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Aiming at the problems of low detection accuracy and slow detection speed in white
porcelain wine bottle flaw detection, an improved flaw detection algorithm based on
YOLOv4 was proposed. By adding Coordinate Attention to the backbone feature
extraction network, the extracting ability of white porcelain bottle flaw features was
improved. Deformable convolution is added to locate flaws more accurately, so as to
improve the detection accuracy of flaws by themodel. Efficient Intersection over Union was
used to replace Complete Intersection over Union in YOLOv4 to improve the loss function
and improve the model detection speed and accuracy. Experimental results on the surface
flaw data set of white porcelain wine bottles show that the proposed algorithm can
effectively detect white porcelain wine bottle flaws, the mean Average Precision of the
model can reach 92.56%, and the detection speed can reach 37.17 frames/s.
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INTRODUCTION

With the rapid development of social economy, the liquor industry in China is also developing
rapidly. In order to ensure the sustainable development of enterprises, every liquor production
enterprise needs to strictly control the quality of liquor products. As the most popular container for
most liquor products, the quality of white porcelain bottles directly affects the quality of liquor
products, and thus white porcelain bottle flaw detection is very important.

At present, there are mainly two kinds of white porcelain wine bottle flaw detection techniques:
(1) manual detection and (2) machine vision detection. Traditional manual detection is greatly
influenced by subjectivity and has problems in terms of low detection accuracy and low detection
efficiency. With the development of image processing technology, machine vision technology
began to be applied to white porcelain bottle flaw detection. For the quality detection of empty
bottles, the In-Line empty bottle detection machine developed by Haifu Company has a good
detection effect (HEUFT SYSTEM TECHNIK, 2022a). For full bottle quality detection, the PRIME
detector developed by Haifu can realize liquid level detection of wine bottles by using special
sensors and optical technology (HEUFT SYSTEMTECHNIK, 2022b). For the quality inspection of
printed matter on the surface of wine bottles, the FA-Falcon Automatic inspection system, the
latest product of Israel Avit Company, can detect the flaws of printed matter on wine bottles (Li,
2020). Although the existing machine vision inspection technology has been achieved, the existing
bottle flaw detection technology of detecting speed is slow, where the fastest can only reach
75,000 bottles per hour; however, the current beverage line production demand has reached
100,000 bottles per hour, in which traditional machine vision inspection technology has been
unable to meet. In addition, the traditional machine vision detection technology still has some
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problems, such as time-consuming manual design and single
detection algorithm function. Therefore, it is of great
significance to develop an intelligent and efficient white
porcelain wine bottle flaw detection method.

At present, there are many widely used models of deep
learning, which are mainly divided into two categories: 1) one-
stage algorithm represented by SSD, YOLO, YOLOv2, YOLOv3,
YOLOv4, YOLOv5, and other networks (Liu et al., 2016; Redmon
et al., 2016; Redmon and Farhadi, 2017; Redmon and Farhadi,
2018; Bochkovskiy et al., 2020); 2) The other is a two-stage
algorithm represented by R-CNN, Fast R-CNN, Faster
R-CNN, Mask R-CNN, and other networks (Girshick et al.,
2014; Girshick, 2015; He et al., 2017; Ren et al., 2017). The
advantage of a two-stage algorithm is that it has high detection
accuracy. However, due to its complex network structure, the
detection speed of the algorithm is slow. For example, Du et al.
implemented semantic segmentation, target classification, and
multi-visual task detection in indoor scenes by using the
improved Faster-RCNN algorithm (Jiang et al., 2021). Gao
et al. (2019) proposed a tunnel flaw detection method based
on improved Faster R-CNN, which has higher accuracy
compared with traditional algorithms. He et al. (2019)
proposed a flaw detection algorithm for steel plates based on
Faster R-CNN, and the average accuracy of flaw detection
reached 82%. Tao et al. (2018) designed a cascade network
based on Faster R-CNN for insulator flaw detection. After
testing the insulator data set, the average accuracy of flaw
detection reached 91%, but the detection time of a single
image was 360 ms, and the detection speed was relatively slow.
On the contrary, the one-stage algorithm has the advantage of fast
detection speed, but low detection accuracy. For example, many
researchers have applied the one-stage target detection algorithm
to indoor small target detection, medical image detection,
industrial safety production, and industrial quality inspection
(Huang et al., 2021; Tsai et al., 2021; Huang et al., 2022). Wei et al.
(2020) proposed a railway track flaw identification method based
on image processing and improved YOLOv3, and the detection
speed reached 33 frames/s. Liao et al. (2021) proposed an
algorithm for PCB surface flaw detection based on improved
YOLOv4, which achieved a detection speed of 56.98 frames/s
without detection and improved detection accuracy. Qiu et al.
(2022) proposed an improved YOLOv4-tiny algorithm for flaw
detection of wood panels. Res2Net was used as the backbone
feature extraction network, resulting in average detection
accuracy of the algorithm up to 80.1%, and the detection
speed up to 76.9 frames/s. Liu Q. et al. (2022) proposed an
improved YOLOv4 algorithm for fabric flaw detection. A new
SPP structure was adopted and SoftPool was used instead of
MaxPool, which made the average accuracy of fabric flaw
detection achieve 86.5%. Liu X. M. et al. (2022) proposed an
improved YOLOv4 algorithm for insulator flaw detection and
improved the convolutional layer of the trunk feature extraction
network, resulting in the average detection accuracy of the
algorithm up to 84.05%, with a detection speed up to
30.6 frames/s. Sun et al. (2022) replaced CSPDarknet53, the
backbone feature extraction network of YOLOv4, with an
improved MobileNetV3 network for stamping flaw detection,

which improved the detection speed by 4 frames/s but reduced
the detection accuracy. Yang and Sang (2022) proposed a multi-
scale feature adaptive fusion lightweight fabric flaw detection
algorithm, using MobileNetv2 as the main feature extraction
network of YOLOv4, with the addition of the Coordinate
Attention module, improving the average detection accuracy
of the algorithm by 2.3%. The detection speed reached
26 frames/s. The aforementioned literature fully shows that the
current bionics algorithm based on deep learning has good
learning ability and can meet the needs of some fields.
Therefore, the deep learning-based bionics algorithm is
adopted in this research for white porcelain wine bottle flaw
detection. This study is the specific application of the bionics
algorithm in the quality inspection of white porcelain wine
bottles, which is of great significance for white porcelain wine
bottle bionics detection. At the same time, this research can
promote the development of bionics and biomimetics and has a
certain reference significance for the research and application of
bionics algorithms in other industrial quality inspections. In
addition, it can be seen from the above literature that YOLO
series algorithms can be applied to flaw detection. Such
algorithms have the characteristics of fast detection speed, but
the detection accuracy of the original YOLO series algorithms is
not high and needs to be improved for specific problems.

With the continuous development of YOLO series algorithms,
their shortcomings are gradually improved, and the current
YOLOv4 algorithm has better detection speed and accuracy.
Although the YOLOv5 algorithm model is small, the detection
accuracy of the algorithm is low especially for small targets, the
flaw detection effect is poor and thus unsuitable for the high
precision requirements of white porcelain bottle flaw detection.

Therefore, in order to improve the detection performance of
white porcelain wine bottle flaws, this research adopts the
improved YOLOv4 algorithm. First, images of different types of
white porcelain bottle flaws were collected to construct data sets.
Second, CA (Coordinate Attention) was added to the feature
extraction network of YOLOv4 to improve the extraction ability
of the white porcelain bottle flaw detection model. At the same
time, deformable convolution is added to locate flaws of different
shapes and sizes more accurately, so as to improve the detection
accuracy of flaws by the model. In addition, the loss function was
improved and CIoU in YOLOv4 was replaced by EIoU to improve
the model detection accuracy and detection speed. The white
porcelain wine bottle flaw detection algorithm proposed in this
research effectively improves the detection accuracy and has a fast
detection speed, thus satisfying the real-time requirements of white
porcelain wine bottle flaw detection in industrial settings.

YOLOV4 ALGORITHM

YOLOv4 algorithm is improved on the basis of the
YOLOv3 algorithm by appropriately integrating the innovative
points of various advanced algorithms. It is the algorithm with the
highest detection accuracy in YOLO series algorithms. The network
structure the of YOLOv4 algorithm consists of three parts: backbone
network, neck, and head. The backbone is mainly responsible for
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feature extraction, the neck is mainly responsible for feature fusion,
and the head is mainly responsible for detection.

The backbone of YOLOv4 uses CSPDarknet53 as the backbone
feature extraction network. CSPDarknet53 is a combination of the
multi-channel network (CSP) andDarknet53 (Redmon and Farhadi,
2018; Wang et al., 2020) and uses a faster Mish activation function.
The neck part adopts FPN + PANet structure to carry out feature
aggregation for different detection layers from different trunk layers,
so as to have a strong feature extraction ability (Lin et al., 2017; Liu
et al., 2018). In addition, the SPP module is also adopted to increase
the receiving range of trunk features and separate significant context
features more effectively (He et al., 2015). The head part still adopts
YOLOv3 detection head, but the loss function part of the target
detection task is improved. CIoU Loss is used as a regression loss
function to improve detection speed and accuracy, and DIoU NMS
is used to screen prediction boxes to improve the detection accuracy
of overlapping targets (Zheng et al., 2020).

In addition, YOLOv4 also adopts a series of methods such as
Mosaic data enhancement, CmBN, and SAT self-adversarial
training to optimize the algorithm (Bochkovskiy et al., 2020).
Among them, Mosaic data enhancement greatly enriches the
detection data set and reduces the GPU overhead.

As the algorithm with the highest detection accuracy in the
YOLO series, YOLOv4 has a strong learning ability and can be
applied to flaw detection of some products. Flaw detection using
YOLOv4 is mainly divided into two steps. Step one is the training
network model: the YOLOv4 algorithm uses the data set to train,
according to the loss function for several times of reverse
iteration, constantly update the network parameters, make the
network more and more accurate, and finally trained into a
network model. Step two is the model test, which uses the
trained network model to test the input image, and finally
completes the detection and positioning of flaws in the image.

IMPROVED YOLOV4 ALGORITHM

The algorithm proposed in this research is improved on the basis
of YOLOv4, which mainly includes three aspects. First, the CA

module of the attention mechanism is added to the CSP module
of the CSPDarkNet53 backbone feature extraction network of
YOLOv4. Second, all 3 × 3 convolution in CSPDarknet53 residual
block of YOLOv4 feature extraction network is changed to
deformable convolution. Third, change the loss function DIoU
in YOLOv4 to EIoU. The network structure diagram of the
improved algorithm is shown in Figure 1.

CA Mechanism
The attention mechanism is very important for neural network,
and the addition of an attention mechanism can improve the
network’s attention to important feature information and reduce
the attention to irrelevant information. In the collected white
porcelain bottle image, the flaw occupies only a small part of the
image, and most of the image is background information. In the
training process, information redundancy will be generated when
a large number of background information is iterated, leading to
partial flaw target information being submerged, thus affecting
the detection accuracy. In addition, many flaws in the white
porcelain wine bottle image are small target flaws, and the original
YOLOv4 algorithm has poor extraction ability for small targets,
so it is difficult to detect these small target flaws. After the
attention mechanism is added, the attention of the network to
flaws is increased, and at the same time, the network will notice
these small target flaws, so as to improve the accuracy of small
target detection of the network.

There are a number of attention mechanisms available, for
example, SE (Squeeze and Congestion), CBAM (Convolutional
Block Attention Module), and CA (Coordinate Attention). (Hu
et al., 2018;Woo et al., 2018; Hou et al., 2021). The CAmechanism is
a lightweight mobile network that empowers location information
into the attention channel. The attention mechanism can obtain not
only cross-channel information but also direction perception and
position perception information, so that the model can locate and
identify the flaw target more accurately. Therefore, in this research,
the CA mechanism was added to the YOLOv4 network structure to
improve the attention channel of the network to the flaw target, so as
to improve the accuracy of flaw detection. The structure of the CA
mechanism is shown in Figure 2.

FIGURE 1 | Network structure of the improved YOLOv4 algorithm.
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CA mainly includes two steps: the first step is coordinate
information embedding. Given an input: F ∈ RHpWpC, the global
mean pooling is divided into a pair of one-dimensional pooling,
that is, two pooling cores (H, 1) and (1, W) are pooled along the
horizontal and vertical directions of the feature graph. Two
embedded information feature graphs Zh

c and Zw
c are

obtained, and the output formula is given as Eqs. 1 and 2:

Zh
c(h) �

1
W

∑
0≤ i≤W

xc(h, i) Zh
c ∈ RCpHp1, (1)

Zw
c (w) �

1
H

∑
0 ≤ j≤H

xc(j, w) Zw
c ∈ RCp1pW. (2)

The second step is the generation of a coordinate information
feature map. First, the two obtained embedded feature graphs Zh

c
and Zw

c W are splicing along the spatial dimension. After
1*1 convolution function F1 transformation, the nonlinear
activation function δ is used to activate and generate process
feature graph F, as shown in formula 3:

f � δ(F1([zh, zw])). (3)
Second, two separate feature graphs fh and fw were obtained

by Split operation along the spatial dimension. After the
1*1 convolution function Fh and Fw were transformed
respectively, the attention vectors gh and gw were obtained by
Sigmoid activation function σ activation, as shown in formulas 4
and 5:

gh � σ(Fh(fh)), (4)
gw � σ(Fw(fw)). (5)

Finally, gh and gw are extended to be multiplied by the input
feature graph as the attention weight value to obtain the final
feature graph of attention. The output formula is as Formula 6:

yc(i.j) � xc(i.j) × gh
c(i) × gw

c (j). (6)
In order to highlight the white porcelain wine bottle flaw

features, accurately locate and identify flaws, and improve the
accuracy of white porcelain wine bottle flaw detection, this
research added the CA module of attention mechanism into
the CSP module of CSPDarkNet53 backbone feature extraction
network of YOLOv4 and took it as a discriminant feature filter.
Feature information of detection targets can be extracted more
effectively to improve detection accuracy. The improved CSP
module is shown in Figure 3.

Deformable Convolution Networks
The conventional convolution used in the YOLOv4 model can
only sample-fix positions in the feature graph, and this
convolution kernel can extract rectangular features well.
However, the white porcelain wine bottle flaws are
characterized by various forms, and the white porcelain flaws
cannot be well located by conventional convolution, thus
affecting the accuracy of the flaw detection model. However,
deforming convolution adds a training factor that can be changed
to the conventional convolution module, so that the size and
position of the convolution kernel can be dynamically adjusted
according to the characteristics of the input image, and the
position of the convolution kernel sampling points at different
positions will change adaptively according to the characteristics
of the image (Dai et al., 2017). Therefore, deformable convolution
can locate flaws of different shapes and sizes more accurately. The
sampling point pairs of conventional convolution and deformable
convolution are shown in Figure 4.

As can be seen from the figure above, conventional
convolution can only carry out regular sampling, while
deformable convolution can carry out random sampling
around the current position, making the sampling position
more suitable for the shape and size of flaws and thus better
feature extraction.

The calculation process of deformable convolution is
improved on the basis of conventional convolution, which
mainly consists of two steps. The first step is to use regular
grid R to sample the feature graph X. The second step is the sum
of each sample point multiplied by the weight. The output
formula is given as Formula 7:

y(p0) � ∑
pn∈R

w(pn) · x(p0 + pn) . (7)

In the aforementioned formula, pn is the enumeration of each
position in grid R, and w(pn) is the weight of the corresponding
point. The deformable convolution is to expand the regular grid R

FIGURE 2 | CA module structure.

FIGURE 3 | Improved CSP module.
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by adding an offset { Δpn|n � 1, . . . , N}, N � |R|. Its output
formula is shown in Formula 8 .

y(p0) � ∑
pn∈R

w(pn) · x(p0 + pn + Δpn). (8)

Since Δpn is usually a decimal, the bilinear interpolation
method is required to calculate the value of x(p), as shown in
Formula 9.

x(p) � ∑
q
G(q, p) · x(q). (9)

In the aforementioned formula, p � p0 + pn + Δpn, q is the
enumeration of x spatial position of the feature graph, and G(,) is
the bilinear interpolation function. The feature extraction process
of deformable convolution is shown in Figure 5.

As can be seen from the diagram shown earlier, deformable
convolution in the conventional convolution joined in a
convolution layer is used to calculate the offset. Moreover,
because the offset calculation and output characteristics of
convolution kernels are parallel, the size and location of
deformable convolution kernels can dynamically adjust
according to the characteristics of the input feature maps, and
thereby learn different forms of white porcelain bottle flaws.

Deformable convolution can improve the modeling ability of
the model for flaws of different shapes and sizes, and thus
improve the accuracy of flaw detection. In this research, all
3 × 3 convolution in CSPDarknet53 residual block of

YOLOv4 feature extraction network is changed to deformable
convolution to form a new and more powerful feature extraction
network. The structure of the modified residual block network is
shown in Figure 6.

Optimized Loss Function
The calculation of the loss function can judge whether the
parameters of the current training model meet the standard
and reflect the difference between the training model and the
real data (Hao et al., 2022). Therefore, the loss function is very
important for the training of the model. Selecting an appropriate
loss function can train a model with a better detection effect and
improve the convergence speed of model training.

The loss function of YOLOv4 consists of three parts, namely:
classification loss, position loss, and confidence loss. The
calculation of position loss is mainly to determine the position
of the detection target. In YOLOv4, the CIoU Loss function is

FIGURE 4 | Comparison of conventional convolution and deformable convolution sampling points. (A) is the sample point graph of the conventional convolution.
(B–D) are sample point graphs of the deformable convolution.

FIGURE 5 | Schematic diagram of deformable convolution.

FIGURE 6 | Residual block network structure with deformable
convolution.
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used to calculate the regression Loss of the target box, and its
calculation formula is shown in Eqs 10–13:

LCIoU � 1 − IoU + ρ2(b, bgt)
C2

+ αv, (10)

IoU � |B ∩ Bgt|
|B ∪ Bgt|, (11)

v � 4
π2
(arctanwgt

hgt
− arctan

w

h
)

2

, (12)

α � v

(1 − IoU) + v
. (13)

In the aforementioned formulas, B is the size of the prediction
frame; Bgt is the size of the real frame; IoU is the ratio of the
intersection and union between the prediction frame and the real
frame; b and bgt, respectively, represent the center point of the
prediction frame and the real frame; ρ(,) represents the Euclide
distance between the two points; C is the diagonal distance of the
smallest rectangle containing the prediction frame and the real
frame; wgt and hgt represent the width and height of the real box,
respectively; and w and h represent the width and height of the
prediction box, respectively.

A good regression function of the target box needs to include
three important factors, such as the overlap area between the
prediction box and the real box, the distance between the center
point, and the aspect ratio, which are taken into account by the
CIoU Loss function. However, in CIoU Loss, only v reflects the
difference in aspect ratio but does not reflect the real relationship
between the aspect ratio of the prediction frame and the real frame.
In this way, CIoU Loss may unreasonably optimize the similarity.
Therefore, EIoU Loss was adopted in this research to replace CIoU
Loss to calculate the target box regression Loss. EioU Loss function
improves its aspect ratio on the basis of the CioU Loss function
(Zhang et al., 2021). EioU Loss calculates the length and width of
the prediction frame and target frame separately, and its calculation
formula is shown in Formulas 14 and 15.

LEIoU � 1 − IoU + ρ2(b, bgt)
C2

+ Lasp, (14)

Lasp � ρ2(w,wgt)
C2

w

+ ρ2(h, hgt)
C2

h

. (15)

In the aforementioned formula, Cw and Ch are the width and
height of the minimum rectangle containing the prediction box
and the real box, respectively. Lasp indicates the aspect ratio Loss
of the EIoU Loss function.

EIoU Loss not only retains the advantages of CIoU Loss but
also directly minimizes the width and height differences between
the target frame and the prediction frame, thus accelerating the
convergence speed and achieving better target positioning results.

EXPERIMENT

Experimental Environment
The operating system used for the research presented in this
research is CentOS Linux 7, the graphics card is NVIDIA

GEFORCE RTX 1080Ti, and the video memory is 12 GB. In
this research, the deep learning framework of PyTorch is used for
experiments. The experimental environment is Python 3.6 and
CUDA 10.1.

Experimental Data Set
In this research, white porcelain bottles of the same form and type
were used for the experiment. The shape of the white porcelain
bottle used in the experiment is shown in Figure 7. As can be seen
from Figure 7, the white porcelain bottle has a flat mouth. From
the top of the bottle, the shape of the bottle mouth is round and
circular. The shoulder part of the white porcelain bottle is three
layers of smooth rings. The body part of the white porcelain bottle
is a smooth cylinder. The bottom part of the white porcelain
bottle has raised rings, patterns, and words.

The data set photos used in this research are the surface flaw
pictures of white porcelain wine bottles collected from the
production line of a wine enterprise. The collected photos
mainly feature the bottle mouth and bottle bottom, and the
collected images include notches, cracks, and stains, as shown
in Figure 8.

In this research, the LabelImg tool was used to mark the flaws
in the images, and the data set of this research was made in
accordance with the format of VOC 2007, and the sample number
of the final data set was 6,000.

Evaluation Index
In order to verify the performance of the improved
YOLOv4 algorithm, this research adopted the mean average
precision (mAP) and detection speed FPS (frames per second)
of multiple categories as evaluation indexes.

Average precision (AP) refers to the average accuracy of a
single type of detection, which is used to measure the detection
accuracy of an algorithm for a single type. The mean average
precision (mAP) refers to the average value of average accuracy
AP of multiple categories, which is used to measure the detection
accuracy of the algorithm for all categories. Its calculation
formula is shown in Formulas 16 and 17.

AP � ∫
1

0

P(R), (16)

mAP � 1
c
∑c

j�1APj. (17)

In the aforementioned formula, P is precision, R is recall, and
P(R) represents the accuracy–recall curve. The calculation
formulas of accuracy P and recall rate R are shown as
Formulas 18 and 19.

Recall � TP

TP + FN
, (18)

Precision � TP

TP + FP
. (19)

In the aforementioned formulas, TP is the true sample,
indicating the sample whose detection result is the same as the
actual result; FN is a false negative sample, indicating no actual
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sample detected; and FP is a false sample, which means that the
test results are different from the actual results.

FPS (frames per second) refers to the number of photos that
can be detected by the algorithm model per second, which is used
to measure the detection speed of the algorithm for the target.

Model Training
In this research, 6,000 photos of white porcelain wine bottles were
marked for flaws and randomly divided into training sets and test
sets in a ratio of 9:1, of which 5,400 were in the training set and
600 in the test set. In this research, the input images were
enhanced with Mosaic data for training. A total of 300 batches
were trained. The batchsize of the first 150 batches was set as
64 and the learning rate was set as 0.001, while the batchsize of the
last 150 batches was set as eight and the learning rate was set as
0.0001. Num_workers was set to 4. A total of five models were
trained in the experiment in this research, namely, Faster-RCNN,
YOLOv3, YOLOv4, YOLOv5, and the improved YOLOv4 model
in this research.

Contrast Experiment
In order to verify the effectiveness of the improved algorithm,
several typical target detection algorithms are selected for

comparative experiments. In this research, the Faster-RCNN,
YOLOv3, YOLOv4, and YOLOv5 models were, respectively, used
for training and verification on the white China wine bottle data
set. The comparison results of AP, mAP, and FPS of each model
are shown in Table 1. In addition, in order to better prove the
performance of the improved algorithm, the experimental results
in this research are compared with the results of the latest
YOLOv4 flaw detection research, as shown in Table 1.

In Table 1, Qiu et al. (2022) and Yang and Sang (2022) are the
two latest research studies selected for flaw detection using
YOLOv4, among which (Qiu et al., 2022) uses the improved
YOLOV4-tiny algorithm for wood panel flaw detection. Flaw

FIGURE 7 |Overall picture of a white porcelain bottle. (A) is the side view of the white porcelain bottle, (B) is the top view of the bottle mouth, (C) is the bottom view
of the white porcelain bottle.

FIGURE 8 | Three flaws in a white porcelain wine bottle. (A) is the picture of the gap of the white porcelain bottle, (B) is the picture of the crack of the white porcelain
bottle, (C) is the picture of the stain of the white porcelain bottle.

TABLE 1 | Comparison of detection performance of different algorithms.

Model mAP/% FPS/(frames/s)

Faster-RCNN 83.32 4
YOLOv3 81.23 25.4
YOLOv4 87.36 38.5
YOLOv5 85.18 44.32
Qiu et al. (2022) 80.1 76.9
Yang and Sang (2022) 91.67 26
Improved YOLOv4 92.56 37.17
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detection using the YOLOV4-tiny algorithm greatly improves the
detection speed. At the same time, the Res2Net module is
introduced into the backbone feature extraction network to
improve the feature extraction capability of the network. In
addition, a detection scale is added to the detection part of the
network to expand the sensing domain of the network. Finally,
the average detection accuracy of the algorithm reaches 80.1%,
with detection speed reaching 76.9 frames/s. Yang and Sang
(2022) uses the improved YOLOv4 algorithm to detect fabric
flaws. It uses the lightweight network MobileNetv2 as the main
feature extraction network of YOLOv4 and adds the CA
mechanism into the inverse residual structure of
MobileNetv2 to improve the feature extraction ability of the
model for small targets. In addition, the adaptive spatial
feature fusion (ASFF) structure is used to improve PANet, so
that the model can obtain the fusion weight of multi-scale feature
map through learning so that the shallow feature and deep feature
can be fully utilized, and the accuracy of small target flaw
detection can be further improved. Finally, the average
detection accuracy of the algorithm reaches 91.67%, with
detection speed reaching 26 frames/s.

As can be seen from the flaw detection results of white
porcelain bottles by various methods in Table 1, as a popular
traditional method in the two-stage field, Faster-RCNN has
higher accuracy than YOLOv3, but lower detection speed.
YOLOv3 is not only low accuracy but also slow speed which
is not suitable for the real-time detection of white porcelain
bottles in industrial scenes. YOLOv4 is ahead of Faster-RCNN
and YOLOv3 in mAP and FPS, and its detection speed and
accuracy still have room for improvement. The detection speed of
YOLOv5 is faster than that of YOLOv4, but the detection
accuracy is lower than that of YOLOv4. The algorithm in this
research is improved on the basis of YOLOv4. Compared with
YOLOv4, the improved algorithm improves mAP by 5.2%.
Although the detection speed is reduced by 1.33 frames/s, it
still meets the real-time detection requirements of white
porcelain bottles.

By comparing the experimental results in this research with Qiu
et al. (2022), it can be seen that the average detection accuracy of the
algorithm is 12.46% higher than that in Qiu et al. (2022), but the
detection speed of the algorithm is 39.73 frames/s lower than that in
Qiu et al. (2022). This is because Qiu et al. (2022) uses the YOLOV4-
tiny algorithm, a simplified version of the YOLOv4 algorithm, for
flaw detection. The YOLOV4-tiny algorithm is a lightweight
algorithm with fast detection speed but relatively low detection
accuracy. By comparing the experimental results in this research
with Yang and Sang (2022), it can be seen that the improved
algorithmis superior to Yang and Sang (2022) in both average
detection accuracy and detection speed. Yang and Sang (2022) In
order to improve the detection speed of the algorithm, the trunk
network of YOLOv4 was replaced withMobileNetv2, but the average
detection accuracy of the algorithm decreased. Then, Yang and Sang
(2022) improved the average detection accuracy of the algorithm by
adding CA mechanism to the trunk feature extraction network and
improving the PANet structure, but it also brought a certain amount
of calculation, resulting in a decrease in the detection speed of the
algorithm. However, the proposed algorithm only adds CA

mechanism and deformable convolution to the backbone feature
extraction network of YOLOv4, which improves the detection
accuracy of the network and also introduces a certain amount of
computation, resulting in a decrease in detection speed. After
that, the loss function was improved to improve the detection
accuracy of the algorithm and meet the real-time requirements
of white porcelain wine bottle flaw detection in the industrial
setting.

Through comparative experimental data analysis, the
proposed algorithm can achieve higher detection accuracy and
faster detection speed in white porcelain wine bottle flaw
detection, which is suitable for the real-time detection of white
porcelain wine bottles in the industrial setting.

Ablation Experiments
In order to verify the effects of CA mechanism, deformable
convolution, and EIoU Loss function on model performance,
ablation experiments were performed on the added modules
using the YOLOv4 algorithm. The impact of different modules
on model performance is shown in Table 2.

By analyzing various data in Table 2, it can be concluded that
the mAP value increased from 87.36 to 90.17% after the CA
mechanism was added to the YOLOv4 trunk feature extraction
network, an increase of 2.81%. The detection accuracy of notches
and stains improved greatly, and their AP value increased by
3.17 and 3.39%, respectively, while the AP value of cracks
increased by 1.87%. This is because in the white porcelain wine
bottle data set, there are more small targets for the two flaws of gap
and stain, while there are fewer small targets for the flaws of crack.
The CA attention mechanism can improve the network’s attention
to feature information, so that the model can pay attention tomore
small target feature information. Therefore, the addition of CA
attentionmechanism can greatly improve the detection accuracy of
gap and stain, while the detection accuracy of crack is relatively
small. After the CA mechanism is added, the feature extraction
ability of the YOLOv4 backbone network is improved, so the
detection accuracy of the model is improved. However, the
calculation amount is increased, so the detection speed of the
model is slightly decreased. After deformable convolution (DCN)
was added to the backbone feature extraction network of YOLOv4,
themAP value increased from 87.36 to 89.56%, an increase of 2.2%.
The AP value of cracks increased by 3.47%, and the AP value of
notches and stains increased by 1.98 and 1.15%, respectively. This is
because there are various shapes and sizes of flaws such as cracks in
the white porcelain wine bottle data set, and deformable
convolution (DCN) can dynamically adjust the flaws of different
shapes and sizes, thus improving the detection accuracy of the
model. At the same time, the addition of deformable convolution
also brings a certain amount of computation, which makes the
detection speed of the model decrease slightly. After replacing the
loss function CIoU of YOLOv4 with EIoU, the mAP value
increased slightly, only increasing by 0.7%, but the detection
speed of the model increased from 38.5 to 41.97 frames/s,
3.47 frames/s. After the CA module, deform convolution (DCN)
and EIoU were added into YOLOv4, the detection accuracy was
greatly improved, and the mAP value increased from 87.36 to
92.56%, an increase of 5.2%. Although the detection speed is
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reduced by 1.33 frames/s compared with YOLOv4, it still meets the
real-time requirements of white porcelain wine bottle flaw
detection in the industrial setting.

Detection Results and Analysis
In order to better verify the feasibility of the improved algorithm
presented in this research, white porcelain wine bottles with
different flaws were selected for testing in the test set.
Figure 9 shows the comparison of detection results of
different flaws between the improved YOLOv4 algorithm and
the original YOLOv4 algorithm in this research.

Among the three groups of detection results in Figure 9, the
leftmost image is the original image, the middle image is the

detection result of YOLOv4 algorithm, and the rightmost image is
the detection result of the three kinds of flaws by the improved
YOLOv4 algorithm in this research. As can be seen from the
comparison figure of stain detection results, YOLOv4 can detect
some large stain flaws in the images, but it cannot detect small
target stains in the images. However, the improved algorithm in
this paper can detect small stain flaws due to the addition of CA
attentionmechanism, which improves the attention of the network
to small targets. As can be seen from the comparison figure of gap
detection results, due to uneven illumination, part of the gap area
has a high brightness, which makes the gap similar to the
background of the white porcelain bottle. YOLOv4 can detect a
relatively obvious gap, but there is the issue of missing detection for

TABLE 2 | Effects of different modules on model performance.

Model CA DCN EIoU AP/% mAP/% FPS/(frames/s)

Gap Crack Stain

YOLOv4 — — — 89.15 86.71 86.22 87.36 38.5
YOLOv4_1 ✓ — — 92.32 88.58 89.61 90.17 34.7
YOLOv4_2 — ✓ 91.13 90.18 87.37 89.56 36.5
YOLOv4_3 — —— ✓ 89.93 87.35 86.9 88.06 41.97
YOLOv4_4 ✓ ✓ — 93.69 90.78 90.54 91.67 33.2
Improved YOLOv4 ✓ ✓ ✓ 94.75 91.56 91.37 92.56 37.17

FIGURE 9 |Comparison of detection results of different flaws between this algorithm and YOLOv4. (A) is the contrast diagram of the gap detection results of white
porcelain bottle, (B) is the contrast diagram of the crack detection results of white porcelain bottle, (C) is the contrast diagram of the stain detection results of white
porcelain bottle.
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some obscure gaps. In this research, the improved algorithm
introduces the CA mechanism, which improves the attention of
the network to the flaw target and reduces the attention of the
network to the background target, so that the network can detect
the flaw target more accurately. As can be seen from the
comparison figure of crack detection results, for cracks of
different shapes and sizes, YOLOv4 has missed detection.
However, due to the addition of deformable convolution to the
improved algorithm in this research, the network can more
accurately locate cracks of different shapes and sizes, thus
improving the accuracy of crack detection. As can be seen from
the comparison figure of the experimental results of the three
groups of flaw detection, the improved YOLOv4 algorithm in this
research greatly improves the missed detection of the original
YOLOv4 and improves the confidence of flaw detection. Therefore,
it can be shown that the CA mechanism increases the model’s
attention to small targets and fuzzy targets. Deformable
convolution improves the model’s attention to flaws of different
shapes and sizes, both of which greatly improve the detection
accuracy of the network for flaw targets.

CONCLUSION

This research presents an improved YOLOv4 algorithm for flaw
detection in white porcelain wine bottles. The CA attention module
is added to the backbone feature extraction network of YOLOv4,
this improves the detection accuracy of the model for small target
flaws. On this basis, some ordinary convolutions in the backbone
feature extraction network are replaced with deformable
convolutions, so that the model can better locate flaws with
different shapes and sizes, and further improve the detection
accuracy of the model. Finally, the loss function CIoU of
YOLOv4 was replaced by EIoU to accelerate the convergence of
the model, improve the detection accuracy and speed. Experimental

results show that in the white porcelain wine bottle flaw detection
task, the average detection accuracymAP of the proposed algorithm
can reach 92.56%, which is 5.2% higher than the original
YOLOv4 algorithm. The detection speed of the proposed
algorithm reaches 37.17 frames/s, which meets the real-time
requirements of the white porcelain wine bottle flaw detection in
the industrial setting. However, the algorithm presented in this
research can be further improved, specifically with regard to
detection speed and detection accuracy can be further improved.
In the future, in solving the problem of detection speed, on the basis
of ensuring detection accuracy, the main network of the model will
be changed to reduce the size of the model, reduce the amount of
calculation, and further improve the detection speed of the model.
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