.54 86.03 85.43
6 88.29 88.03 88.26 88.05 87.85 87.70 86.72 85.38 85.25 87.82 86.54 85.20 87.90 87.09 85.65
7 87.88 87.72 88.13 87.94 87.67 87.76 87.20 84.85 84.27 87.88 87.43 85.00 87.96 87.18 84.82
8 87.67 87.87 88.10 87.96 87.86 87.68 87.24 85.66 84.15 87.88 87.53 85.83 87.71 87.16 84.20
9 87.81 87.79 88.07 87.83 87.96 87.81 87.55 85.99 83.85 87.84 87.55 86.37 87.67 87.24 83.79
10 87.62 87.88 87.84 88.02 87.80 87.78 87.58 86.14 83.93 87.92 87.52 86.62 87.27 87.16 83.53

Table 8. The accuracy (%) of four class sleep stage classification with different wavelet bases and
different order of DSSM under R&K standard. Only DSSMFs are used, no LEFs.

ωDSSM

db1 db2 db3 db4 db5 db6 db8 db16 db32 sym2 sym8 sym16 coif1 coif3 dmey

n D
SS

M

5 82.61 82.69 82.51 82.93 81.36 81.37 80.29 79.83 79.53 82.88 80.59 79.59 82.13 80.49 79.76
6 83.07 82.71 82.76 82.78 82.29 82.23 81.40 79.63 79.16 82.71 81.07 79.43 82.58 81.75 79.79
7 82.38 82.78 82.81 82.42 82.20 82.35 81.45 78.91 78.37 82.76 81.70 79.03 82.45 81.69 78.62
8 82.29 82.40 82.69 82.32 82.33 82.06 81.51 79.78 78.02 82.39 81.83 79.69 82.36 81.36 78.28
9 82.29 82.56 82.54 82.49 82.24 82.25 81.76 80.00 77.68 82.35 81.99 80.35 82.53 81.58 78.00
10 82.09 82.48 82.71 82.71 82.10 82.38 81.95 79.95 77.70 82.56 81.65 80.50 81.93 81.57 77.48
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Table 9. The accuracy (%) of five class sleep stage classification with different wavelet bases and
different order of DSSM under R&K standard. Only DSSMFs are used, no LEFs.

ωDSSM

db1 db2 db3 db4 db5 db6 db8 db16 db32 sym2 sym8 sym16 coif1 coif3 dmey

n D
SS

M

5 81.14 81.15 80.66 81.17 79.79 79.83 79.04 78.55 78.30 81.20 79.27 78.41 80.51 79.30 78.72
6 81.45 81.38 81.42 81.17 81.00 80.60 79.92 78.38 78.13 81.33 79.66 78.15 81.19 80.23 78.71
7 80.80 80.87 81.00 80.88 80.63 80.48 79.87 77.75 77.08 80.91 80.27 77.53 80.87 80.07 77.61
8 80.95 81.07 81.08 80.92 80.62 80.52 80.13 78.13 76.89 81.00 80.15 78.48 80.85 80.16 77.20
9 80.95 80.90 80.75 80.88 80.67 80.56 80.27 78.73 76.72 80.86 79.99 78.93 80.64 79.97 76.78
10 80.64 80.86 80.97 80.94 80.71 80.72 80.29 78.42 76.62 80.93 80.22 78.94 80.47 79.90 76.12

Table 10. The accuracy (%) of six class sleep stage classification with different wavelet bases and
different order of DSSM under R&K standard. Only DSSMFs are used, no LEFs.

ωDSSM

db1 db2 db3 db4 db5 db6 db8 db16 db32 sym2 sym8 sym16 coif1 coif3 dmey

n D
SS

M

5 78.01 77.96 77.56 77.94 76.47 76.46 75.44 74.99 74.58 77.67 75.80 75.02 77.17 75.58 74.99
6 78.57 78.20 78.26 78.16 77.75 77.56 76.88 75.41 75.07 78.40 76.43 75.02 78.38 77.02 75.34
7 77.31 77.39 77.52 77.38 76.89 77.00 76.32 74.11 73.63 77.39 76.54 74.22 77.03 76.77 74.09
8 77.36 77.43 77.47 77.40 76.93 76.84 76.15 74.76 73.07 77.58 76.55 74.75 77.18 76.21 73.54
9 77.25 77.38 77.56 77.44 76.94 76.89 76.39 74.91 73.01 77.22 76.79 75.21 77.07 76.34 73.10
10 76.76 77.31 77.66 77.59 76.99 76.89 76.64 74.64 72.88 77.24 76.34 75.22 77.08 76.45 72.47

From Tables 6–10, we can see that under the R&K standard, when the order of the DSSM is 6 and
the wavelet basis is selected as db1, the classification accuracy for three to six classes can reach the
highest. When the wavelet basis is selected as sym2, the accuracy of the two classes is the highest.
Through further analysis, it can be seen that in the results of two class classification, the difference
between the accuracy of the db1 and the highest is very small.

Table 11. The accuracy (%) of two class sleep stage classification with different wavelet bases and
different order of DSSM under AASM standard. Only DSSMFs are used, no LEFs.

ωDSSM

db1 db2 db3 db4 db5 db6 db8 db16 db32 sym2 sym8 sym16 coif1 coif3 dmey

n D
SS

M

5 95.09 95.01 95.20 94.99 94.63 94.53 94.63 94.67 94.44 95.10 94.40 94.54 94.91 94.54 94.56
6 95.59 95.63 95.68 95.55 95.42 95.29 95.10 94.75 94.79 95.73 95.02 94.79 95.72 95.12 94.90
7 95.19 95.21 95.50 95.30 95.11 94.89 94.91 94.33 94.26 95.13 94.99 94.35 95.18 95.00 94.30
8 94.82 95.14 95.09 95.31 94.90 94.73 94.71 94.25 93.83 95.17 94.62 94.16 94.99 94.74 94.03
9 95.16 95.28 95.28 95.10 95.26 95.04 94.96 94.16 93.79 95.22 94.68 94.25 95.11 94.81 93.97
10 95.07 95.20 95.18 95.40 95.09 94.98 94.95 94.24 93.41 95.10 94.72 94.20 95.17 95.09 93.46

Table 12. The accuracy (%) of three class sleep stage classification with different wavelet bases and
different order of DSSM under AASM standard. Only DSSMFs are used, no LEFs.

ωDSSM

db1 db2 db3 db4 db5 db6 db8 db16 db32 sym2 sym8 sym16 coif1 coif3 dmey

n D
SS

M

5 87.12 87.04 86.90 87.17 85.81 85.84 85.13 84.83 84.69 86.97 84.81 84.82 86.45 85.45 84.85
6 87.52 87.35 87.55 87.63 87.12 86.88 86.16 84.49 84.61 87.26 85.87 84.48 87.21 86.46 84.85
7 87.62 87.32 87.83 87.49 87.15 87.30 86.58 84.55 83.95 87.49 87.00 84.38 87.44 86.85 84.18
8 86.92 87.56 87.59 87.44 87.15 87.26 86.73 85.55 83.23 87.20 86.77 85.10 87.14 86.67 83.53
9 87.52 87.28 87.68 87.43 87.34 87.43 87.16 85.56 83.36 87.55 86.95 85.74 87.20 86.86 83.07
10 87.38 87.51 87.52 87.62 87.14 87.46 87.32 85.64 83.19 87.37 87.02 86.09 87.25 86.87 82.79
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Table 13. The accuracy (%) of four class sleep stage classification with different wavelet bases and
different order of DSSM under AASM standard. Only DSSMFs are used, no LEFs.

ωDSSM

db1 db2 db3 db4 db5 db6 db8 db16 db32 sym2 sym8 sym16 coif1 coif3 dmey

n D
SS

M

5 81.26 80.82 80.65 80.97 79.27 78.90 78.14 77.80 77.40 80.52 78.48 77.86 80.22 78.13 77.87
6 81.51 80.87 81.18 81.12 80.44 79.86 79.35 77.16 77.01 80.89 79.27 77.35 80.81 79.40 77.56
7 81.13 80.91 81.40 80.86 80.29 80.21 79.61 76.98 75.92 80.74 80.05 77.19 80.48 79.60 76.52
8 80.22 80.60 80.34 80.56 80.10 79.67 79.37 77.82 75.32 80.66 79.42 77.89 80.15 79.41 76.05
9 80.66 80.75 80.77 80.47 80.25 80.38 79.72 77.46 75.54 81.07 79.89 78.11 80.89 79.82 75.01
10 80.50 80.83 81.06 81.29 80.33 80.43 80.21 77.78 75.52 80.69 79.53 78.34 80.15 79.87 74.99

Table 14. The accuracy (%) of five class sleep stage classification with different wavelet bases and
different order of DSSM under AASM standard. Only DSSMFs are used, no LEFs.

ωDSSM

db1 db2 db3 db4 db5 db6 db8 db16 db32 sym2 sym8 sym16 coif1 coif3 dmey

n D
SS

M

5 78.70 78.49 78.22 78.83 77.07 76.94 76.10 75.16 75.45 78.70 76.34 75.41 77.90 76.14 75.82
6 78.72 78.55 78.54 78.67 77.74 77.73 77.08 75.36 74.99 78.58 77.22 75.15 78.29 77.21 75.72
7 78.57 78.49 78.38 78.15 77.95 77.77 77.42 74.81 73.54 78.41 77.19 74.64 77.93 77.02 74.52
8 78.06 78.11 77.94 77.83 77.43 77.56 77.09 75.55 73.45 78.23 77.35 75.33 77.87 77.18 73.64
9 78.28 78.30 78.30 77.74 77.77 78.03 77.64 75.49 73.27 78.60 77.41 75.88 78.14 77.11 73.29
10 77.91 78.29 78.26 78.29 77.87 77.83 77.63 75.12 73.25 78.20 77.49 75.55 78.26 77.37 72.38

As can be seen from Tables 11–14, when the order nDSSM is 6, the highest classification accuracy
can be obtained in two to five classes sleep state classification. Moreover, in the three to five classes
classifications, when the wavelet basis is db1, the highest classification accuracy can be achieved. In the
two classes of sleep classification, when the wavelet base is db1, the accuracy is 0.14% lower than
the highest accuracy. Combining the classification results of the above tables, in order to facilitate
subsequent calculations, the db1 was uniformly used as the wavelet basis for DSSM estimation and
the model order of DSSM adopts 6.

Then, the wavelet basis ωLE and level lLE which are required to calculate LE should be further
determined according to the experimental results in the next step. That is, on the basis of the features
previously extracted from the DSSM, LEFs will be added which have been shown in the Step 2 of the
Figure 2. Tables 15–19 are the classification accuracies of 2–6 classes under the R&K standard, in which
the highest accuracy values are highlighted in bold.

Table 15. The accuracy (%) of two class sleep stage classification with different ωLE and lLE under
R&K standard.

ωLE

db1 db2 db3 db4 db5 db6 db8 db16 db32 sym2 sym8 sym16 coif1 coif3 dmey

l L
E

3 95.71 95.69 95.70 95.84 95.68 95.64 95.68 95.71 95.64 95.67 95.66 95.77 95.69 95.70 95.69
4 95.74 95.69 95.74 95.96 95.69 95.75 95.71 95.63 95.71 95.71 95.58 95.70 95.73 95.56 95.63
5 95.82 95.89 95.90 96.17 95.88 95.87 95.81 95.72 95.85 95.80 95.74 95.74 95.89 95.74 95.72
6 95.80 95.71 95.93 96.06 95.70 95.73 95.69 95.67 95.58 95.84 95.81 95.63 95.82 95.65 95.49
7 95.76 95.74 95.64 95.70 95.71 95.57 95.61 95.57 95.60 95.58 95.53 95.72 95.64 95.54 95.51

Table 16. The accuracy (%) of three class sleep stage classification with different ωLE and lLE under
R&K standard.

ωLE

db1 db2 db3 db4 db5 db6 db8 db16 db32 sym2 sym8 sym16 coif1 coif3 dmey

l L
E

3 88.12 88.07 87.91 88.48 88.12 88.11 88.21 87.86 87.97 88.09 88.02 87.96 88.15 88.10 88.10
4 88.22 88.22 88.22 88.59 88.81 88.12 87.86 88.08 87.91 88.02 88.05 87.92 88.02 87.85 87.94
5 88.51 88.56 88.61 88.72 88.89 88.75 88.14 88.18 88.09 88.47 88.37 88.14 88.64 88.18 87.98
6 88.11 88.09 88.00 88.66 88.73 88.00 87.88 87.63 87.54 88.17 87.70 87.84 87.82 87.76 87.43
7 87.92 87.76 87.58 88.62 88.62 87.65 87.27 87.34 87.35 87.83 87.49 87.39 87.61 87.46 87.27



Sensors 2020, 20, 4677 13 of 20

Table 17. The accuracy (%) of four class sleep stage classification with different ωLE and lLE under
R&K standard.

ωLE

db1 db2 db3 db4 db5 db6 db8 db16 db32 sym2 sym8 sym16 coif1 coif3 dmey

l L
E

3 82.87 82.76 82.98 83.06 82.99 82.80 82.87 82.98 82.75 82.85 82.82 82.91 82.87 82.97 83.02
4 82.97 82.91 83.23 83.54 83.02 82.89 82.85 82.86 82.83 82.93 82.92 82.68 82.89 82.79 82.75
5 83.53 83.52 83.53 83.97 83.71 83.25 83.04 82.99 83.18 83.57 83.07 83.07 83.38 82.98 82.84
6 83.25 82.91 83.67 83.80 82.55 82.76 82.25 82.38 82.40 82.91 82.42 82.11 82.87 82.37 82.17
7 82.57 82.57 82.52 82.60 82.40 82.29 81.93 81.90 82.03 82.56 82.13 81.92 82.43 81.85 81.89

Table 18. The accuracy (%) of five class sleep stage classification with different ωLE and lLE under
R&K standard.

ωLE

db1 db2 db3 db4 db5 db6 db8 db16 db32 sym2 sym8 sym16 coif1 coif3 dmey

l L
E

3 81.24 81.42 81.52 81.66 81.45 81.29 81.31 81.28 81.35 81.37 81.19 81.13 81.27 81.32 81.30
4 81.49 81.55 81.67 81.93 81.70 81.09 81.18 81.10 81.21 81.30 81.45 81.33 81.43 81.28 80.97
5 81.87 81.66 82.32 82.28 81.61 81.42 81.09 80.95 81.01 81.34 80.93 80.92 81.19 81.01 80.79
6 81.59 81.48 81.29 81.82 81.07 80.98 80.67 80.85 80.75 81.52 80.90 80.89 81.36 80.68 80.44
7 81.07 81.04 80.89 81.47 80.70 80.38 80.58 80.59 80.56 80.80 80.69 80.44 80.76 80.47 80.55

Table 19. The accuracy (%) of six class sleep stage classification with different ωLE and lLE under
R&K standard.

ωLE

db1 db2 db3 db4 db5 db6 db8 db16 db32 sym2 sym8 sym16 coif1 coif3 dmey

l L
E

3 78.25 78.39 78.44 78.52 78.18 78.35 77.99 78.08 78.15 78.29 78.06 78.03 78.21 78.14 78.20
4 78.63 78.64 78.67 78.80 78.67 78.65 78.56 78.54 78.54 78.62 78.44 78.45 78.63 78.48 78.28
5 78.91 78.91 78.88 78.92 78.23 78.42 78.38 78.22 78.38 78.77 78.24 78.20 78.81 78.44 77.98
6 78.45 78.35 78.26 78.64 77.97 77.90 77.88 77.68 77.78 78.36 77.74 77.57 78.22 77.64 77.36
7 77.92 77.66 77.48 77.55 77.31 77.22 77.25 77.08 77.63 77.60 77.45 77.18 77.81 77.22 77.02

As can be seen from Tables 15–19, when lLE = 5, the ωLE is db4, the accuracy of two, four and six
classes is the highest. Moreover, when the ωLE is set to the db5 and db3, the classification accuracy of
three and five classes can reach the highest respectively. The Table 20 is the confusion matrix of six
classes sleep state classification on DRMS database with IMBEFs under the R&K standard. As shown in
the Table 20, the sensitivity of Awa, REM, S1, S2, S3 and S4 are 93.68%, 81.16%, 14.37%, 89.29%, 25.71%
and 77.99%, respectively. Moreover, the overall accuracy of the six classes classification is 78.92%.

Table 20. The confusion matrix of six classes sleep state classification on DRMS database under the
R&K standard. The lLE = 5, ωLE = db4, nDSSM = 6, ωDSSM = db1.

Automatic Classification

Awa REM S1 S2 S3 S4 Sen (%) Overall Accuracy (%)

Ex
pe

rt

Awa 5247 96 85 155 3 15 93.68

78.92

REM 203 3697 86 566 1 2 81.16
S1 418 784 257 328 1 0 14.37
S2 262 731 62 11852 248 119 89.29
S3 20 0 0 1022 543 527 25.71
S4 174 0 0 231 271 2395 77.99

Tables 21–24 show the classification accuracy of 2–5 classes with LEFs on the DRMS database
under the AASM, in which the highest accuracy values are highlighted in boldface. As can be seen
from these tables, after adding LEFs, the accuracy of each classification has been greatly improved.
Among them, the highest accuracy can be obtained when using the LEFs extracted from the 5 level
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WPD and there are three corresponding wavelet bases, which are db1, db2 and db4. When the wavelet
basis is selected as db4, the accuracy of two classes and four classes can reach the highest. In addition,
the accuracy of three and five classes are 88.22% and 79.90% respectively, which is not much different
from 88.26% and 79.97% of the corresponding highest classification accuracy. Therefore, the parameter
of lLE will be set as 5 and ωLE will be set as db4 in this paper.

Table 21. The accuracy (%) of two class sleep stage classification with different ωLE and lLE under
AASM standard.

ωLE

db1 db2 db3 db4 db5 db6 db8 db16 db32 sym2 sym8 sym16 coif1 coif3 dmey

l L
E

3 95.39 95.21 95.34 96.18 95.25 95.25 95.33 95.21 95.26 95.99 95.28 95.21 95.35 95.24 95.30
4 96.00 95.70 95.84 96.24 95.75 95.37 95.34 95.25 95.34 96.24 95.31 95.24 95.85 95.39 95.43
5 95.87 95.91 95.94 96.48 95.95 95.36 95.41 95.46 95.45 96.41 95.45 95.52 95.53 95.40 95.45
6 95.61 95.37 95.79 96.16 95.33 95.36 95.37 95.28 95.25 96.34 95.38 95.42 95.32 95.30 95.27
7 95.42 95.31 95.26 95.90 95.38 95.26 95.24 95.34 95.34 95.35 95.21 95.30 95.38 95.22 95.11

Table 22. The accuracy (%) of three class sleep stage classification with different ωLE and lLE under
AASM standard.

ωLE

db1 db2 db3 db4 db5 db6 db8 db16 db32 sym2 sym8 sym16 coif1 coif3 dmey

l L
E

3 87.99 87.92 87.62 87.56 87.75 87.67 87.52 87.85 87.55 87.63 87.64 87.77 87.73 87.51 87.59
4 87.80 87.65 87.67 87.71 87.68 87.64 87.51 87.69 87.77 87.76 87.78 87.70 87.79 87.58 87.88
5 88.00 88.26 88.04 88.22 87.96 87.99 87.85 87.92 87.84 88.17 88.04 88.04 88.04 87.99 87.87
6 87.89 87.78 87.75 87.71 87.42 87.64 87.59 87.34 87.55 87.64 87.58 87.34 87.82 87.44 87.26
7 87.13 87.71 87.43 87.92 87.23 87.62 87.38 87.39 87.52 87.75 87.55 87.34 87.51 87.58 87.11

Table 23. The accuracy (%) of four class sleep stage classification with different ωLE and lLE under
AASM standard.

ωLE

db1 db2 db3 db4 db5 db6 db8 db16 db32 sym2 sym8 sym16 coif1 coif3 dmey

l L
E

3 81.14 81.43 81.45 81.42 81.23 81.40 81.44 81.53 81.33 81.57 81.07 81.55 81.65 81.29 81.15
4 81.64 81.47 81.36 81.36 81.46 81.33 81.25 81.47 81.37 81.75 81.09 81.31 81.61 81.26 81.37
5 81.79 82.03 81.91 82.08 81.84 81.93 81.59 81.82 81.73 82.23 81.51 81.65 82.12 81.64 81.40
6 81.83 81.66 81.66 81.76 81.39 81.40 81.37 81.32 80.99 81.51 81.16 81.01 81.85 80.99 80.65
7 81.35 81.28 81.19 81.47 81.06 80.96 80.93 80.66 80.75 81.37 80.85 80.68 81.40 80.50 80.40

Table 24. The accuracy (%) of five class sleep stage classification with different ωLE and lLE under
AASM standard.

ωLE

db1 db2 db3 db4 db5 db6 db8 db16 db32 sym2 sym8 sym16 coif1 coif3 dmey

l L
E

3 79.24 79.02 78.87 79.20 79.08 78.99 78.86 78.96 78.77 78.89 79.16 79.09 79.03 78.66 79.09
4 79.41 79.26 79.33 79.25 79.14 78.80 79.08 79.03 78.91 78.93 78.82 79.16 79.05 79.03 79.01
5 79.97 79.54 79.48 79.90 79.45 79.34 79.36 79.38 79.62 79.77 79.36 79.15 79.53 79.43 79.05
6 79.10 79.29 79.20 79.23 79.13 78.94 78.89 78.68 78.64 79.20 78.86 78.52 79.39 78.43 78.01
7 79.04 78.69 78.89 78.85 78.67 78.39 78.48 78.33 78.16 78.98 78.71 78.22 78.66 78.30 77.67

The confusion matrix of five classes sleep state classification is listed in the Table 25. As can be
seen in this table, the overall accuracy is 79.90%. The sensitivity of Awa, REM, N1, N2, N3 are 92.89%,
81.22%, 17.57%, 85.52% and 78.79%. Furthermore, the receiver operating characteristic (ROC) curve of
the classifier trained by this dataset with the confirmed parameter is shown in Figure 3.

As can be seen in the Figure 3, when the positive samples is Awa, the true positive rate is 0.93
and the false positive rate is 0.05. In addition, when the positive samples are REM, N2 and N3,
the corresponding positive sample rates are 0.81, 0.86 and 0.79. When the positive samples are N1,



Sensors 2020, 20, 4677 15 of 20

the area under the curve (AUC) area is only 0.18. Moreover, the issue of low classification accuracy of
S1(N1) will be discussed in the Section 4.

Table 25. The confusion matrix of five classes sleep state classification on DRMS database under the
AASM standard. The lLE = 5, ωLE = db4, nDSSM = 6, ωDSSM = db1.

Automatic Classification

Awa REM N1 N2 N3 Sen(%) Overall Accuracy (%)

Ex
pe

rt

Awa 3306 53 68 111 21 92.89

79.90
REM 131 2452 93 330 13 81.22
N1 341 480 260 389 10 17.57
N2 229 499 50 7056 417 85.52
N3 77 1 0 761 3117 78.79

(a) Positive=Awa (b) Positive=REM (c) Positive=N1

(d) Positive=N2 (e) Positive=N3

Figure 3. The ROC curve of the classifier to classify the five classes of DRMS database under the
AASM standard.

3.3. Experiments on S-EDF and ISRUC3 Database

After experiments on the DRMS database, through the comprehensive comparison and selection,
the classifier is selected as the Bagged Tress, nDSSM is set to 6, lLE is set to 5, ωDSSM is set to db1 and
ωLE is set to db4. In order to further evaluate the performance of the method proposed in this paper,
we will use these parameters to conduct experiments on the S-EDF database and the ISRUC3 database.

The classification accuracy and Cohen’s Kappa Coefficients of the 2–6 classes on the S-EDF
database are shown in Table 26. Furthermore, the confusion matrix of six class classification is listed
for further analysis in Table 27.
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Table 26. The classification accuracy and Cohen’s Kappa Coefficient of 2–6 class sleep classification on
S-EDF database.

6 Classes 5 Classes 4 Classes 3 Classes 2 Classes

Accuracy 92.04% 92.50% 93.87% 94.90% 98.74%
Cohen’s Kappa Coefficient 0.8266 0.8364 0.8646 0.8834 0.9697

Table 27. the Confusion matrix of six classes sleep state classification on S-EDF database.

Automatic Classification

Awa REM S1 S2 S3 S4 Sen (%) Overall Accuracy (%)

Ex
pe

rt

Awa 73165 483 46 141 0 0 99.09

92.04

REM 876 4819 61 988 0 0 71.46
S1 578 1174 583 682 0 0 19.32
S2 375 863 76 15631 254 50 90.62
S3 71 0 0 1003 1055 159 46.11
S4 23 0 0 171 256 1060 70.20

Similarly, the method proposed in this paper was also tested on the ISRUC3 database.
The experimental results are shown in the following Tables 28 and 29.

Table 28. The classification accuracy and Cohen’s Kappa Coefficient of 2–5 class sleep classification on
ISRUC3 database.

Classes 5 Classes 4 Classes 3 Classes 2 Classes

accuracy 81.65% 84.68% 90.54% 96.18%
Cohen’s Kappa Coefficient 0.7629 0.7729 0.8112 0.878

Table 29. The confusion matrix for five classes case on ISRUC3 database.

Automatic Classification

Awa REM N1 N2 N3 Sen(%) Overall Accuracy (%)

Ex
pe

rt

Awa 1537 13 84 53 15 90.31

81.65
REM 36 1032 89 68 13 83.36
N1 91 135 648 242 7 57.70
N2 68 85 128 2312 257 81.12
N3 15 1 2 229 1729 87.50

As can be seen from Table 28, the classification accuracies of two to five classes are 96.18%, 90.54%,
84.68% and 81.65%, respectively. In the five class classification, the sensitivity of Awa, REM, N1, N2,
N3 are 90.31%, 83.36%, 57.70%, 81.12% and 87.50%, respectively.

4. Discussion

Table 30 shows the comparison of the classification accuracy from two to six classes of the
various published method and the method proposed in this paper on the DRMS database under the
R&K standard.
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Table 30. The accuracy comparison of various published methods on DRMS database under the R&K
standard. Highest accuracy in each case is highlighted in bold.

Epoch Mumber 6 Classes (%) 5 Classes (%) 4 Classes (%) 3 Classes (%) 2 Classes (%) Cross-Validation

Hassan et al. [3] 30401 70.73 73.50 79.12 84.4 93.3 10-fold
Hassan et al. [11] 30401 68.74 73.05 78.8 82.96 94.02 0.5/0.5

Shen et al. [27] 30401 78.2 80.9 82.7 87.7 94.9 10-fold
Proposed method Without LEFs 30401 78.52 81.26 82.81 87.95 95.59 10-fold
Proposed method with IMBEFs 30401 78.92 82.28 83.97 88.72 96.17 10-fold

As can be seen from the Table 30 above, when the only DSSMFs is used, the method proposed in
this paper has a certain improvement in accuracy compared with the others. After adding LEFs on
the basis of DSSMFs, the classification accuracies of two to six classes are improved by 1.27%, 1.02%,
1.27%, 1.38% and 0.72% compared with our previous study [27].

It can be seen from Table 31 that the method proposed in this paper has a certain improvement in
the sleep stage classification of 3–5 classes on the DRMS database compared with the current existing
methods. The N1 sensitivity of this method on the DRMS database is 17.57%, which is higher than
14.3% of Ghimatgar [7]. Moreover, Table 32 is the accuracy comparison of various published methods
on S-EDF database.

Table 31. The accuracy comparison of various published methods on the Dreams Subjects database
under the AASM standard. Highest accuracy in each case is highlighted in bold.

Epoch number 5 Classes (%) 4 Classes (%) 3 Classes (%) 2 Classes (%) Cross-validation

Hassan et al.[3] 20265 72.28 79.44 83.75 95.2 10-fold
Hassan et al.[11] 20265 74.59 80.0 85.42 97.2 10-fold

Ghimatgar et al.[7] 20265 78.08 80.38 86.88 94.8 20-fold
Proposed Method Without LEFs 20265 78.72 80.9 87.52 95.7 10-fold
Proposed Method with IMBEFs 20265 79.90 82.08 88.22 96.48 10-fold

Table 32. The accuracy comparison of various published methods on the S-EDF database under the
R&K standard. Highest accuracy in each case is highlighted in bold.

Epoch Number 6 Classes (%) 5 Classes (%) 4 Classes (%) 3 Classes (%) 2 Classes (%) Cross-Validation

Hassan et al. [3] 15188 90.38 91.50 92.11 94.8 97.5 0.5/0.5
Abdulla et al. [6] 23806 93 – – – – -

Ghimatgar et al. [7] 15188 89.91 91.11 92.19 94.65 98.19 0.5/0.5
Ghimatgar et al. [7] 40100 79.13 81.86 83.71 88.39 95.98 0.5/0.5

Hassan et al. [10] 15188 88.62 90.11 91.2 93.55 97.73 0.5/0.5
Hassan et al. [11] 15188 88.07 83.49 92.66 94.23 98.15 0.5/0.5
Sharma et al. [12] 15139 90.03 91.13 92.29 94.66 98.02 10-fold CV

Michielli et al. [17] 10280 – 86.7 – – – 10-fold CV
Shen et al. [27] 103505 91.9 92.3 93.0 93.9 98.6 10-fold CV

Sharma et al. [28] 85900 91.5 91.7 92.1 93.9 98.3 10-fold CV
Liang et al. [29] 3708 – 83.6 – – – 0.5/0.5
Hsu et al. [30] 2880 – 87.2 – – – 10-fold CV

Hassan et al. [31] 15188 89.6 90.8 91.6 93.9 97.2 0.5/0.5
Zhu et al. [32] 14963 87.5 88.9 89.3 92.6 97.9 10-fold CV
Jiang et al. [33] 36972 – 91.5 – – – 2-fold CV

Rahman et al. [34] 15188 90.26 91.02 92.89 94.1 98.24 0.5/0.5
Supratak et al. [35] 41950 – 79.8 – – – 20-fold CV
Proposed Method 104368 92.04 92.50 93.87 94.90 98.74 10-fold CV

It can be seen from Table 32 that when a large number of samples are used, the accuracy is also
improved compared with other published methods. Among them, the accuracy for the classification of
four classes is 93.87%, while the Sharma [28] is 92.1% and the Shen [27] is 93.0%. In the classification of
two classes, Abdulla et al. [6] has the highest accuracy of 93%; however, the number of epoch they used
is only 23806. The sensitivity of S1 in this paper is 19.32%, which is higher than 18.3% of Ghimatgar [7]
and 15.9% of Shen [27].

The experiments results of the proposed method on ISRUC3 database are also compared with
other methods, which can be seen in the following Table 33.
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Table 33. The accuracy comparison of the ISRUC3 database with the AASM standard. Highest accuracy
in each case is highlighted in bold.

Epoch number 5 Classes 4 Classes 3 Classes 2 Classes

Overall Accuracy Ghimatgar et al.[7] 8889 77.56 82.74 88.26 93.76
Proposed Method 8889 81.65 84.68 90.54 96.18

Cohen’s kappa Coefficient Ghimatgar et al.[7] 8889 0.71 0.75 0.77 0.79
Proposed Method 8889 0.7629 0.7729 0.8112 0.878

As can be seen from the Table 33, compared with Ghimatgar [7], the detection accuracy of two and
three classes is improved by more than 2 points. The sensitivity of S1 in Table 29 is 57.70%, which is
higher than 33% of Ghimatgar [7]. Furthermore, the Cohen’s kappa Coefficient is also much higher
than Ghimatgar [7].

It should be noted that the classification of S1 which is an enormous challenge to all of the
published method. From neurophysiological standpoint, S1(N1) is a transition phase and is a mixture
of wakefulness and sleep resulting in similarity with the neural oscillations of S1 and Awa. In REM state,
the cortex shows 40–60 Hz gamma waves as it does in waking. So the S1 state is often misclassified
as REM or Awa state during the visual inspection by experts [3,11]. This is why many of the S1
epochs are misclassified as REM, Awa or S2 stages in this work. In addition, with different databases,
the classification accuracy of S1 (N1) are also different. The detection accuracy of N1 on the ISRUC3
database reached 57.7%; on the DRMS database and the S-EDF database, however, it is less than 20%.
This is also related to the different proportions of S1 stages in each database. Under the same AASM
standard, on the ISRUC3 database, the S1 accounted for 12.65%; however, on the DRMS database,
the S1 accounted for only 7.3%. Furthermore, under the R&K standard, the sensitivity of S3 on the
S-EDF and DRMS databases is low, only 46.11% and 25.71%, respectively. The reason relate to this
phenomenon rely mainly on that the S3 is a transition phase of S2 and S4. Thus the further research
should be conducted to improve the S3 detection accuracy. Moreover, as can be seen in Table 20, a large
number of S3 is misclassified as S2 and the other large part is misclassified as S4. Similarly, in Table 27,
almost half of S3 epochs are misclassified as S2 and a small part are misclassified as S4. In addition,
when under the AASM standard, after combining the S3 and S4 into N3, the sensitivity of N3 has been
improved. As shown in Table 25, only 761 epochs of N3 were misclassified as N2; however, in Table 20,
1022 epochs of S3 were misclassified as S2 and 231 epochs of S4 were misclassified as S2. Therefore,
the AASM standard is more suitable for guiding the researchers to annotate the sleep stages than the
R&K standard.

5. Conclusions

In this paper, a novel IMBEF based automatic sleep stage classification method is proposed.
Moreover, a grid search strategy was presented to determine a suitable model order nDSSM and a
wavelet basis ωDSSM for estimating the DSSM among 15 candidate wavelets and 6 candidate model
orders. With the same search strategy, a proper wavelet basis ωLE and the WPD level lLE for LE
calculation are determined under 15 candidate wavelets and multilevel decomposition. The fused
IMBEFs extracted from the DSSM and LE would be used as the input features of the suitable
classifier which can be selected by comparing a variety of classifiers’ experiment results. In order to
precisely verify the performance of the proposed IMBEF based automatic sleep stage classification
method, experiments were carried out on three public databases. The comparison results with other
state-of-the-art methods show that the proposed algorithm can achieve higher accuracy.

We demonstrated in this paper measurable improvements in automatic sleep stage classification,
providing better understanding and diagnostic of the sleep phenomenon, clearly essential in medical,
wellness and other fields.
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