Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,4-Dichloro-7,8-dimethylquinoline

R. Subashini,^a F. Nawaz Khan,^a T. Rajashekar Reddy,^a Venkatesha R. Hathwar^b and Mehmet Akkurt^c*

^aOrganic and Medicinal Chemistry Research Laboratory, Organic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu, India, ^bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and ^cDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey Correspondence e-mail: akkurt@erciyes.edu.tr

Received 24 May 2010; accepted 28 May 2010

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.007 Å; R factor = 0.049; wR factor = 0.119; data-to-parameter ratio = 15.6.

There are two independent molecules in the asymmetric unit of the title compound, $C_{11}H_9Cl_2N$, both of which are essentially planar [maximum deviations of 0.072 (5) and 0.072 (7) Å]. In the crystal structure, weak π - π stacking interactions [centroid-centroid distances = 3.791 (3) Å and 3.855 (3) Å] link pairs of molecules.

Related literature

For the properties and applications of related compounds, see: Biavatti *et al.* (2002); Fournet *et al.* (1981); McCormick *et al.* (1996); Towers *et al.* (1981); Ziegler & Gelfert (1959). For similar crystal structures, see: Subashini *et al.* (2009); Somvanshi *et al.* (2008).

Experimental

Crystal data $C_{11}H_9Cl_2N$ $M_r = 226.09$

Orthorhombic, $Pca2_1$ a = 20.3054 (9) Å b = 3.9992 (2) Å c = 25.5743 (11) Å V = 2076.77 (17) Å³ Z = 8

Data collection

Oxford Xcalibur Eos (Nova) CCD detector diffractometer Absorption correction: multi-scan (*CrysAlis PRO RED*; Oxford Diffraction, 2009) $T_{min} = 0.845, T_{max} = 0.918$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.119$ S = 0.944009 reflections 257 parameters 1 restraint Mo $K\alpha$ radiation $\mu = 0.58 \text{ mm}^{-1}$ T = 295 K $0.30 \times 0.24 \times 0.15 \text{ mm}$

19807 measured reflections 4009 independent reflections 2599 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.048$

H-atom parameters constrained $\Delta \rho_{max} = 0.32 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.19 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983), 1943 Friedel pairs Flack parameter: 0.15 (10)

Data collection: *CrysAlis PRO CCD* (Oxford Diffraction, 2009); cell refinement: *CrysAlis PRO CCD*; data reduction: *CrysAlis PRO RED* (Oxford Diffraction, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the FIST–DST program at SSCU, IISc. We also thank Professor T. N. Guru Row, IISc, Bangalore, for his help with the data collection. FNK thanks the DST for Fast Track Proposal funding.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2029).

References

- Biavatti, M. W., Vieira, P. C., da Silva, M. F. G. F., Fernandes, J. B., Victor, S. R., Pagnocca, F. C., Albuquerque, S., Caracelli, I. & Zukerman-Schpector, J. (2002). J. Braz. Chem. Soc. 13, 66–70.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Fournet, A., Barrios, A. A., Munioz, V., Hocquemiller, R., Cave, A. & Bruneton, J. (1981). J. Antimicrob. Agents Chemother. 37, 859–863.
- McCormick, J. L., McKee, T. C., Cardellina, J. H. & Boyd, M. R. (1996). J. Nat. Prod. **59**, 469–471.
- Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Somvanshi, R. K., Subashini, R., Dhanasekaran, V., Arulprakash, G., Das, S. N. & Dey, S. (2008). J. Chem. Crystallogr. 38, 381–386.
- Subashini, R., Hathwar, V. R., Manivel, P., Prabakaran, K. & Khan, F. N. (2009). Acta Cryst. E65, 0370.
- Towers, G. H. N., Grahanm, E. A., Spenser, I. D. & Abramowski, Z. (1981). *Planta Med.* **41**, 136–142.
- Ziegler, E. & Gelfert, K. (1959). Monatsh. Chem. 90, 822-826.

Acta Cryst. (2010). E66, 01535 [doi:10.1107/S1600536810020386]

2,4-Dichloro-7,8-dimethylquinoline

R. Subashini, F. N. Khan, T. R. Reddy, V. R. Hathwar and M. Akkurt

Comment

A wide range of medicinal properties have already been identified for compounds containing the quinoline ring system including antiprotozoal (Fournet *et al.*, 1981), antibacterial (Towers *et al.*, 1981), antifungal (Biavatti *et al.*, 2002) and antiviral activities (McCormick *et al.*, 1996). Reaction of aniline with malonic acid in an excess of phosphorus oxychloride at reflux to give 2,4-dichloroquinoline was first reported by Ziegler & Gelfert (1959). A similar derivative of quinoline was synthesized from the mixture of *p*-toluidine and malonic acid in a one-pot reaction from an aryl amine, malonic acid and phosphorous oxychloride and its cytotoxicity has been reported (Somvanshi *et al.*, 2008). Another derivative of quinoline prepared from *p*-anisidine and phosphorous oxychloride has been reported (Subashini *et al.*, 2009). In continuous of our work, the crystal structure of another derivative is reported in this paper.

The molecules A (Cl1/Cl2/N1/C1–C11) and B (Cl3/Cl4/N2/C12–C22) in the asymmetric unit of the title compound (I) are shown in Fig. 1. In both molecules A and B, the bond lengths and angles are comparable with those of similar structures (Somvanshi *et al.*, 2008; Subashini *et al.*, 2009). The molecules A and B are essentially planar, except the H atoms of their methyl groups, with maximum deviations of 0.072 (5)Å for C10 and 0.072 (7)Å for C21, respectively. Fitting of the non-H atoms of molecules A and B results in an r.m.s. fit of 0.063 Å). The least-squares plane through molecule A makes a dihedral angle of 56.72 (14)° with that of molecule B.

Weak intramolecular C—H···Cl and C—H···N interactions contribute to the stabilization of the molecular conformation of (I) (Table 1). In the crystal structure, weak π - π stacking interactions [Cg1···Cg2(x, 1 + y, z) = 3.791 (3) Å and Cg4···Cg5 (x, 1 + y, z) = 3.855 (3) Å; where Cg1, Cg2, Cg4 and Cg5 are centroids of the N1/C1–C4/C9, C4–C9, N2/C12–C15/C20 and C15–C20 rings, respectively] link pairs of molecules. In the structure, no classical hydrogen bonds are observed. Fig. 2 shows the crystal packing down the b axis.

Experimental

2,3-Dimethylaniline (10 mmol) and malonic acid (10 mmol) were heated under reflux in phosphorus oxychloride (30 ml), with stirring, for 5 h. The mixture was cooled, poured into crushed ice with vigorous stirring and then made alkaline with 5 M sodium hydroxide. Filtration gave the crude product as a brown solid. Column chromatography (95:5 hexane–EtOAc) yielded the pure 2,4-dichloro-7,8-dimethylquinoline. White needles of the synthesized compound have been grown from DMSO.

Refinement

H atoms were positioned geometrically with C—H = 0.93 and 0.96 Å, for aromatic and methyl H and refined as a riding method, with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$.

Figures

Fig. 1. View of the two molecules in the same asymmetric unit of (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.

Fig. 2. The molecular packing of (I) showing π - π stacking interactions (dashed lines) between the adjacent molecules down *b* axis. H atoms are omitted for clarity.

2,4-Dichloro-7,8-dimethylquinoline

Crystal data	
$C_{11}H_9Cl_2N$	F(000) = 928
$M_r = 226.09$	$D_{\rm x} = 1.446 {\rm ~Mg~m}^{-3}$
Orthorhombic, <i>Pca</i> 2 ₁	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2c -2ac	Cell parameters from 895 reflections
a = 20.3054 (9) Å	$\theta = 1.8 - 24.7^{\circ}$
b = 3.9992 (2) Å	$\mu = 0.58 \text{ mm}^{-1}$
<i>c</i> = 25.5743 (11) Å	T = 295 K
$V = 2076.77 (17) \text{ Å}^3$	Needle, colourless
Z = 8	$0.30 \times 0.24 \times 0.15 \text{ mm}$

Data collection

Oxford Xcalibur Eos (Nova) CCD detector diffractometer	4009 independent reflections
Radiation source: Enhance (Mo) X-ray Source	2599 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.048$
ω scans	$\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 2.6^{\circ}$
Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009)	$h = -25 \rightarrow 25$
$T_{\min} = 0.845, T_{\max} = 0.918$	$k = -4 \rightarrow 4$
19807 measured reflections	$l = -31 \rightarrow 31$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier mapLeast-squares matrix: fullHydrogen site location: inferred from neighbouring
sites $R[F^2 > 2\sigma(F^2)] = 0.049$ H-atom parameters constrained

$P(F^2) = 0.110$	$w = 1/[\sigma^2(F_o^2) + (0.0652P)^2]$
$wR(F_{-}) = 0.119$	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 0.94	$(\Delta/\sigma)_{\rm max} < 0.001$
4009 reflections	$\Delta \rho_{max} = 0.32 \text{ e} \text{ Å}^{-3}$
257 parameters	$\Delta \rho_{min} = -0.19 \text{ e } \text{\AA}^{-3}$
1 restraint	Absolute structure: Flack (1983), 1943 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.15 (10)

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.68230 (6)	0.6442 (5)	0.97181 (6)	0.0916 (6)
Cl2	0.50757 (6)	0.7463 (3)	0.81738 (5)	0.0709 (4)
N1	0.56446 (17)	0.4177 (12)	0.97981 (17)	0.0530 (12)
C1	0.6040 (3)	0.5681 (15)	0.9491 (2)	0.0630 (19)
C2	0.5891 (2)	0.6763 (11)	0.89752 (18)	0.0550 (16)
C3	0.5272 (2)	0.6141 (12)	0.88079 (17)	0.0490 (14)
C4	0.4813 (3)	0.4506 (11)	0.9111 (3)	0.0510 (19)
C5	0.4158 (2)	0.3859 (13)	0.8958 (2)	0.0593 (17)
C6	0.3744 (2)	0.2192 (11)	0.9295 (2)	0.0647 (17)
C7	0.3943 (2)	0.1131 (13)	0.9795 (2)	0.0623 (19)
C8	0.4577 (2)	0.1780 (10)	0.99705 (18)	0.0553 (17)
C9	0.50171 (19)	0.3483 (10)	0.96177 (17)	0.0477 (14)
C10	0.3437 (3)	-0.0425 (13)	1.0129 (2)	0.0640 (19)
C11	0.4804 (3)	0.0815 (14)	1.0504 (2)	0.074 (2)
C13	0.56576 (6)	1.1324 (5)	0.69164 (6)	0.0964 (6)
Cl4	0.73974 (6)	1.2634 (3)	0.84687 (5)	0.0694 (4)
N2	0.6857 (2)	0.9027 (12)	0.68457 (18)	0.0627 (17)
C12	0.6456 (3)	1.0586 (13)	0.7160 (2)	0.0540 (17)
C13	0.6582 (2)	1.1805 (11)	0.76636 (19)	0.0553 (16)
C14	0.7208 (2)	1.1269 (12)	0.78476 (17)	0.0500 (16)
C15	0.7689 (2)	0.9656 (10)	0.7534 (3)	0.0420 (18)
C16	0.8335 (3)	0.8998 (14)	0.7678 (2)	0.0620 (17)
C17	0.8766 (2)	0.7485 (11)	0.73560 (19)	0.0590 (17)
C18	0.8568 (2)	0.6444 (12)	0.6858 (2)	0.0610 (19)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C19	0.7928 (2)	0.6889 (10)	0.66826 (18)	0.0567 (17)
C20	0.74761 (19)	0.8565 (11)	0.70266 (17)	0.0507 (16)
C21	0.9046 (4)	0.4700 (17)	0.6447 (4)	0.112 (4)
C22	0.7674 (3)	0.5740 (13)	0.6163 (2)	0.0650 (19)
H2	0.62010	0.78320	0.87660	0.0660*
H5	0.40070	0.45540	0.86320	0.0710*
H6	0.33150	0.17480	0.91870	0.0780*
H10A	0.32250	0.12660	1.03360	0.0960*
H10B	0.36400	-0.20380	1.03550	0.0960*
H10C	0.31150	-0.15180	0.99130	0.0960*
H11A	0.46530	0.24420	1.07530	0.1120*
H11B	0.52760	0.07210	1.05100	0.1120*
H11C	0.46280	-0.13390	1.05930	0.1120*
H13	0.62630	1.29030	0.78600	0.0660*
H16	0.84760	0.96260	0.80100	0.0740*
H17	0.91970	0.71310	0.74650	0.0700*
H21A	0.90020	0.57790	0.61130	0.1670*
H21B	0.89310	0.23810	0.64140	0.1670*
H21C	0.94930	0.48880	0.65650	0.1670*
H22A	0.79460	0.66330	0.58900	0.0970*
H22B	0.72290	0.65090	0.61180	0.0970*
H22C	0.76820	0.33420	0.61490	0.0970*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0611 (8)	0.1339 (13)	0.0798 (10)	-0.0212 (8)	-0.0161 (7)	0.0013 (12)
Cl2	0.0827 (8)	0.0806 (7)	0.0495 (6)	0.0103 (6)	-0.0061 (6)	0.0020 (6)
N1	0.047 (2)	0.068 (2)	0.044 (2)	0.004 (2)	-0.0064 (19)	-0.008 (2)
C1	0.048 (3)	0.069 (3)	0.072 (4)	-0.003 (3)	-0.001 (3)	-0.013 (3)
C2	0.062 (3)	0.056 (3)	0.047 (2)	-0.002 (2)	0.005 (2)	-0.007 (2)
C3	0.060 (3)	0.048 (2)	0.039 (2)	0.006 (2)	0.000 (2)	-0.005 (2)
C4	0.052 (3)	0.041 (3)	0.060 (4)	0.009 (2)	-0.008 (3)	-0.020 (2)
C5	0.045 (3)	0.075 (3)	0.058 (3)	0.010 (3)	-0.003 (2)	-0.019 (3)
C6	0.046 (3)	0.067 (3)	0.081 (3)	0.007 (2)	-0.004 (2)	-0.016 (3)
C7	0.054 (3)	0.054 (3)	0.079 (4)	0.005 (3)	0.012 (3)	-0.016 (3)
C8	0.066 (3)	0.048 (3)	0.052 (3)	0.004 (2)	0.008 (2)	-0.012 (2)
C9	0.055 (2)	0.038 (2)	0.050 (3)	0.001 (2)	0.011 (2)	-0.012 (2)
C10	0.062 (4)	0.062 (3)	0.068 (3)	-0.004 (2)	0.018 (3)	-0.018 (3)
C11	0.088 (4)	0.067 (3)	0.068 (4)	0.002 (3)	-0.001 (3)	-0.004 (3)
C13	0.0610 (8)	0.1433 (13)	0.0848 (10)	0.0298 (9)	-0.0193 (7)	-0.0122 (13)
Cl4	0.0783 (7)	0.0777 (7)	0.0523 (6)	-0.0045 (6)	-0.0028 (6)	-0.0053 (6)
N2	0.067 (3)	0.067 (3)	0.054 (3)	0.006 (2)	-0.002 (2)	-0.002 (3)
C12	0.046 (3)	0.073 (3)	0.043 (3)	0.005 (2)	-0.002 (2)	-0.006 (3)
C13	0.042 (2)	0.061 (3)	0.063 (3)	0.008 (2)	0.005 (2)	0.002 (2)
C14	0.058 (3)	0.047 (3)	0.045 (2)	-0.003 (2)	0.006 (2)	0.002 (2)
C15	0.034 (3)	0.039 (2)	0.053 (4)	0.0013 (16)	0.004 (3)	0.0138 (19)
C16	0.070 (3)	0.057 (3)	0.059 (3)	-0.014 (3)	-0.009 (3)	0.004 (3)

C17	0.050(3)	0.060 (3)	0.067 (3)	-0.001 (2)	-0.004(2)	0.006 (3)
C18	0.060 (3)	0.043 (3)	0.080 (4)	-0.001 (2)	0.016 (3)	0.018 (3)
C19	0.063 (3)	0.049 (3)	0.058 (3)	-0.008 (2)	0.007 (2)	0.011 (2)
C20	0.047 (2)	0.054 (3)	0.051 (3)	0.000 (2)	0.009 (2)	0.007 (2)
C21	0.084 (5)	0.086 (5)	0.166 (8)	0.018 (3)	0.056 (5)	0.007 (4)
C22	0.084 (4)	0.072 (3)	0.039 (3)	0.016 (3)	0.007 (3)	-0.002 (3)
Geometric param	neters (Å, °)					
Cl1—C1		1.720 (6)	C10	0—H10C	(0.9600
Cl2—C3		1.752 (5)	C11	1—H11B	(0.9600
Cl3—C12		1.762 (6)	C11	1—H11C	(0.9600
Cl4—C14		1.723 (5)	C11	1—H11A	(0.9600
N1—C9		1.383 (5)	C12	2—С13		1.401 (7)
N1-C1		1.274 (7)	C13	3—C14		1.372 (6)
N2—C20		1.352 (6)	C14	4—C15		1.419 (7)
N2—C12		1.303 (7)	C15	5—C16		1.388 (7)
C1—C2		1.421 (7)	Cls	5—C20		1.436 (8)
C2—C3		1.351 (6)	Cle	6—C17		1.345 (7)
$C_3 - C_4$		1.377 (8)		/—C18		1.399 (7)
C4—C3		1.410 (7)		8—C19		1.580 (0)
C4—C9		1.421 (8)		$S = C_2 I$		1.392 (10)
$C_{5} = C_{0}$		1.370(7)	C19	9—C20		1.437 (0)
C_{7}		1.407(7)	C13)—022 3—H13		0.9300
C7—C8		1 388 (6)	C16	6—H16	(0.9300
C8—C11		1.491 (7)	C17	7—H17	(0.9300
C8—C9		1.441 (6)	C21	1—H21A	(0.9600
С2—Н2		0.9300	C21	1—H21B	(0.9600
С5—Н5		0.9300	C21	1—H21C	(0.9600
С6—Н6		0.9300	C22	C22—H22A 0.9600		0.9600
C10—H10A		0.9600	C22	С22—Н22В 0.960		0.9600
C10—H10B		0.9600	C22	C22—H22C 0.90		0.9600
Cl1…H22A ⁱ		3.0300	H5∙	···H16 ⁱⁱⁱ	2	2.5500
С12…Н5		2.7300	H6·	···H10C		2.3100
Cl2…H13 ⁱⁱ		3.1300	H6·	···Cl4 ⁱⁱⁱ	-	3.1500
Cl2…H17 ⁱⁱⁱ		3.1400	H10	0A…C22 ^{viii}	ź	3.0400
Cl3···H21C ^{iv}		2.9500	H10	0A…H22B ^{viii}	2	2.3800
Cl4…H6 ^v		3.1500	H10	0B…C11	,	2.6500
Cl4…H16		2.7600	H10	0B…H11C		2.1200
N1…H11B		2.4100	H10	0С…Н6	-	2.3100
N2···H22B		2.2500	H11	1A…H11C ^{vi}	,	2.5200
C3…C4 ^{vi}		3.558 (7)	H11	1B…N1		2.4100
C4…C3 ⁱⁱ		3.558 (7)	H11	1C…H11A ⁱⁱ	2	2.5200
C5···C6 ^{vi}		3.543 (7)	H11	1C…C10		2.7200
C6…C5 ⁱⁱ		3.543 (7)	H11	1C…H10B		2.1200
C8····C9 ⁱⁱ		3.553 (6)	H13	3···Cl2 ^{vi}	-	3.1300

C9····C8 ^{vi}	3.553 (6)	H16…Cl4	2.7600
C14···C15 ^{vi}	3.584 (6)	H16…H5 ^v	2.5500
C15···C14 ⁱⁱ	3.584 (6)	H17…H21C	2.5400
C18····C21 ^{vi}	3.598 (9)	H17…Cl2 ^v	3.1400
C19…C20 ⁱⁱ	3.563 (6)	H21A…C22	2.7000
C20····C19 ^{vi}	3.563 (6)	H21A…H22A	2.2400
C21C18 ⁱⁱ	3.598 (9)	H21B····C18 ⁱⁱ	2.7300
С10…Н11С	2.7200	H21B····C19 ⁱⁱ	3.0700
C11H10B	2.6500	H21B····C21 ⁱⁱ	3.0800
C18H21B ^{vi}	2 7300	H21B···C22	2,9500
$C10H21P^{Vi}$	3.0700	H21CH17	2 5400
	2 9600		2.5400
	2.9000	H21C···C13	2.9500
C20H22C ¹¹	2.9800	HZZA····CZI	2.7600
C21H21B ^{v1}	3.0800	H22A···H21A	2.2400
C21…H22C	2.9200	H22A···Cl1 ^x	3.0300
C21…H22A	2.7600	H22B…N2	2.2500
C22…H22C ^{V1}	3.0400	H22B···H10A ^{vii}	2.3800
C22…H10A ^{vii}	3.0400	$H22C\cdots C19^{n}$	2.9600
C22…H21B	2.9500	H22C····C20 ⁱⁱ	2.9800
C22…H21A	2.7000	H22C…C21	2.9200
H5…Cl2	2.7300	$H22C\cdots C22^{n}$	3.0400
C1—N1—C9	118.0 (4)	H11A—C11—H11B	110.00
C1—N1—C9 C12—N2—C20	118.0 (4) 115.8 (5)	H11A—C11—H11B Cl3—C12—N2	110.00 115.9 (4)
C1—N1—C9 C12—N2—C20 Cl1—C1—N1	118.0 (4) 115.8 (5) 117.3 (4)	H11A-C11-H11B Cl3-C12-N2 Cl3-C12-C13	110.00 115.9 (4) 115.8 (4)
C1—N1—C9 C12—N2—C20 C11—C1—N1 N1—C1—C2	118.0 (4) 115.8 (5) 117.3 (4) 125.6 (5)	H11A-C11-H11B C13-C12-N2 C13-C12-C13 N2-C12-C13	110.00 115.9 (4) 115.8 (4) 128.3 (5)
C1—N1—C9 C12—N2—C20 Cl1—C1—N1 N1—C1—C2 Cl1—C1—C2	118.0 (4) 115.8 (5) 117.3 (4) 125.6 (5) 117.2 (4)	H11A-C11-H11B C13-C12-N2 C13-C12-C13 N2-C12-C13 C12-C13-C14	110.00 115.9 (4) 115.8 (4) 128.3 (5) 115.5 (4)
C1—N1—C9 C12—N2—C20 Cl1—C1—N1 N1—C1—C2 Cl1—C1—C2 C1—C2—C3	118.0 (4) 115.8 (5) 117.3 (4) 125.6 (5) 117.2 (4) 115.9 (4)	H11A-C11-H11B Cl3-C12-N2 Cl3-C12-C13 N2-C12-C13 C12-C13-C14 Cl4-C14-C13	110.00 115.9 (4) 115.8 (4) 128.3 (5) 115.5 (4) 118.3 (3)
C1—N1—C9 C12—N2—C20 C11—C1—N1 N1—C1—C2 C11—C1—C2 C1—C2—C3 C12—C3—C2	118.0 (4) 115.8 (5) 117.3 (4) 125.6 (5) 117.2 (4) 115.9 (4) 116.7 (3)	H11A-C11-H11B Cl3-C12-N2 Cl3-C12-C13 N2-C12-C13 C12-C13-C14 Cl4-C14-C13 Cl4-C14-C15	110.00 115.9 (4) 115.8 (4) 128.3 (5) 115.5 (4) 118.3 (3) 120.8 (4)
C1—N1—C9 C12—N2—C20 C11—C1—N1 N1—C1—C2 C11—C1—C2 C1—C2—C3 C12—C3—C2 C2—C3—C4	118.0 (4) 115.8 (5) 117.3 (4) 125.6 (5) 117.2 (4) 115.9 (4) 116.7 (3) 122.6 (5)	H11A-C11-H11B Cl3-C12-N2 Cl3-C12-C13 N2-C12-C13 Cl2-C13-C14 Cl4-C14-C13 Cl4-C14-C15 Cl3-C14-C15	110.00 115.9 (4) 115.8 (4) 128.3 (5) 115.5 (4) 118.3 (3) 120.8 (4) 121.0 (4)
C1—N1—C9 C12—N2—C20 Cl1—C1—N1 N1—C1—C2 Cl1—C1—C2 C1—C2—C3 Cl2—C3—C2 C2—C3—C4 Cl2—C3—C4	118.0 (4) 115.8 (5) 117.3 (4) 125.6 (5) 117.2 (4) 115.9 (4) 116.7 (3) 122.6 (5) 120.7 (4)	H11A-C11-H11B Cl3-C12-N2 Cl3-C12-C13 N2-C12-C13 Cl2-C13-C14 Cl4-C14-C13 Cl4-C14-C15 C13-C14-C15 C14-C15-C16	110.00 115.9 (4) 115.8 (4) 128.3 (5) 115.5 (4) 118.3 (3) 120.8 (4) 121.0 (4) 125.9 (6)
C1—N1—C9 C12—N2—C20 C11—C1—N1 N1—C1—C2 C11—C1—C2 C1—C2—C3 C12—C3—C2 C2—C3—C4 C12—C3—C4 C12—C3—C4 C3—C4—C5	118.0 (4) 115.8 (5) 117.3 (4) 125.6 (5) 117.2 (4) 115.9 (4) 116.7 (3) 122.6 (5) 120.7 (4) 124.7 (6)	H11A-C11-H11B Cl3-C12-N2 Cl3-C12-C13 N2-C12-C13 Cl2-C13-C14 Cl4-C14-C13 Cl4-C14-C15 C13-C14-C15 C14-C15-C16 C14-C15-C20	110.00 115.9 (4) 115.8 (4) 128.3 (5) 115.5 (4) 118.3 (3) 120.8 (4) 121.0 (4) 125.9 (6) 116.2 (4)
C1—N1—C9 C12—N2—C20 C11—C1—N1 N1—C1—C2 C11—C1—C2 C1—C2—C3 C12—C3—C2 C2—C3—C4 C12—C3—C4 C12—C3—C4 C3—C4—C5 C5—C4—C9	118.0 (4) 115.8 (5) 117.3 (4) 125.6 (5) 117.2 (4) 115.9 (4) 116.7 (3) 122.6 (5) 120.7 (4) 124.7 (6) 118.4 (5)	H11A-C11-H11B Cl3-C12-N2 Cl3-C12-C13 N2-C12-C13 Cl2-C13-C14 Cl4-C14-C13 Cl4-C14-C15 Cl3-C14-C15 C13-C14-C15 C14-C15-C16 C14-C15-C20 C16-C15-C20	110.00 115.9 (4) 115.8 (4) 128.3 (5) 115.5 (4) 118.3 (3) 120.8 (4) 121.0 (4) 125.9 (6) 116.2 (4) 117.8 (5)
C1—N1—C9 C12—N2—C20 C11—C1—N1 N1—C1—C2 C11—C1—C2 C1—C2—C3 C12—C3—C2 C2—C3—C4 C12—C3—C4 C3—C4—C5 C5—C4—C9 C3—C4—C9	118.0 (4) 115.8 (5) 117.3 (4) 125.6 (5) 117.2 (4) 115.9 (4) 116.7 (3) 122.6 (5) 120.7 (4) 124.7 (6) 118.4 (5) 116.9 (5)	H11A-C11-H11B Cl3-C12-N2 Cl3-C12-C13 N2-C12-C13 Cl2-C13-C14 Cl4-C14-C13 Cl4-C14-C15 Cl3-C14-C15 Cl3-C14-C15 Cl4-C15-C16 C14-C15-C20 C16-C15-C20 C15-C16-C17	110.00 115.9 (4) 115.8 (4) 128.3 (5) 115.5 (4) 118.3 (3) 120.8 (4) 121.0 (4) 125.9 (6) 116.2 (4) 117.8 (5) 122.5 (5)
C1—N1—C9 C12—N2—C20 Cl1—C1—N1 N1—C1—C2 Cl1—C1—C2 C1—C2—C3 Cl2—C3—C2 C2—C3—C4 Cl2—C3—C4 C12—C3—C4 C3—C4—C5 C5—C4—C9 C3—C4—C9 C4—C5—C6	118.0 (4) 115.8 (5) 117.3 (4) 125.6 (5) 117.2 (4) 115.9 (4) 116.7 (3) 122.6 (5) 120.7 (4) 124.7 (6) 118.4 (5) 116.9 (5) 119.4 (5)	H11A-C11-H11B Cl3-C12-N2 Cl3-C12-C13 N2-C12-C13 Cl4-C14-C13 Cl4-C14-C13 Cl4-C14-C15 C13-C14-C15 C14-C15-C16 C14-C15-C20 C16-C15-C20 C15-C16-C17 C16-C17-C18	110.00 115.9 (4) 128.3 (5) 115.5 (4) 118.3 (3) 120.8 (4) 121.0 (4) 125.9 (6) 116.2 (4) 117.8 (5) 122.5 (5) 120.3 (4)
C1-N1-C9 $C12-N2-C20$ $C11-C1-N1$ $N1-C1-C2$ $C11-C1-C2$ $C1-C2-C3$ $C12-C3-C4$ $C12-C3-C4$ $C12-C3-C4$ $C3-C4-C5$ $C5-C4-C9$ $C3-C4-C9$ $C4-C5-C6$ $C5-C6-C7$	118.0 (4) 115.8 (5) 117.3 (4) 125.6 (5) 117.2 (4) 115.9 (4) 116.7 (3) 122.6 (5) 120.7 (4) 124.7 (6) 118.4 (5) 116.9 (5) 119.4 (5) 122.7 (4)	H11A-C11-H11B Cl3-C12-N2 Cl3-C12-C13 N2-C12-C13 Cl2-C13-C14 Cl4-C14-C13 Cl4-C14-C15 C13-C14-C15 C14-C15-C16 C14-C15-C20 C16-C15-C20 C15-C16-C17 C16-C17-C18 C17-C18-C19	110.00 115.9 (4) 115.8 (4) 128.3 (5) 115.5 (4) 118.3 (3) 120.8 (4) 121.0 (4) 125.9 (6) 116.2 (4) 117.8 (5) 122.5 (5) 120.3 (4) 121.7 (4)
C1-N1-C9 $C12-N2-C20$ $C11-C1-N1$ $N1-C1-C2$ $C11-C1-C2$ $C1-C2-C3$ $C12-C3-C2$ $C2-C3-C4$ $C12-C3-C4$ $C3-C4-C5$ $C5-C4-C9$ $C3-C4-C9$ $C4-C5-C6$ $C5-C6-C7$ $C6-C7-C8$	118.0 (4) 115.8 (5) 117.3 (4) 125.6 (5) 117.2 (4) 115.9 (4) 116.7 (3) 122.6 (5) 120.7 (4) 124.7 (6) 118.4 (5) 116.9 (5) 119.4 (5) 122.7 (4) 120.3 (4)	$\begin{array}{c} H11A - C11 - H11B\\ C13 - C12 - N2\\ C13 - C12 - C13\\ N2 - C12 - C13\\ N2 - C12 - C13\\ C14 - C14 - C13\\ C14 - C14 - C13\\ C14 - C14 - C15\\ C13 - C14 - C15\\ C13 - C14 - C15\\ C14 - C15 - C16\\ C14 - C15 - C20\\ C16 - C15 - C20\\ C16 - C17 - C18\\ C17 - C18 - C19\\ C17 - C18 - C21\\ \end{array}$	110.00 115.9 (4) 115.8 (4) 128.3 (5) 115.5 (4) 118.3 (3) 120.8 (4) 121.0 (4) 125.9 (6) 116.2 (4) 117.8 (5) 122.5 (5) 120.3 (4) 121.7 (4) 123.8 (5)
C1-N1-C9 $C12-N2-C20$ $C11-C1-N1$ $N1-C1-C2$ $C1-C2-C3$ $C12-C3-C2$ $C2-C3-C4$ $C12-C3-C4$ $C3-C4-C5$ $C5-C4-C9$ $C3-C4-C9$ $C4-C5-C6$ $C5-C6-C7$ $C6-C7-C8$ $C6-C7-C10$	118.0 (4) 115.8 (5) 117.3 (4) 125.6 (5) 117.2 (4) 115.9 (4) 116.7 (3) 122.6 (5) 120.7 (4) 124.7 (6) 118.4 (5) 116.9 (5) 119.4 (5) 122.7 (4) 120.3 (4) 117.0 (4)	$\begin{array}{c} H11A - C11 - H11B\\ C13 - C12 - N2\\ C13 - C12 - C13\\ N2 - C12 - C13\\ N2 - C12 - C13\\ C14 - C14 - C13\\ C14 - C14 - C13\\ C14 - C14 - C15\\ C13 - C14 - C15\\ C13 - C14 - C15\\ C14 - C15 - C16\\ C14 - C15 - C20\\ C16 - C15 - C20\\ C16 - C15 - C20\\ C15 - C16 - C17\\ C16 - C17 - C18\\ C17 - C18 - C19\\ C17 - C18 - C21\\ C19 - C18 - C21\\ C19 - C18 - C21\\ \end{array}$	110.00 115.9 (4) 115.8 (4) 128.3 (5) 115.5 (4) 118.3 (3) 120.8 (4) 121.0 (4) 125.9 (6) 116.2 (4) 117.8 (5) 122.5 (5) 120.3 (4) 121.7 (4) 123.8 (5) 114.5 (5)
C1-N1-C9 $C12-N2-C20$ $C11-C1-N1$ $N1-C1-C2$ $C11-C1-C2$ $C1-C2-C3$ $C12-C3-C2$ $C2-C3-C4$ $C12-C3-C4$ $C12-C3-C4$ $C3-C4-C5$ $C5-C4-C9$ $C3-C4-C9$ $C3-C4-C9$ $C4-C5-C6$ $C5-C6-C7$ $C6-C7-C8$ $C6-C7-C10$ $C8-C7-C10$	118.0 (4) 115.8 (5) 117.3 (4) 125.6 (5) 117.2 (4) 115.9 (4) 116.7 (3) 122.6 (5) 120.7 (4) 124.7 (6) 118.4 (5) 116.9 (5) 119.4 (5) 122.7 (4) 120.3 (4) 117.0 (4) 122.6 (5)	$\begin{array}{c} H11A - C11 - H11B\\ C13 - C12 - N2\\ C13 - C12 - C13\\ N2 - C12 - C13\\ C12 - C13 - C14\\ C14 - C13 - C14\\ C14 - C14 - C15\\ C13 - C14 - C15\\ C13 - C14 - C15\\ C14 - C15 - C16\\ C14 - C15 - C20\\ C16 - C15 - C20\\ C16 - C15 - C20\\ C15 - C16 - C17\\ C16 - C17 - C18\\ C17 - C18 - C19\\ C17 - C18 - C21\\ C19 - C18 - C21\\ C19 - C18 - C20\\ \end{array}$	110.00 115.9 (4) 115.8 (4) 128.3 (5) 115.5 (4) 118.3 (3) 120.8 (4) 121.0 (4) 125.9 (6) 116.2 (4) 117.8 (5) 122.5 (5) 120.3 (4) 121.7 (4) 123.8 (5) 114.5 (5) 117.4 (4)
C1-N1-C9 $C12-N2-C20$ $C11-C1-N1$ $N1-C1-C2$ $C11-C1-C2$ $C1-C2-C3$ $C12-C3-C4$ $C12-C3-C4$ $C12-C3-C4$ $C3-C4-C5$ $C5-C4-C9$ $C3-C4-C9$ $C4-C5-C6$ $C5-C6-C7$ $C6-C7-C8$ $C6-C7-C10$ $C8-C7-C10$ $C8-C7-C10$ $C7-C8-C9$	118.0 (4) 115.8 (5) 117.3 (4) 125.6 (5) 117.2 (4) 115.9 (4) 116.7 (3) 122.6 (5) 120.7 (4) 124.7 (6) 118.4 (5) 116.9 (5) 119.4 (5) 122.7 (4) 120.3 (4) 117.0 (4) 122.6 (5) 117.5 (4)	$\begin{array}{c} H11A - C11 - H11B\\ C13 - C12 - N2\\ C13 - C12 - C13\\ N2 - C12 - C13\\ C12 - C13 - C14\\ C14 - C13 - C14\\ C14 - C14 - C13\\ C14 - C14 - C15\\ C13 - C14 - C15\\ C13 - C14 - C15\\ C14 - C15 - C16\\ C14 - C15 - C20\\ C16 - C15 - C20\\ C16 - C17 - C18\\ C17 - C18 - C19\\ C17 - C18 - C21\\ C18 - C19 - C20\\ C18 - C19 - C22\\ \end{array}$	110.00 115.9 (4) 128.3 (5) 115.5 (4) 118.3 (3) 120.8 (4) 121.0 (4) 125.9 (6) 116.2 (4) 117.8 (5) 122.5 (5) 120.3 (4) 121.7 (4) 123.8 (5) 114.5 (5) 117.4 (4) 124.8 (4)
C1-N1-C9 $C12-N2-C20$ $C11-C1-N1$ $N1-C1-C2$ $C11-C1-C2$ $C1-C2-C3$ $C12-C3-C4$ $C12-C3-C4$ $C3-C4-C5$ $C5-C4-C9$ $C3-C4-C9$ $C4-C5-C6$ $C5-C6-C7$ $C6-C7-C8$ $C6-C7-C10$ $C8-C7-C10$ $C8-C7-C10$ $C7-C8-C9$ $C7-C8-C11$	118.0 (4) 115.8 (5) 117.3 (4) 125.6 (5) 117.2 (4) 115.9 (4) 116.7 (3) 122.6 (5) 120.7 (4) 124.7 (6) 118.4 (5) 116.9 (5) 119.4 (5) 122.7 (4) 120.3 (4) 117.0 (4) 122.6 (5) 117.5 (4) 122.3 (4)	$\begin{array}{c} H11A - C11 - H11B\\ C13 - C12 - N2\\ C13 - C12 - C13\\ N2 - C12 - C13\\ N2 - C12 - C13\\ C14 - C14 - C13\\ C14 - C14 - C13\\ C14 - C14 - C15\\ C13 - C14 - C15\\ C13 - C14 - C15\\ C14 - C15 - C16\\ C14 - C15 - C20\\ C16 - C15 - C20\\ C16 - C15 - C20\\ C16 - C17 - C18\\ C17 - C18 - C19\\ C17 - C18 - C21\\ C19 - C18 - C21\\ C18 - C19 - C22\\ C20 - C19 - C22\\ \end{array}$	110.00 115.9 (4) 115.8 (4) 128.3 (5) 115.5 (4) 118.3 (3) 120.8 (4) 121.0 (4) 125.9 (6) 116.2 (4) 117.8 (5) 122.5 (5) 120.3 (4) 121.7 (4) 123.8 (5) 117.4 (4) 124.8 (4) 117.8 (4)
C1-N1-C9 $C12-N2-C20$ $C11-C1-N1$ $N1-C1-C2$ $C1-C2-C3$ $C12-C3-C2$ $C2-C3-C4$ $C12-C3-C4$ $C3-C4-C5$ $C5-C4-C9$ $C3-C4-C9$ $C4-C5-C6$ $C5-C6-C7$ $C6-C7-C8$ $C6-C7-C10$ $C8-C7-C10$ $C7-C8-C9$ $C7-C8-C11$ $C9-C8-C11$	118.0 (4) 115.8 (5) 117.3 (4) 125.6 (5) 117.2 (4) 115.9 (4) 116.7 (3) 122.6 (5) 120.7 (4) 124.7 (6) 118.4 (5) 116.9 (5) 119.4 (5) 122.7 (4) 120.3 (4) 117.0 (4) 122.6 (5) 117.5 (4) 122.3 (4) 120.2 (4)	$\begin{array}{c} H11A - C11 - H11B\\ C13 - C12 - N2\\ C13 - C12 - C13\\ N2 - C12 - C13\\ N2 - C12 - C13\\ C14 - C14 - C13\\ C14 - C14 - C13\\ C14 - C14 - C15\\ C13 - C14 - C15\\ C13 - C14 - C15\\ C14 - C15 - C16\\ C14 - C15 - C20\\ C16 - C15 - C20\\ C16 - C15 - C20\\ C15 - C16 - C17\\ C16 - C17 - C18\\ C17 - C18 - C19\\ C17 - C18 - C21\\ C19 - C18 - C21\\ C18 - C19 - C22\\ C20 - C19 - C22\\ N2 - C20 - C15\\ \end{array}$	110.00 115.9 (4) 115.8 (4) 128.3 (5) 115.5 (4) 118.3 (3) 120.8 (4) 121.0 (4) 125.9 (6) 116.2 (4) 117.8 (5) 122.5 (5) 120.3 (4) 121.7 (4) 123.8 (5) 117.4 (4) 124.8 (4) 117.8 (4)
C1-N1-C9 $C12-N2-C20$ $C11-C1-N1$ $N1-C1-C2$ $C11-C1-C2$ $C1-C2-C3$ $C12-C3-C4$ $C12-C3-C4$ $C12-C3-C4$ $C3-C4-C5$ $C5-C4-C9$ $C3-C4-C9$ $C4-C5-C6$ $C5-C6-C7$ $C6-C7-C8$ $C6-C7-C10$ $C8-C7-C10$ $C8-C7-C10$ $C7-C8-C9$ $C7-C8-C11$ $C9-C8-C11$ $N1-C9-C8$	118.0 (4) $115.8 (5)$ $117.3 (4)$ $125.6 (5)$ $117.2 (4)$ $115.9 (4)$ $116.7 (3)$ $122.6 (5)$ $120.7 (4)$ $124.7 (6)$ $118.4 (5)$ $116.9 (5)$ $119.4 (5)$ $122.7 (4)$ $122.7 (4)$ $120.3 (4)$ $117.0 (4)$ $122.6 (5)$ $117.5 (4)$ $122.3 (4)$ $120.2 (4)$ $117.2 (4)$	H11A-C11-H11B C13-C12-N2 C13-C12-C13 N2-C12-C13 C12-C13-C14 C14-C14-C13 C14-C14-C15 C14-C14-C15 C14-C15-C16 C14-C15-C20 C16-C15-C20 C16-C17-C18 C17-C18-C19 C17-C18-C19 C17-C18-C21 C18-C19-C20 C18-C19-C22 C20-C19-C22 N2-C20-C15 N2-C20-C19	110.00 115.9 (4) 115.8 (4) 128.3 (5) 115.5 (4) 118.3 (3) 120.8 (4) 121.0 (4) 125.9 (6) 116.2 (4) 122.5 (5) 120.3 (4) 121.7 (4) 123.8 (5) 114.5 (5) 117.4 (4) 124.8 (4) 117.8 (4) 123.2 (4) 116.6 (4)
C1-N1-C9 $C12-N2-C20$ $C11-C1-N1$ $N1-C1-C2$ $C11-C1-C2$ $C1-C2-C3$ $C12-C3-C4$ $C12-C3-C4$ $C12-C3-C4$ $C3-C4-C5$ $C5-C4-C9$ $C3-C4-C9$ $C4-C5-C6$ $C5-C6-C7$ $C6-C7-C8$ $C6-C7-C10$ $C8-C7-C10$ $C8-C7-C10$ $C8-C7-C10$ $C7-C8-C9$ $C7-C8-C11$ $C9-C8-C11$ $N1-C9-C8$ $C4-C9-C8$	118.0 (4) 115.8 (5) 117.3 (4) 125.6 (5) 117.2 (4) 115.9 (4) 116.7 (3) 122.6 (5) 120.7 (4) 124.7 (6) 118.4 (5) 116.9 (5) 119.4 (5) 122.7 (4) 122.7 (4) 122.6 (5) 117.5 (4) 122.3 (4) 120.2 (4) 117.2 (4) 121.8 (4)	H11A-C11-H11B C13-C12-N2 C13-C12-C13 N2-C12-C13 C12-C13-C14 C14-C14-C13 C14-C14-C15 C14-C14-C15 C14-C15-C16 C14-C15-C20 C16-C15-C20 C16-C17-C18 C17-C18-C19 C17-C18-C19 C17-C18-C21 C18-C19-C22 C20-C19-C22 N2-C20-C19 C15-C20-C19 C15-C20-C19 C15-C20-C19	110.00 $115.9 (4)$ $115.8 (4)$ $128.3 (5)$ $115.5 (4)$ $118.3 (3)$ $120.8 (4)$ $121.0 (4)$ $125.9 (6)$ $116.2 (4)$ $122.5 (5)$ $120.3 (4)$ $122.5 (5)$ $120.3 (4)$ $121.7 (4)$ $123.8 (5)$ $114.5 (5)$ $117.4 (4)$ $123.2 (4)$ $116.6 (4)$ $120.2 (4)$
C1-N1-C9 C12-N2-C20 C11-C1-N1 N1-C1-C2 C11-C1-C2 C1-C2-C3 C12-C3-C2 C2-C3-C4 C3-C4-C5 C5-C4-C9 C4-C5-C6 C5-C4-C9 C4-C5-C6 C5-C6-C7 C6-C7-C10 C8-C7-C10 C7-C8-C9 C7-C8-C11 C9-C8-C11 N1-C9-C8 C4-C9-C8 N1-C9-C4	118.0 (4) $115.8 (5)$ $117.3 (4)$ $125.6 (5)$ $117.2 (4)$ $115.9 (4)$ $116.7 (3)$ $122.6 (5)$ $120.7 (4)$ $124.7 (6)$ $118.4 (5)$ $116.9 (5)$ $119.4 (5)$ $122.7 (4)$ $120.3 (4)$ $117.0 (4)$ $122.6 (5)$ $117.5 (4)$ $122.3 (4)$ $120.2 (4)$ $117.2 (4)$ $121.8 (4)$ $121.0 (4)$	H11A—C11—H11B C13—C12—N2 C13—C12—C13 N2—C12—C13 C12—C13—C14 C14—C14—C13 C14—C14—C15 C13—C14—C15 C14—C15—C16 C14—C15—C20 C16—C15—C20 C16—C15—C20 C16—C17—C18 C17—C18—C19 C17—C18—C21 C18—C19—C22 C20—C19—C22 N2—C20—C15 N2—C20—C19 C15—C20—C19 C15—C20—C19 C15—C20—C19 C12—C13—H13	110.00 $115.9 (4)$ $115.8 (4)$ $128.3 (5)$ $115.5 (4)$ $118.3 (3)$ $120.8 (4)$ $121.0 (4)$ $125.9 (6)$ $116.2 (4)$ $117.8 (5)$ $122.5 (5)$ $120.3 (4)$ $121.7 (4)$ $123.8 (5)$ $114.5 (5)$ $117.4 (4)$ $124.8 (4)$ $117.8 (4)$ $123.2 (4)$ $116.6 (4)$ 122.00

С1—С2—Н2 122.00	C15—C16—H16	119.00
С4—С5—Н5 120.00	C17—C16—H16	119.00
С6—С5—Н5 120.00	С16—С17—Н17	120.00
С7—С6—Н6 119.00	C18—C17—H17	120.00
С5—С6—Н6 119.00	C18—C21—H21A	109.00
C7—C10—H10A 110.00	C18—C21—H21B	109.00
С7—С10—Н10В 109.00	C18—C21—H21C	110.00
H10A—C10—H10B 110.00	H21A—C21—H21B	109.00
H10A—C10—H10C 109.00	H21A—C21—H21C	109.00
C7—C10—H10C 109.00	H21B—C21—H21C	109.00
H10B—C10—H10C 109.00	C19—C22—H22A	109.00
C8—C11—H11B 109.00	C19—C22—H22B	109.00
C8—C11—H11C 110.00	C19—C22—H22C	110.00
C8—C11—H11A 109.00	H22A—C22—H22B	110.00
H11A—C11—H11C 109.00	H22A—C22—H22C	110.00
H11B—C11—H11C 109.00	H22B—C22—H22C	109.00
C9—N1—C1—Cl1 –178.7 (4)	C7—C8—C9—C4	0.7 (6)
C9—N1—C1—C2 0.8 (8)	C11—C8—C9—N1	-0.4 (6)
C1—N1—C9—C4 –1.9 (7)	C11—C8—C9—C4	-178.6 (4)
C1—N1—C9—C8 180.0 (5)	C7—C8—C9—N1	178.9 (4)
C20—N2—C12—Cl3 177.8 (4)	Cl3—C12—C13—C14	-179.0 (4)
C20—N2—C12—C13 -0.9 (8)	N2-C12-C13-C14	-0.3 (8)
C12—N2—C20—C15 0.8 (7)	C12—C13—C14—Cl4	-178.9 (4)
C12—N2—C20—C19 –179.2 (4)	C12—C13—C14—C15	1.5 (7)
N1—C1—C2—C3 0.7 (8)	Cl4—C14—C15—C16	0.2 (7)
Cl1—C1—C2—C3 –179.8 (4)	Cl4—C14—C15—C20	178.9 (3)
C1—C2—C3—Cl2 179.8 (4)	C13—C14—C15—C16	179.7 (5)
C1—C2—C3—C4 –1.2 (7)	C13—C14—C15—C20	-1.6 (7)
Cl2—C3—C4—C5 –2.4 (7)	C14—C15—C16—C17	-179.3 (5)
Cl2—C3—C4—C9 179.2 (3)	C20-C15-C16-C17	2.0 (8)
C2—C3—C4—C9 0.2 (7)	C14—C15—C20—N2	0.3 (7)
C2—C3—C4—C5 178.7 (5)	C14—C15—C20—C19	-179.6 (4)
C3—C4—C5—C6 179.9 (5)	C16—C15—C20—N2	179.2 (5)
C9—C4—C5—C6 -1.7 (7)	C16—C15—C20—C19	-0.8 (7)
C5—C4—C9—C8 0.9 (7)	C15-C16-C17-C18	-1.3 (8)
C3—C4—C9—N1 1.4 (7)	C16—C17—C18—C19	-0.8 (7)
C3—C4—C9—C8 179.4 (4)	C16—C17—C18—C21	178.8 (5)
C5—C4—C9—N1 -177.2 (4)	C17—C18—C19—C20	1.9 (7)
C4—C5—C6—C7 1.0 (7)	C17—C18—C19—C22	-177.8 (4)
C5—C6—C7—C10 176.0 (5)	C21-C18-C19-C20	-177.7 (4)
C5—C6—C7—C8 0.7 (7)	C21—C18—C19—C22	2.6 (7)
C6—C7—C8—C9 –1.5 (7)	C18-C19-C20-N2	178.9 (4)
C6—C7—C8—C11 177.8 (4)		
	C18—C19—C20—C15	-1.1 (6)
C10—C7—C8—C9 -176.5 (4)	C18—C19—C20—C15 C22—C19—C20—N2	-1.1 (6) -1.3 (6)

Symmetry codes: (i) -*x*+3/2, *y*, *z*+1/2; (ii) *x*, *y*-1, *z*; (iii) *x*-1/2, -*y*+1, *z*; (iv) *x*-1/2, -*y*+2, *z*; (v) *x*+1/2, -*y*+1, *z*; (vi) *x*, *y*+1, *z*; (vii) -*x*+1, -*y*+1, *z*-1/2; (viii) -*x*+1, -*y*+1, *z*+1/2; (ix) *x*+1/2, -*y*+2, *z*; (x) -*x*+3/2, *y*, *z*-1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
C5—H5···Cl2	0.93	2.73	3.094 (5)	104
C11—H11B…N1	0.96	2.41	2.825 (7)	106
C16—H16…Cl4	0.93	2.76	3.135 (6)	105
C22—H22B…N2	0.96	2.25	2.744 (7)	111

Fig. 1

