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Abstract

Original Article

Introduction

The brachial plexus is a network of nerves that normally 
begin as five ventral roots of the C5, C6, C7, C8, and T1 
spinal nerves. The C5 and C6 roots combine to form the 
upper trunk, the C7 root continues as the middle trunk and 
the C8 and T1 roots combine to form the lower trunk. Each 
of the trunks forms anterior and posterior divisions that 
finally form three cords,[1] though there may be variants.[2,3] 
The peripheral nerves originating from the brachial plexus 
innervate the muscles of the thorax and the upper extremities 

and have sensory innervations to the skin of the shoulder and 
arms.[1] The brachial plexus is an injury‑prone anatomy and 
is involved in a variety of pathologies leading to impaired 
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upper limb functions.[4] Sixty‑seven percent of closed brachial 
plexus trauma is caused by motorcycle accidents followed 
by car crashes (14%). Among these, 53% of the injuries are 
complete, 39% are limited to the upper plexus, and 6% limited 
to the lower plexus alone.[5] Obstetric brachial plexus injury 
during labor is also common.[6]

Conventional techniques to image the brachial plexus 
include the ultrasound and the magnetic resonance 
imaging (MRI). Ultrasound requires thorough knowledge 
of the anatomy[7] and is operator dependent. With 
conventional MR methods, the oblique course of these 
nerves, presence of blood vessels, and musculature make 
the brachial plexus extremely difficult to image. The nerve 
visualization with high conspicuity is obtained through 
nonneural tissue suppression by heavy T2 weighting;[8] 
however, these techniques often fail to suppress the signal 
from the small blood vessels intertwining the fine nerves. 
Fat suppressed inversion recovery turbo spin‑echo (TSE) 
sequence is useful to image peripheral nerves,[9] however, 
due to low signal‑to‑noise ratio (SNR) coupled with only 
partial suppression of the blood vessels, the delineation 
of the nerves may not be easy.[10] As a result of this, MR 
neurography,[8] a broad and actively evolving domain 
for imaging and evaluation of the peripheral nerves, has 
generated considerable interest among clinicians and 
researchers.[8‑12] Nowadays, this technique is optimized 
usually at 3T. Diffusion‑weighted imaging with background 
signal suppression  (DWIBS) based MR neurography[13,14] 
with maximum intensity projection (MIP) makes possible 
the visualization of the whole nerve along its long axis. 
However, relatively lower spatial resolution is often a 
challenge to its clinical efficacy to visualize fine nerves and 
to detect focal lesions.[15] Another diffusion technique that is 
clinically feasible to study infiltration and disruption of the 
plexuses is tractography with diffusion tensor imaging.[16]

Three‑dimensional nerve‑SHeath signal increased with INKed 
rest‑tissue RARE imaging (3D SHINKEI) MR neurography 
sequence utilizes three components: Firstly, a spectral adiabatic 
inversion recovery fat suppressing prep‑pulse. Secondly, 
an improved motion‑sensitized driven equilibrium iMSDE 
prep‑pulse, which retains signal from the static and high T2 
tissues while that from the moving blood tissues and low T2 
background is suppressed [Figure 1]. Thirdly, a 3D volume 
isotropic acquisition (VISTA) acquisition with low refocusing 
flip angle evolution designed for targeting nerves.[13,17,18] With 
the fat and moving blood signal suppression, this sequence 
generates high‑quality nerve images with an improved 
resolution at the high field MR.[8,19] To obtain high nerve 
SNR, most of the recent developments have happened at 
3.0T MRI.[10,12,20] MRI sequence is usually rated based on its 
ability to locate the trauma, nerve continuity, compressions, 
and disruptions.[21,22] A recent study on brachial plexus imaging 
concluded that although the nerve signal is better at 3T, the 
diagnostic quality of the images did not differ significantly 
from that of 1.5T.[20]

We hypothesize that with an experimentally optimized T2 prep 
pulse sequence, optimum nerve signal, and nerve‑to‑muscle 
contrast resolution could be obtained using 1.5T. Hence, 
we argue for the importance of continued research at 1.5T, 
considering that a very high share of clinical MRI scanners is 
still 1.5T. In this study, we compare the diagnostic efficiency of 
3D SHINKEI MR neurography sequence over the conventional 
2D short‑term inversion recovery  (STIR) TSE imaging 
sequence and DWIBS in imaging patients to predict nerve 
root injury of brachial plexus at 1.5T.

We conducted this study to optimize and study the feasibility 
to obtain diagnostic quality images with 3D SHINKEI 
sequence at 1.5T MRI. For this, we followed an experimental 
study on volunteers followed by the feasibility on 24 patients. 
The grading was decided based on nerve SNR, blood signal 
suppression, robust fat suppression, appreciation of the nerve 
signal proximally and distally, signal spread in fine nerve.

Materials and Methods

Institutional Ethical Committee approval was obtained for the 
study. Prior written informed consent was obtained before the 
scans from all the enrolled subjects. The study was performed 
in two parts: (a) Optimization of T2prep sequence at 1.5T; 
and (b) feasibility study of the optimized SHINKEI sequence 
for generating high‑quality MR Neurography images and its 
comparison with DWIBS MR Neurography and 2D STIR 
TSE.

Optimization of T2prep of SHINKEI
One of the primary goals of this work was to find the optimal 
preparation duration of the iMSDE module of the SHINKEI 
sequence at 1.5T so that the muscle signal is suppressed as 
much as possible while retaining the nerve signal  (Snerve). 
Numerical simulations of the iMSDE module’s T2prep with 
durations in the range of 0‑100 ms acquisition were performed. 
Signal for a tissue at the end of the module was evaluated based 
on the simplistic T2 decay model (equation 1).

Figure 1: iMSDE preparation module. Gradients shown are applied in the 
direction in which the motion sensitization is desired. T2prep is the MSDE 
duration that also contributes to an additional T2 contrast. In the SHeath 
signal increased with INKed rest‑tissue RARE imaging sequence, this is 
followed by a fat suppressing spectral adiabatic inversion recovery pulse
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The nerve‑muscle contrast (equation2) has to be maximized.	

  nerve muscle nerve muscleC S S− = − � (2)

Cnerve‑muscle is a good measure for a tradeoff to suppress the 
muscle background while retaining maximum nerve signal. 
The T2 values for nerve and muscle at 1.5T were taken as 
74 ms and 35 ms, respectively.[22,23] The proton density was 
assumed to be the same for nerve and muscle. The behavior 
of Snerve and the Cnerve‑muscle was then investigated with respect 
to the iMSDE preparation duration.

In vivo volunteer imaging
All experiments were performed on a 1.5 T MR Scanner 
(Achieva, Philips, Best, The Netherlands) using a 16 
channel‑head and neck NV SENSE coil. A low constant 
refocusing angle of 30° was employed for the VISTA acquisition.

In vivo MR neurography data obtained with a range of iMSDE 
durations  (30, 40, 50, 60, and 70 ms) from a set of seven 
volunteers  (one female and six males with mean age of 
25.43 ± 2.82) and the results from the numerical simulation 
were compared to mean normalized signal from the volunteers. 
The mean nerve signal was measured with an elliptical area 
of 10 mm2, the muscle signal (mean) with a rectangular area 
of 100 mm2, and the air (noise– standard deviation) with an 
area of 800 mm2  [Figure 2c]. Experimental and theoretical 
values for the signal‑to‑noise ratio and contrast resolution 
were compared. Furthermore, the best placement of a shim 
volume was experimentally determined for robust background 
fat suppression.

Relevant sequence parameters were:‑SHINKEI: Repetition 
time  (TR) of 2.5 s, effective echo time: 127 ms, echo 
train length: 80, with a low constant refocusing flip 
angles  (alpha  =  30°) isometric voxel: 1.2  mm, acquisition 
matrix: 208  ×  312, Velocity encoding: 1  cm/s with a scan 
time of 5:27 min. DWIBS: Repetition time: 9 s, echo time: 
72 ms, b factor: 600 s/mm2, EPI factor: 43, signal averages: 20, 
voxel size: 1.39 × 1.39 × 3 mm, acquisition matrix: 132 × 97, 
and a scan time of 5:32 min. 2D STIR: Repetition time: 2.5 
s, echo time: 80 ms, echo train length: 19, signal averages: 1, 
acquisition matrix: 276 × 158, and a scan time of 4:20 min.

SHINKEI Feasibility Study
Subjects
Most of the cases involved brachial plexopathies secondary to 
trauma (n = 13), previous surgery (n = 3), Neurofibroma (n = 1), 
cervical radiculopathy (n = 1). Six patients were referred to 
brachial plexus due to pain or numbness in the upper arm and 
three of the cases were normal MRI of the brachial plexus. 
One patient was a 30‑year‑old female. The rest were males in 
the age range 17‑65. Further clinical details of each patient is 
given in Supplementary Table 1.

The optimized SHINKEI sequence was performed along 
with the routine protocol in 24 patients clinically advised 
for brachial plexus imaging. The diagnostic quality 
of SHINKEI, STIR, and DWIBS images for different 
locations– preganglionic and postganglionic brachial plexus 
was rated on a four‑point scale  (4 – excellent, 3 – good, 
2 – moderate, and 1 – poor) for diagnostic confidence by a 
panel of two experienced radiologists, RK and SM, with 20 
and 11 years of experience, respectively, through consensus. 

Figure 2: (a) The exponential decay of the nerve and muscle signal. Simulation values and experimental relative signal values from nerve and muscle 
after normalization are depicted. (b) The cost function Nerve‑ Muscle contrast; Experimental validation of iMSDE optimization in comparison to the 
theoretical values. The nerve‑muscle contrast peaks at T2prep time of 50 ms. iMSDE T2prep time is hence chosen as 50 ms. (c) Visualization of the 
anatomy of the brachial plexus in a 24‑year‑old volunteer with maximum intensity projection images. The oval and square ROIs indicate how the nerve 
and background SNR is measured
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The image quality aspects considered while scoring 
were blood signal suppression, robust fat suppression, 
appreciation of the nerve signal proximally and distally, and 
signal spread in fine nerve. An objective comparison of the 
SHINKEI and STIR images was performed by measuring 
the SNR and contrast ratios on the contralateral side of 
the patient. It was not possible to perform the objective 
analysis on the DWIBS images as spatial resolution of the 
images was poor, the nerve structures blurred. One out of 
the 24 patients had to be excluded from this analysis as the 
plexopathy was bilateral. In addition, these data were also 
compared to the surgical findings available in seven of the 
24 patients to check the accuracy for preoperative detection 
of nerve injury.

Statistical analysis
Intraclass correlation was employed to evaluate the reliability 
of the readers. Nonparametric Friedman test for the repeated 
measures was conducted for the grades (arrived by consensus) 
for the different sequences, and a P < 0.05 was considered 
statistically significant. Wilcoxon signed‑rank tests with 
Bonferroni corrections  (P  =  0.016) were performed for 
post hoc test. A  two‑tailed paired t‑test was performed to 
compare the nerve SNR and the nerve–muscle contrast ratios 
of SHINKEI and the STIR TSE images. Chi‑square test was 
performed to compare the predictive potential of SHINKEI, 
STIR TSE, and DWIBS with regard to avulsion (with Yates 
corrected P values). A Goodman–Kruskal index of predictive 
association  (lambda) was arrived at using this data. All 
statistical tests were performed using IBM SPSS  (SPSS, 
Version 26.0. Bangalore).

Results

Optimization of iMSDE preparation module
The numerical simulation indicates that the Snerve and Smuscle 
decrease exponentially characteristic of their T2 relaxation 
rates [Figure 2a] and Cnerve‑muscle peaked at iMSDE T2prep time 
50 ms [Figure 2b], and the experimental data obtained from 
the volunteers followed the trends [Figure 2a and b]. Based 
on this, a T2prep of 50 ms was chosen as the best tradeoff 
and nerve signal for the feasibility study of the optimized 
SHINKEI sequence for generating high‑quality MRN images 
at 1.5T [Figure 2c]. A shim volume partly extending to the 
neck and partly to the thorax and not including space outside 
the subject was the best for robust fat suppression.

Feasibility study of SHINKEI
A comparative evaluation based on the consensus grades 
is graphically represented as a bar chart in Figure 3. The 
results [Table 1] of the Intraclass correlation between the 
two readings are reported as ICC (95% Confidence Interval), 
P  value for the three sequences at different anatomical 
locations of the brachial plexus. The independent scores 
from each radiologist are given in  Supplementary Tables 2 
and 3.

The Friedman test and the corresponding Wilcoxon 
nonparametric test showed that the readings were not 
significantly different for SHINKEI and STIR throughout 
the entire anatomy. However, SHINKEI and STIR were 
considerably better than DWIBS  (P  =  0.002 each) at 
the preganglionic plexus and the distal postganglionic 
plexus (P < 0.001 each). At the level of the roots, there was 
no significant difference in the readings.

Preganglionic plexus
Mean ranks (Median (25th percentile and 75th percentile)) for 
SHINKEI is 2.5 (4, [4, 4]), STIR is 2.1 (4, [3,4]) and DWIBS 
is 1.4 (3, [2, 3]). Chi‑Square 16.9, df 2, P = 0.0002. Post hoc 
test: No significant difference between the SHINKEI and 
STIR scores  (P  =  0.02), both SHINKEI  (P  =  0.0002) and 
STIR (P = 0.0021) significantly better than DWIBS.

Postganglionic proximal (Roots and trunks)
Mean ranks  (25th percentile, 50th percentile, 75th percentile) 
for SHINKEI 2.3 (4, [4, 4]), STIR 1.8 (4, [3, 4]) and DWIBS 
1.9 (4, [3, 4]). Chi‑Square 2.44, df 2, P = 0.295. There was no 
significant difference between SHINKEI, DWIBS, and STIR 
TSE scores.

Figure 3: A comparison between SHeath signal increased with INKed 
rest‑tissue RARE imaging, short‑term inversion recovery turbo spin‑echo 
and diffusion‑weighted imaging with background signal suppression 
image quality based on grading at various anatomical regions of the 
brachial plexus. The bars indicate the number of cases where a particular 
anatomical region has obtained a high score of 3 on 4  (“good” to 
“excellent” visualization)

Table 1: Results of intra class correlation coefficient used 
to assess the reliability of the readers

Preganglionic 
plexus

Postganglionic roots

Proximal Distal
SHINKEI 0.869, P<0.001 0.785, P<0.001 0.790, P<0.001
STIR 0.889, P<0.001 0.747, P<0.001 0.968, P<0.001
DWIBS 0.719, P<0.001 0.713, P<0.001 0.794, P<0.001
SHINKEI: SHeath signal increased with INKed rest‑tissue RARE Imaging, 
STIR: Short‑term inversion recovery, DWIBS: Diffusion‑weighted 
imaging with background signal suppression
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Postganglionic distal  (divisions and cords): Mean 
ranks (Median (25th percentile, 75th percentile)) for SHINKEI 
2.3 (3, [3, 4]), STIR 2.5 (3, 3,4) and DWIBS 1.3 (2, [2,3]). 
Chi‑Square 21, df 2, P  <  0.0001. Post hoc test: No 
significant difference between the SHINKEI and STIR 
scores  (P  =  0.1499), both SHINKEI  (P  =  0.0004) and 
STIR (P = 0.0002) significantly better than DWIBS.

Objective analysis of SHINKEI and STIR TSE images
The mean nerve SNR of the SHINKEI images was greater than 
on the short term inversion recovery (STIR) turbo spin-echo 
(TSE) images (78.52 vs. 65.48 au., P < 0.001). The nerve–
muscle contrast ratio of the SHINKEI images was greater than 
the STIR TSE images (0.61 vs. 0.37 au., P < 0.001).

In addition, for patients, the extent of the avulsion and 
ruptures were better appreciated on the SHINKEI image 
compared to the DWIBS  [Figures  4 and 5]. SHINKEI 
images depicted the diffusion restriction at the neuroma 
formation clearly [Figure 6]. The grade 1 subacute injury is 
clearly discernible on the SHINKEI and STIR TSE images 
but not on the DWIBS images  [Figure  7]. Nineteen nerve 
roots were identified in surgery from the seven patients. 
The results including sensitivity, specificity, and estimated 

probability of correct detection were compared between 
the three sequences  [Table  2]. In five of these patients, 
root avulsion was detected, and these were reflected in the 
imaging findings as pseudomeningioceles. This is detailed in 
Supplementary Table 4.

Discussion

The present study has explored the feasibility of imaging the 
brachial plexus with 3D SHINKEI at 1.5 T and compared it 
with the current clinical pulse sequences STIR and DWIBs. 
One of the main goals of this study was to find the optimal 
preparation duration of the iMSDE pulse in SHINKEI MRN 
that would suppress the signal from muscle while retaining 
most of the nerve signal. A numerical simulation that calculates 
the relative signal available as a function of the T2prep was 
performed, and the optimum T2prep for maximum nerve‑muscle 
contrast measured through this simulation was validated with 
volunteer studies. Our simulation experiments with iMSDE 
module are in agreement with a previous study[23] that indicated 
the possibility of a T2prep pulse‑set to manipulate the T2 contrast 
of SHINKEI. Based on the study, T2prep duration of 50 ms was 
chosen to be optimal to obtain the best contrast resolution while 
still ensuring good nerve signal.

The feasibility study of using SHINKEI sequence as a part 
of the routine neurography protocol on 24 patients at 1.5T 
showed that the SHINKEI sequence efficiently suppresses the 
background flowing blood signal and muscle signal. SHINKEI 
can detect avulsion, denervation changes in the muscle, and 
neuroma associated with brachial plexopathies better compared 
to the DWIBS. SHINKEI provides a better visualization 
of the small nerves such as suprascapular nerve. SHINKEI 
offers better detection of mild Grade 1 hyperintensities) and 
diagnoses early nerve injuries to guide further conservative 
management, where clinical examinations and conventional 
MRI sequences fail. The nerve SNR in the SHINKEI images 
was found to be significantly higher in comparison to the STIR 
TSE images. The nerve–muscle contrast ratio was found to be 
significantly greater on the SHINKEI images in comparison to 
the STIR TSE images. This could be attributed to the optimized 
IMSDE prep pulse that suppresses the low T2 muscle tissues. It 
is also to be noted that the objective analysis was not performed 
on the DWIBS images due to low spatial resolution.

Figure  4: A 29‑year‑old male following road traffic accident shows 
root avulsions at left C5, C6, C7 and C8 levels. (a) SHINKEI shows root 
avulsion at C5 to C8 (arrows) and distorted distal plexus (small arrows) 
compared to the normal right side  (b). Short‑term inversion recovery 
turbo spin echo  (c) and diffusion‑weighted imaging with background 
signal suppression (d) for comparison

dc

ba

Table 2: Comparison of potential correct prediction capability and their correlation with the surgical findings

SHINKEI STIR DWIBS
Sensitivity (%) 88 75 37.5
Specificity (%) 67 100 100
Accuracy (%) 84 79 47.3
Yates corrected P (Chi‑square test done on data): Difference from surgery 
observations

0.03* 
Chi‑square ‑ 4.46

0.01* 
Chi‑square ‑ 6.11

0.2 
Chi‑square ‑ 1.64

Goodman-Kruskal index of predictive association (lambda) Estimated 
probability of correct prediction (without knowing surgical results a‑priori) (%)

78 67 52

*Statistically significant correlation with surgical findings. SHINKEI: SHeath signal increased with INKed rest‑tissue RARE Imaging, STIR: Short‑term 
inversion recovery, DWIBS: Diffusion‑weighted imaging with background signal suppression
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Of the seven patients where surgery was performed, SHINKEI 
sequence had a higher sensitivity in diagnosing preganglionic 
trauma, and higher accuracy in predicting the outcome. 

However, the specificity of the SHINKEI sequence was 
marginally lower than the STIR TSE sequence. SHINKEI along 
with the routine sequences has a higher potential for being a 

Figure 5: A 22 year old male with RTA: SHeath signal increased with INKed rest tissue RARE imaging (a and d), short term inversion recovery (b and 
e) and diffusion weighted imaging with background signal suppression (c and f) show lower root avulsion with pseudomeningioceles (arrows); SHeath 
signal increased with INKed rest tissue RARE imaging and short term inversion recovery show hyperintensity in the suprascapular nerve (arrowhead, 
a and b), which was not appreciated in the diffusion weighted imaging with background signal suppression (c). Distal nerve injury is better depicted 
in SHINKEI and short term inversion recovery sequence

d
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e

Figure 6: A 30‑year‑old female with transection of the right roots and trunks of brachial plexus with neuroma formation, better appreciated in the 
SHeath signal increased with INKed rest‑tissue RARE imaging (a) and short‑term inversion recovery (b) images compared to the diffusion weighted 
imaging with background signal suppression (c). Nerve conduction study findings were correlating with the imaging findings

cba

Figure 7: A 35 year old male patient with injury to right distal brachial plexus. The grade 1 sub acute injury is discernible on the SHeath signal increased 
with INKed rest tissue RARE imaging (a) and the short term inversion recovery  as hyperintensities (white arrows) (b) and is not well appreciated in 
diffusion weighted imaging with background signal suppression image (c)

cba
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screening sequence for predicting preganglionic nerve trauma. 
One of the limitations to be noted is that this cross‑validation 
was done only on 19 nerve roots from these seven patients.

The scores at distal nerves, where the size of the nerves is 
subvoxel, are not satisfactory due to blurring. This could be 
attributed to signal‑spread due to intravoxel off‑resonance 
effects due to the lower refocusing flip angles of the 
VISTA. These effects are mentioned in a lumbar plexus 
imaging study.[24] We plan to take this study forward by 
incorporating the off‑resonance effects for the optimization 
of signal‑spread in our VISTA model and validating the same. 
To make the SHINKEI sequence at 1.5T more “nerve tissue 
specific” with higher Snerve by dephasing the moving spins, 
optimization of the refocusing pulse train modulation of the 
VISTA acquisition can be useful.[24,25] It was observed that 
the blood and muscle signal suppression was effective in 
normal subjects with both SHINKEI and DWIBS sequences. 
However, in case of severe trauma, areas of soft‑tissue injury 
with possible hemorrhage at the site of trauma were not well 
suppressed with SHINKEI. This limitation is partly overcome 
by generating the MIPs and viewing the same in the desired 
direction. The T2 preparation can be made more robust at the 
neck–thorax junction by applying the iMSDE module based 
on a BIR‑4 pulse.[26]

Our study indicates that improper fat signal suppression could 
affect the nerve visualization with on the SHINKEI images, a 
problem that could be overcome with a proper shim volume 
placement as described in the result. Another artifact that 
would affect the nerve visualization is unsuppressed blood 
signal in the case of hemorrhage following trauma. In this case, 
the SHINKEI sequence with the iMSDE velocity encoding 
and the MIP performs better compared to the DWIBS and 
the STIR TSE sequences. Finally, from our study, we find 
that the visualization of the thin nerves of the distal plexus 
appears blurred. This is probably due to the nerve structures 
being subvoxel size and them being embedded in muscle 
tissue, hence undergoing signal spread. This is a problem to 
be addressed in future.

Conclusion

This study establishes the optimum value for T2prep 
for the best nerve–muscle contrast at 1.5T imaging to 
be 50 ms. Compared to 2D acquisitions, the coronal 3D 
SHINKEI acquisition ensured that the nerves were visible 
in the entirety. Thus the hyperintensities could be very 
well appreciated and the trauma localized. Compared to 
the other 3D DWIBS technique, nerve trauma was better 
visualized with 3D SHINKEI. Our results indicate that the 
SHINKEI sequence would increase the probability of nerve 
injury detection, associated muscle denervation, and is 
complementary to the conventional MR sequences. This can 
help in better surgical planning and hence warrants continued 
investigation on a larger patient cohort. Overall, a heavily T2 
weighted 3D SHINKEI MRI sequence is clinically feasible 

to visualize brachial plexus in its entirety at 1.5T. Distally, 
subvoxel size nerves may suffer from blurring, and further 
work is warranted to optimize the signal spread for these 
fine nerves.
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