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The decarboxylated and deiodinated thyroid hormone (TH) derivative, 3-iodothyronamine 
(3-T1AM), is suggested to be involved in energy metabolism and thermoregulation.  
G protein-coupled receptors (GPCRs) are known as the main targets for 3-T1AM; however, 
transient receptor potential channels (TRPs) were also recently identified as new targets 
of 3-T1AM. This article reviews the current knowledge of a putative novel role of 3-T1AM 
in the modulation of TRPs. Specifically, the TRP melastatin 8 (TRPM8) was identified as 
a target of 3-T1AM in different cell types including neoplastic cells, whereby 3-T1AM sig-
nificantly increased cytosolic Ca2+ through TRPM8 activation. Similarly, the β-adrenergic 
receptor is involved in 3-T1AM-induced Ca2+ influx. Therefore, it has been suggested 
that 3-T 2+

1AM-induced Ca  mobilization might be due to β-adrenergic receptor/TRPM8 
channel interaction, which adds to the complexity of GPCR regulation by TRPs. It has 
been revealed that TRPM8 activation leads to a decline in TRPV1 activity, which may be 
of therapeutic benefit in clinical circumstances such as treatment of TRPV1-mediated 
inflammatory hyperalgesia, colitis, and dry eye syndrome. This review also summarizes 
the inverse association between changes in TRPM8 and TRPV1 activity after 3-T1AM 
stimulation. This finding prompted further detailed investigations of the interplay between 
3-T1AM and the GPCR/TRPM8 axis and indicated the probability of additional GPCR/
TRP constellations that are modulated by this TH derivative.

Keywords: 3-iodothyronamine, transient receptor potential channel, calcium, thermoregulation, inflammation

inTRODUCTiOn

Thyronamines (TAMs) are identified as a novel class of endogenous signaling compounds. Currently, 
two representatives of TAMs, known as 3-iodothyronamine (3-T1AM) and thyronamine (T0AM), 
have been identified in vivo. Both compounds were detected in blood, heart, brain, thyroid, and 
many other tissues in rodents (1). Although endogenous TAM concentration may be lower com-
pared to thyroid hormone (TH), it is noteworthy that the tissue-specific and subcellular distributions 
of TAMs are unknown. Therefore, the concentrations within different cell types might be higher than 
the average whole tissue concentrations measured.

3-Iodothyronamine is a decarboxylated and deiodinated TH metabolite (2–4). Administration of 
3-T1AM in mice resulted in concentration-dependent reversible effects on body temperature, energy 
metabolism, and cardiac and neurological functions compared with vehicle-treated controls (1). The 
discovery of 3-T1AM and the profound pharmacological effects of this endogenous signaling com-
pound have raised interest to elucidate its signaling properties (1, 3). It is now known that 3-T1AM is 
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FigURe 1 | Suggested Ca2+ signal transduction pathways induced by 3-iodothyronamine (3-T1AM). Two G protein-coupled receptors (GPCRs), known as trace 
amine-associated receptor 1 (TAAR1) and β-adrenergic receptors, can be activated and one GPCR known as muscarinic type 3 receptor can be suppressed by 
3-T1AM. 3-T1AM increases [Ca2+]i via a member of the transient receptor channel superfamily known as transient receptor potential channel melastatin 8 (TRPM8) 
(menthol or cold receptor), and this effect is blocked by BCTC. 3-T1AM may either directly activate TRPM8 by a GPCR-independent mechanism or indirectly via the 
β/γ-subunits of Gi/o downstream of β-adrenergic receptors. TRPM8 activation by 3-T1AM inhibits TRPV1 (capsaicin or heat receptor)-induced Ca2+ influx. Notably, 
3-T1AM may also directly suppress TRPV1 by a GPCR-independent mechanism (↓[Ca2+]i). So far, the involvement of other GPCRs and TRPs in 3-T1AM-induced 
signaling effects remained elusive.
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a “multi-target” ligand, which affects G protein-coupled receptors 
(GPCRs) and interacts with non-GPCR proteins (5). Classically, 
the first GPCR-target identified for 3-T1AM was a member of 
the rhodopsin-like family of GPCRs known as trace amine-
associated receptor 1 (TAAR1) (1) (Figure 1). Recently, several 
other GPCRs were identified as targets for 3-T1AM, such as α2A 
adrenergic receptor (6) and β2 adrenergic receptor (7) (Figure 1).

The overall aim of this review is to summarize the modulation 
of transient receptor potential channels (TRPs) through 3-T1AM. 
Here, we first review the signaling effects of 3-T1AM and then 
focus on TRPs as potential targets for this TH metabolite. In par-
ticular, two thermo-TRPs, TRP melastatin 8 (TRPM8) and TRPV, 
are involved in 3-T1AM-induced Ca2+ mobilization. Interestingly, 
both of these TRPs are the key players in thermoregulation and 
also mediate inflammation in pathophysiological conditions. In 
this review, we also describe the 3-T1AM action on a GPCR/TRP 
interplay and the possible inverse association between changes in 
different TRP channel activity modulated by this TH metabolite.

3-T1AM DeCLineS BODY  
TeMPeRATURe in RODenTS

In vivo, 3-T1AM partially opposes effects of classical TH action, 
resulting in a variety of physiological responses (5). Intraperitoneal 
(ip) injection of 3-T1AM blocks the hypothalamic–pituitary– 
thyroid axis and was shown to reversibly decrease metabolic rate 
in rodents (1, 8). One of the most prominent effects of 3-T1AM 
in rodents is temporary body temperature decline (1). In clinical 

settings, this TH metabolite is the only endogenous compound 
known to induce hypothermia and is additionally suggested 
to have therapeutic potential for the treatment and prevention 
of stroke. An ip injection of 3-T1AM in adult mice after the 
experimental induction of stroke led to a reduction of infarct 
volumes compared with vehicle-treated control mice (9). Due to 
the profound effects of 3-T1AM in vivo, an increasing number of 
studies over the last few years have been devoted to investigate the 
biosynthetic pathways, functions, and underlying mechanisms 
behind the effects of 3-T1AM.

SignALing eFFeCTS OF 3-T1AM

Recent studies described the signaling properties of 3-T1AM in vari-
ous cell systems. Interestingly, one study revealed that the functional 
thyrotropin (TSH)-dependent iodide uptake and TSH-dependent 
mRNA of sodium/iodide symporter in rat thyrocytes were decreased 
in the presence of 3-T1AM. Therefore, it was congruent to investi-
gate whether 3-T1AM modifies signaling pathways downstream of 
TSH receptor (TSHR) (10). TSH is the major regulator of thyroid 
function and activation of the TSHR results in Gs as well as Gq 
signaling in thyrocytes (11, 12). TSH elicits increases of intracel-
lular Ca2+ concentration through activation of TSHR-mediated 
Gq signaling (13). This increase partially occurs through inositol 
1,4,5-trisphosphate (IP3)-evoked release of Ca2+ sequestered in the 
endoplasmic reticulum (ER) (14). Previous studies demonstrated 
the expression of a member of the TRPC family of cation channels 
known as TRPC2 (pseudogene in human) in rat thyroid cells (15).  
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TABLe 1 | 3-T1AM effects in different cell types.

[3-T1AM] (μM) Fluorescence ratio 
(f340 nm/f380 nm)

inward currents (pA/pF) Outward currents (pA/pF) expression localization (cell type)

1.0 ↑↑↑↑ N/A N/A TRPM8 transfected osteosarcoma [U2OS] (56)
1.0 ↑↑↑ N/A N/A Thyroid [PCCL3] (10)
1.0 ↑↑ −15 108 Human corneal epithelium [HCEC] (56)
1.0 ↑↑ −22 161 Human conjunctival epithelium [HCjEC] (17)
1.0 ↑ −25 170 Neuroendocrine tumor [BON-1] (unpubl.)
5.0 ↑ −25 142 Uveal melanoma [92.1] (unpubl.)

Fluorescent Ca2+ indicator fura-2 is alternately excited at 340 and 380 nm, and the fluorescence ratio (f340 nm/f380 nm) is a relative index of changes in [Ca2+]i.
↑ Slight increase, ↑↑ moderate increase, ↑↑↑ strong increase, and ↑↑↑↑ very strong increase.
3-T1AM, 3-iodothyronamine; TRPM8, transient receptor potential channel melastatin 8.
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Surprisingly, reducing the expression of TRPC2 with shRNA 
decreased Ca2+ influx and increased the TSH-induced production 
of cAMP, which can be due to marked upregulation of TSHR. 
Nevertheless, this study could not rule out the possibility of Gi 
signaling inhibition. It has been suggested that deprivation of Ca2+ 
removes the inhibitory action on adenylyl cyclase (AC), upregulates 
pERK1/2, and increases TSHR expression in thyroid cells (15).

It is known that 3-T1AM induces Gs/AC signaling in rat 
Taar1 and human TAAR1-transfected human embryonic kidney 
(HEK) cells (1, 16). Recently, it was demonstrated for the first 
time that 3-T1AM increases intracellular Ca2+ concentration in 
rat thyrocytes (PCCL3 cells) (10). TSH-dependent activation of 
the Gs signaling pathway was not influenced by 3-T1AM (10). 
Furthermore, there is currently no evidence that 3-T1AM induced 
IP3 formation in thyrocytes (10). However, 3-T1AM induced 
increases in cytosolic Ca2+ under extracellular Ca2+ free condi-
tions in epithelial cells, indicating the intracellular store depletion 
independent from Gq downstream signaling (17). Therefore, it 
was concluded that 3-T1AM effect in thyrocytes is independent 
from TSH-induced Gs or Gq signaling (10).

Beside a function of 3-T1AM on thyrocytes, it could be shown 
in another study that 3-T1AM enhanced Gs signaling in response 
to isoprenaline (ISOP) stimulation of the β2-adrenergic receptor 
in transfected HEK293 cells, but not of β1-adrenergic receptor. 
Increasing concentrations of 3-T1AM in combination with a 
constant concentration of ISOP modulated Gs-mediated cAMP 
accumulation. At high 3-T1AM concentrations (10−5–10−6  M), 
there was a weak increase in ISOP-stimulated cAMP accumula-
tion. In contrast, at lower 3-T1AM concentrations (10−7–10−8 M), 
a significant increase in ISOP-induced cAMP accumulation was 
observed, which may be related to the activation of Gi signaling 
(7). These findings in in  vitro systems indicated that 3-T1AM 
may have a differential impact on certain GPCRs, particularly 
aminergic receptors, and that the mode of action is concentration 
dependent. It may also indicate the possibility of biphasic activa-
tion (i.e., high and low concentrations may have similar actions, 
while moderate concentrations enact distinct effects) of different 
signaling pathways.

Taken together, these studies revealed that 3-T1AM enhances 
GPCR-mediated downstream signaling in different cell types.  
In addition, β2-adrenergic receptors have been suggested as a new 
GPCR target for 3-T1AM. Nevertheless, the underlying mecha-
nism behind the Ca2+ signal transduction remained elusive.

iOn CHAnneLS AS POTenTiAL  
TARgeTS FOR 3-T1AM

Although many studies have reported remarkable hypothermia 
caused by 3-T1AM, different observations demonstrated that 
this effect is not exclusively mediated via GPCRs. One study 
described that 3-T1AM-induced decrease of body temperature 
still persisted in mTaar1 knockout mice (5), which suggested 
that the actions of 3-T1AM are not only mediated via the mTaar1 
receptor for the induction of hypothermia (18). Recently, it has 
been shown that hypothermic effects of 3-T1AM in mice are 
due to peripheral vasodilation and subsequent heat loss from 
the tail surface. Although the possible targets of 3-T1AM, Taar1, 
and the adrenergic receptors were detected in tail arteries and 
the aorta, neither vessel responded to high doses of 3-T1AM. 
As this anapyrexia effect was also found after intracerebroven-
tricular injection, the authors concluded that this temperature 
effect might be mediated by non-GPCR targets such as TRPs 
in the hypothalamus (19). Notably, the systemic temperature 
lowering effect of 3-T1AM lies within the range adequate for 
eliciting TRP activation. Application of specific blockers as 
well as overexpression system revealed the involvement of 
thermo-TRPs in 3-T1AM-induced effect. Table 1 summarizes 
the effects of 3-T1AM on Ca2+ regulation and whole-cell cur-
rents in different cell types. Notably, 3-T1AM-induced Ca2+ 
influx varies between normal and neoplastic cells, whereas no 
differences were detected in whole-cell current densities. This 
indicates that cytosolic Ca2+ regulation induced by 3-T1AM 
might be partially independent from TRP activities. In the 
following chapter, we summarize the current knowledge about 
TRP involvement in 3-T1AM-induced Ca2+ mobilization and 
downstream signaling.

Transient Receptor Potential Channels
Transient receptor potential channels (TRPs) are a superfamily 
of membrane-spanning non-selective cation channels, which are 
mainly permeated by Ca2+. Classically, TRPs can trigger pain and 
reception to temperature via nociceptors. The TRP superfamily 
includes 28 members, which can be subdivided into six groups 
in mammals based on sequence homology (20) and sensitivity to 
activation by different stimuli: TRPA (ankyrin), TRPC (canoni-
cal), TRPM (melastatin), TRPML (mucolipin), TRPP (polycystic),  
and TRPV (vanilloid) [reviewed in Ref. (21, 22)].
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TRPs are located in the plasma membrane and the membrane of 
various organelles of most cell types. These channels mainly func-
tion as homo- and heterotetrameric structures (23, 24). They share 
the same basic topology, consisting of six transmembrane domains, 
a pore-forming loop and intracellular N and C termini. In some, 
but not all subfamilies, the N terminal domain contains ankyrin 
repeats, which contribute to channel assembly as well as gating and 
is a common protein–protein interaction motif (25, 26).

TRPs can be activated by thermal, mechanical, or chemical 
stimuli ranging from ions to small molecules. They are able to 
integrate and transduce them into appropriate responses in excit-
able and non-excitable cells (27, 28). There is also some evidence 
that TRP-elicited responses are modulated by their interactions 
with other receptors, such as GPCRs or ion channels in various 
healthy cell types as well as tumor cells (29–31).

TRP/gPCR interaction
In mammals, GPCRs and TRPs are coexpressed in a variety of 
cell types; and different signaling intermediates, such as adaptor 
proteins, kinases and lipid metabolites, functionally link GPCRs 
to TRPs (32). TRPs are major downstream effectors of GPCRs, 
and the signaling pathways that emanate from the activation 
of GPCRs lead to altered TRP activity or expression (22, 33). 
Profound understanding of the intracellular Ca2+ signaling net-
work, particularly the TRP/GPCR cross-talk and the substantial 
roles of TRPs, has significantly advanced the field of drug design 
and development (33, 34). One of the most studied GPCR/TRP 
regulatory pathways includes the bradykinin receptor (BR), which 
is coexpressed with TRPV1, TRP ankyrin receptor 1 (TRPA1), 
TRPM8, and TRPV4 in DRG nerve terminals. Activation of BR 
leads to rapid stimulation of TRPs to evoke action potentials, 
resulting in pain and inflammation (32, 35). Another example 
is coexpression and interaction of muscarinic receptors and 
TRPV1 in idiopathic overactive bladder urothelial cells, where 
the cells are responsive to both acetylcholine and capsaicin (36). 
Interestingly, 3-T1AM has been described as a novel antagonist 
of muscarinic type 3 receptor (37). Although further research on 
the potential pharmacological effects of 3-T1AM in this context is 
necessary, this interesting example emphasizes the possibility of 
targeting the TRP/GPCR axis to develop new therapeutic options 
for different diseases.

ROLe OF TRPs in THeRMORegULATiOn

Six members of the TRP superfamily are recognized as tempera-
ture-sensitive TRPs (thermo-TRPs), which are activated at specific 
temperatures in the range from noxious heat to painful cold (38). 
Thermo-TRPs are believed to be involved in body temperature 
perception and based on response patterns can be divided into two 
subtypes; namely, cold and heat receptors. TRPV1 and TRPV2 
respond to painful increases in temperature, while TRPV3 and 
TRPV4 respond to non-painful increases in temperature. TRPM2 
is known as the hypothalamic heat sensor, which mediates the 
responses to the temperature above 37°C and modulates fever 
temperature (39). TRPM8 is activated by non-painful decreases 
in temperature and TRPA1 by painful decrease in temperatures  
(40, 41). Thermo-TRPs are also substrates of chronic inflammatory 

mediators released in pathological pain states, which contribute 
to inflammatory responses and neuropathic pain (42–45). Recent 
studies demonstrated that TRPM8 and TRPV1 play homeostatic 
roles in temperature regulation (34).

TRPV1 is the most eminent member of TRP superfamily 
and has a broad distribution in central and peripheral nervous 
systems (46). Expression of TRPV1 also has been observed in 
non-excitable cells (47–49). Generally, TRPV1 can be activated 
by various stimuli such as heat, vanilloids, cannabinoids, lipids, 
and protons (50, 51). Administration of TRPV1 agonists triggers 
both increased heat loss and heat production in mammals (52).

TRP melastatin 8 is found on Aδ and C fiber afferents and is 
a major determinant of temperature homeostasis including auto-
nomic thermogenesis (30). TRPM8 can be activated by moderate 
cooling as well as a variety of chemical agonists that are known 
to produce cool sensations such as menthol and icilin (53–55).

In general, thermo-TRPs can be activated within specific 
temperature ranges and transduce such inputs into chemical and 
electrical signals. Different chemical agents are identified which 
target these channels and elicit the similar downstream effects. 
So far, 3-T1AM is the only known endogenous compound induc-
ing hypothermia and suggested to modulate thermo-TRPs as 
described in the following paragraph.

3-T1AM inTeRACTS wiTH THeRMO-TRPs

In a recent study, activation of warm-sensitive TRPM2 led to 
a similar thermoregulatory response observed in mice after 
systemic administration of 3-T1AM (19, 39). An electrophysi-
ological screening of current densities in rat thyrocyte (PCCL3 
cells) demonstrated the presence of thermo-TRPs in these cell 
lines. In PCCL3 cells, 3-T1AM induces Ca2+ responses similar 
to specific TRPM8 agonists such as menthol and icilin. Notably, 
Ca2+ elevation was exclusively attenuated in the presence of 
specific TRPM8 blocker (BCTC) in these cells, which strongly 
suggests 3-T1AM-induced Ca2+ rise is attributable to interactions 
with TRPM8 channels. Recent observations also confirmed the 
association between TRPM8 and 3-T1AM using an osteosarcoma 
heterologous expression system with overexpressed TRPM8 (56). 
Furthermore, many studies have demonstrated the endogenous 
expression of TRPs as well as adrenergic receptors in ocular tis-
sues (17, 56–58). Interestingly, 3-T1AM evoked Ca2+ mobilization 
and increases in whole-cell currents in human conjunctival and 
corneal epithelial cells. This increase in Ca2+ influx and in- and 
outward whole-cell currents were almost fully attenuated in 
the presence of TRPM8 antagonists (10, 17, 56). Notably, the 
non-selective adrenergic receptor blocker timolol attenuated 
3-T1AM-induced Ca2+ effects in a similar manner to BCTC, 
which suggested that 3-T1AM activates TRPM8 downstream of 
GPCRs such as β2 adrenergic receptors (7). Immunostaining 
pattern indicated TRPM8 expression in ER of ocular cells  
(17, 56). Previous studies also demonstrated TRPM8 localization 
in the ER membrane of a prostate cancer-derived epithelial cell line 
(LNCaP) (59, 60). Consequently, TRPM8 has been suggested as an 
important ER Ca2+ release channel, which is involved in numerous 
processes in prostate cancer epithelial cells (60). Therefore, the 
persistence of 3-T1AM-induced Ca2+ influx in extracellular Ca2+ 
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free conditions also might be attributable to intracellular TRPM8 
expression in epithelial cells, which supports the hypothesis of 
3-T1AM-induced Ca2+ influx downstream of GPCRs.

Taken together, recent studies suggest that 3-T1AM acts as a 
cooling agent similar to menthol or icilin. It has been proposed 
that 3-T1AM may be a ligand of TRPM8; however, the evidence 
suggests that its cooling actions are primarily mediated via GPCR 
activation, which indirectly modulates TRPM8 activity. There is 
accumulating evidence that thermo-TRPs such as TRPM8 and 
TRPV1 are not only involved in physiological regulations but 
also a variety of pathophysiological conditions such as inflam-
mation can be influenced by activation of these channels. Here, 
we describe the role of TRPs in inflammation and the potential of 
3-T1AM as an anti-inflammatory agent.

ROLe OF TRPs in inFLAMMATiOn

Different studies have demonstrated the role of TRPM8 in medi-
ating the anti-inflammatory effects of mild cooling in trauma-
induced peripheral inflammation and limiting pain sensation after 
injury (61, 62). Menthol is one of the most commonly used phy-
tochemical compounds in our daily life due to its analgesic benefit 
and its ability to provide a cooling sensation (63). Coexpression 
of TRPV1 with TRPM8 has been demonstrated in many different 
cell types (64, 65). It is known that multiple inflammatory signal-
ing pathways can be activated downstream of TRPV1 activation 
by exogenous and endogenous stimuli (66, 67). Capsaicin as a 
specific TRPV1 agonist elicits increases in pro-inflammatory 
cytokine release via intracellular Ca2+ transients, which leads to 
interleukin secretion (68, 69). The interdependence of TRPM8 
and TRPV1 ion channel function has raised interest in the field of 
anti-inflammatory therapeutic research (70, 71). Previous studies 
have shown that menthol blocks the mechanical and heat hyper-
algesia caused by injection of inflammatory compounds, such as 
capsaicin (72, 73). Icilin is another specific TRPM8 agonist that is 
known as a “super-cooling” agent, with a notably higher potency 
and efficacy than menthol in cellular and behavioral studies 
(55). Icilin attenuates TRPV1-dependent calcitonin gene-related 
peptide release in the colon and is a promising therapeutic target 
for the treatment of colitis (71). Another study also suggested that 
downregulation of TRPM8 aggravates TRPV1-mediated inflam-
matory hyperalgesia (70). Although, the recent drug-screening 
efforts targeting TRPs have resulted in the discovery of effective 
TRPM8 agonists, the majority of these drugs either were not clini-
cally efficacious or displayed adverse side effects. Subsequently, 
the general interest for introducing an effective and safe TRP 
modulator to suppress inflammatory symptoms in different tis-
sues has increased. Recent studies demonstrated that 3-T1AM 
has promising anti-inflammatory cooling properties similar to 
cooling agents such as icilin (17, 56).

3-T1AM, A POSSiBLe THeRAPeUTiC 
OPTiOn FOR inFLAMMATiOn?

It has been well-established that TRPM8 activation leads to the 
suppression of TRPV1 stimulation (70, 71). Thus, we reviewed 
here the role of 3-T1AM in this feedback system. Interestingly, 

an inverse association between changes in TRPM8 and TRPV1 
activity after 3-T1AM stimulation has been observed. Specifically, 
3-T1AM blocked capsaicin-induced TRPV1 activation in human 
conjunctival and corneal epithelial cell lines and attenuated down-
stream rises in IL-6 release (17, 56). It was previously described 
that a TRPV1 antagonist elicited suppression of injury-induced 
stromal TRPV1 activation in corneal epithelium, which reduced 
inflammation and fibrosis (74). Notably, the blunting effects 
of 3-T1AM on TRPV1-induced Ca2+ influx and IL-6 release 
mirrored the effects of TRPV1 specific inhibitor (17, 56). This 
observation revealed a potential therapeutic value of 3-T1AM for 
suppressing TRPV1-induced Ca2+ channel-mediated inflamma-
tory processes in different pathophysiological conditions such as 
dry eye syndrome.

COnCLUSiOn

The TH derivative 3-T1AM has been identified as a novel 
endogenous signaling compound exhibiting remarkable physi-
ological effects such as hypothermia and hyperglycemia, as well as 
promising therapeutic potential in the experimental prophylaxis 
and treatment of stroke. Currently, the underlying mechanism of 
3-T1AM action and its physiological receptor(s) have been insuf-
ficiently characterized and are in need of further research. Here, 
we reviewed the Ca2+ signal transduction pathways induced by 
3-T1AM and provided the promising evidence of TRP channel 
modulation through this TH metabolite (Figure 1). The 3-T1AM 
action on GPCRs as well as on TRPs indicates the complex func-
tional (co)-regulation of each system, which have a high impact 
on physiological and pathophysiological conditions. The close 
crosstalk of GPCRs and TRPs provides the opportunity to widen 
the options for therapeutic intervention, and by using such coreg-
ulated systems the possibility of unwanted side effects might be  
reduced.
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