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Flexible experimental designs for valid single-cell
RNA-sequencing experiments allowing batch
effects correction
Fangda Song 1, Ga Ming Angus Chan1 & Yingying Wei 1✉

Despite their widespread applications, single-cell RNA-sequencing (scRNA-seq) experiments

are still plagued by batch effects and dropout events. Although the completely randomized

experimental design has frequently been advocated to control for batch effects, it is rarely

implemented in real applications due to time and budget constraints. Here, we mathemati-

cally prove that under two more flexible and realistic experimental designs—the reference

panel and the chain-type designs—true biological variability can also be separated from batch

effects. We develop Batch effects correction with Unknown Subtypes for scRNA-seq data

(BUSseq), which is an interpretable Bayesian hierarchical model that closely follows the data-

generating mechanism of scRNA-seq experiments. BUSseq can simultaneously correct batch

effects, cluster cell types, impute missing data caused by dropout events, and detect dif-

ferentially expressed genes without requiring a preliminary normalization step. We demon-

strate that BUSseq outperforms existing methods with simulated and real data.
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S ingle-cell RNA-sequencing (scRNA-seq) technologies
enable the measurement of the transcriptome of indivi-
dual cells, which provides unprecedented opportunities to

discover cell types and understand cellular heterogeneity1.
However, like the other high-throughput technologies2–4,
scRNA-seq experiments can suffer from severe batch effects5.
Moreover, compared with bulk RNA-seq data, scRNA-seq data
can have an excessive number of zeros that result from either
biological zeros—that is, a gene is not expressed in a given
cell—or dropout events—that is, the expression of some genes
are not detected even though they are actually expressed in the
cell due to amplification failure prior to sequencing6. Conse-
quently, despite the widespread adoption of scRNA-seq
experiments, the design of a valid scRNA-seq experiment that
allows the batch effects to be removed, the biological cell types
to be discovered, and the missing data to be imputed remains
an open problem.

One of the major tasks of scRNA-seq experiments is to identify
cell types for a population of cells1. The cell type of each indi-
vidual cell is unknown and is often the target of inference. Classic
batch effects correction methods, such as ComBat7 and SVA8,9,
are designed for bulk experiments and require knowledge of the
subtype information of each sample a prior. For scRNA-seq data,
this subtype information corresponds to the cell type of each
individual cell. Clearly, these methods are thus infeasible for
scRNA-seq data. Alternatively, if one has knowledge of a set of
control genes whose expression levels are constant across cell
types, then it is possible to apply RUV10,11. However, selecting
control genes is still challenging for scRNA-seq experiments, and
recently there has been active research on identifying stably
expressed genes that are reproducible and conserved across spe-
cies for single cells12.

To identify unknown subtypes, MetaSparseKmeans13 jointly
clusters samples across batches. Unfortunately, MetaS-
parseKmeans requires all subtypes to be present in each batch.
Suppose that we conduct scRNA-seq experiments for blood
samples from a healthy individual and a leukemia patient, one
person per batch. Although we can anticipate that the two batches
will share T cells and B cells, we do not expect that the healthy
individual will have cancer cells as the leukemia patient. There-
fore, MetaSparseKmeans is too restrictive for many scRNA-seq
experiments.

The mutual-nearest-neighbor (MNN) based approaches,
including MNN14 and Scanorama15, allow each batch to contain
some but not all cell types. However, these methods require batch
effects to be almost orthogonal to the biological subspaces and
much smaller than the biological variations between different cell
types14. These are strong assumptions and cannot be validated at
the design stage of the experiments. Seurat16,17, LIGER18, and
scMerge19 attempt to identify shared variations across batches by
low-dimensional embeddings and treat them as shared cell types.
However, they may mistake the technical artifacts as the biolo-
gical variability of interest if some batches share certain technical
noises, for example when each patient is measured by several
batches. To handle severe batch effects for microarray data, Luo
and Wei20 developed BUS to simultaneously cluster samples
across multiple batches and correct batch effects. However, none
of the above methods considers features unique to scRNA-seq
data, such as the count nature of the data, overdispersion21,
dropout events6, or cell-specific size factors22. ZIFA23 and ZINB-
WaVE24 incorporate dropout events into the factor model,
whereas scVI25 and SAVER-X26 couple the modeling of dropout
events with neural networks. However, as is the case with the
other state-of-the-art methods, these papers do not discuss the
designs of scRNA-seq experiments under which their methods
are applicable.

Nevertheless, it is crucial to understand the conditions under
which biological variability can be separated from technical
artifacts. Obviously, for completely confounded designs—for
example one in which batch 1 measures cell type 1 and 2, whereas
batch 2 measures cell type 3 and 4—no method is applicable.

Here, we propose Batch effects correction with Unknown
Subtypes for scRNA-seq data (BUSseq), an interpretable hier-
archical model that simultaneously corrects batch effects, clusters
cell types, and takes care of the count data nature, the over-
dispersion, the dropout events, and the cell-specific size factors of
scRNA-seq data. We mathematically prove that it is legitimate to
conduct scRNA-seq experiments under not only the commonly
advocated completely randomized design1,5,27,28, in which each
batch measures all cell types, but also the reference panel design
and the chain-type design, which allow some cell types to be
missing from some batches. Furthermore, we demonstrate that
BUSseq outperforms the existing approaches in both simulation
data and real applications. The theoretical results answer the
question about when we can integrate multiple scRNA-seq
datasets and analyze them jointly. We envision that the proposed
experimental designs will be able to guide biomedical researchers
and help them to design better scRNA-seq experiments.

Results
BUSseq is an interpretable hierarchical model for scRNA-seq.
We develop a hierarchical model BUSseq that closely mimics the
data generating procedure of scRNA-seq experiments (Fig. 1a,
Supplementary Fig. 1 and Supplementary Note 1). Given that we
have measured B batches of cells each with a sample size of nb, let
us denote the underlying gene expression level of gene g in cell i
of batch b as Xbig. Xbig follows a negative binomial distribution
with mean expression level μbig and a gene-specific and batch-
specific overdispersion parameter ϕbg. The mean expression level
is determined by the cell type Wbi with the cell type effect βgk, the
log-scale baseline expression level αg, the location batch effect νbg,
and the cell-specific size factor δbi. The cell-specific size factor δbi
characterizes the impact of cell size, library size and sequencing
depth. It is of note that the cell type Wbi of each individual cell is
unknown and is our target of inference. Therefore, we assume
that a cell on batch b comes from cell type k with probability
Pr(Wb= k)= πbk and the proportions of cell types (πb1, ⋯ , πbK)
vary among batches.

Unfortunately, it is not always possible to observe the
expression level Xbig. Without dropout (Zbig = 0), we can directly
observe Ybig = Xbig. However, if a dropout event occurs (Zbig= 1),
then we observe Ybig= 0 instead of Xbig. In other words, when we
observe a zero read count Ybig = 0, there are two possibilities: a
non-expressed gene—biological zeros—or a dropout event. When
gene g is not expressed in cell i of batch b (Xbig = 0), we always
have Ybig = 0; when gene g is actually expressed in cell i of batch b
(Xbig > 0) but a dropout event occurs, we can only observe
Ybig = 0, and hence Zbig = 1. It has been noted that highly
expressed genes are less-likely to suffer from dropout events6. We
thus model the dependence of the dropout rate Pr(Zbig = 1∣Xbig)
on the expression level using a logistic regression with batch-
specific intercept γb0 and log-odds ratio γb1.

Noteworthy, BUSseq includes the negative binomial distribu-
tion without zero inflation as a special case. When all cells are
from a single cell type and the cell-specific size factor δbi is
estimated a priori according to spike-in genes, BUSseq can reduce
to a form similar to BASiCS21.

We only observe Ybig for all cells in the B batches and the total
G genes. We conduct statistical inference under the Bayesian
framework and adopt the Metropolis-within-Gibbs algorithm29

for the Markov chain Monte Carlo (MCMC) sampling30
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(Supplementary Note 2). Based on the parameter estimates, we
can learn the cell type for each individual cell, impute the missing
underlying expression levels Xbig for dropout events, and identify
genes that are differentially expressed among cell types. More-
over, our algorithm can automatically detect the total number of
cell types K that exists in the dataset according to the Bayesian
information criterion (BIC)31. BUSseq also provides a batch-
effect corrected version of count data, which can be used for
downstream analysis as if all of the data were measured in a single
batch (“Methods”).

Valid experimental designs for scRNA-seq experiments. If a
study design is completely confounded, as shown in Fig. 1b, then
no method can separate biological variability from technical
artifacts, because different combinations of batch-effect and cell-
type-effect values can lead to the same probabilistic distribution
for the observed data, which in statistics is termed a non-
identifiable model. Formally, a model is said to be identifiable if
each probability distribution can arise from only one set of
parameter values32. Statistical inference is impossible for non-
identifiable models because two sets of distinct parameter values
can give rise to the same probability distribution function. We
prove that the BUSseq model is identifiable under conditions that
are very easily met in reality. Thus, a wide range of designs of
scRNA-seq experiments are valid as their batch effects can be
adjusted at least by BUSseq.

For the complete setting, in which each batch measures all of
the cell types (Fig. 1c and Theorem 1 in “Methods”), BUSseq is
identifiable as long as: (I) the log-odds ratio γb1s in the logistic
regressions for the dropout rates are negative for all of the
batches, (II) every two cell types have more than one differentially
expressed gene, and (III) the ratios of mean expression levels

between two cell types ðexpðβ1kÞexpðβ1~kÞ ; � � � ;
expðβGkÞ
expðβG~kÞÞ are different for each

cell-type pair ðk;~kÞ (see Theorem 1 in “Methods”). Condition (I)

requires that the highly expressed genes are less likely to have
dropout events, which is routinely observed for scRNA-seq data6.
Condition (II) always holds in reality. Because scRNA-seq
experiments measure the whole transcriptome of a cell, condition
(III) is also always met in real data. For example, if there exists
one gene g such that for any two distinct cell-type pairs (k1, k2)

and (k3, k4) their mean expression levels’ ratios
expðβgk1Þ
expðβgk2Þ

and
expðβgk3Þ
expðβgk4Þ

are not the same, then condition (III) is already satisfied.
The commonly advocated completely randomized experimen-

tal design is a special case of the complete setting design. In a
completely randomized design, cells are assigned to different
batches completely at random. As a result, all of the batches have
similar compositions of cell populations. In contrast, under the
complete setting design, cells from different cell types can be
distributed to different batches very unevenly. The requirement
that each batch has similar cellular compositions is crucial for
traditional batch effects correction methods developed for bulk
experiments such as ComBat7 to work well for scRNA-seq data.
In contrast, BUSseq is not limited to this balanced design
constraint and is applicable to not only the completely
randomized design but also the general complete setting design.

Ideally, we would wish to adopt completely randomized
experimental designs. However, in reality, it is always very
challenging to implement complete randomization due to time
and budget constraints. For example, when we recruit patients
sequentially, we often have to conduct scRNA-seq experiments
patient-by-patient rather than randomize the cells from all of the
patients to each batch, and the patients may not have the same set
of cell types. Fortunately, we can prove that BUSseq also applies
to two sets of flexible experimental designs, which allow cell types
to be measured in only some but not all of the batches.

Assuming that conditions (I)–(III) are satisfied, if there exists
one batch that contains cells from all cell types and the other
batches have at least two cell types (Fig. 1d), then BUSseq can
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Fig. 1 Illustration of the BUSseq model and various types of experimental designs. a The hierarchical structure of the BUSseq model. Only Ybig in the gray
rectangle is observed. b A confounded design that contains three batches. Each polychrome rectangle represents one batch of scRNA-seq data with genes
in rows and cells in columns; and each color indicates a cell type. Batch 1 assays cells from cell types 1 and 2; batch 2 profiles cells from cell types 3 and 4;
and batch 3 only contains cells from cell type 4. c The complete setting design. Each batch assays cells from all of the four cell types, although the cellular
compositions vary across batches. d The reference panel design. Batch 1 contains cells from all of the cell types, and all of the other batches have at least
two cell types. e The chain-type design. Every two consecutive batches share two cell types. Batch 1 and Batch 2 share cell types 2 and 3; Batch 2 and Batch
3 share cell types 3 and 4 (see also Supplementary Figs. 1 and 2).
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tease out the batch effects and identify the true biological
variability (see Theorem 2 in “Methods”). We call this setting the
reference panel design.

Sometimes, it can still be difficult to obtain a reference batch
that collects all cell types. In this case, we can turn to the chain-
type design, which requires every two consecutive batches to
share two cell types (Fig. 1e). Under the chain-type design, given
that conditions (I)–(III) hold, BUSseq is also identifiable and can
estimate the parameters well (see Theorem 3 in “Methods”).

A special case of the chain-type design is when two common
cell types are shared by all of the batches, which is frequently
encountered in real applications. For instance, when blood
samples are assayed, even if we perform scRNA-seq experiment
patient-by-patient with one patient per batch, we know a priori
that each batch will contain at least both T cells and B cells, thus
satisfying the requirement of the chain-type design.

The key insight is that despite batch effects, differences
between cell types remain constant across batches. The
differences between a pair of cell types allow us to distinguish
batch effects from biological variability for those batches that
measure both cell types. Therefore, BUSseq can separate batch
effects from cell type effects under more general designs beyond
the easily understood and commonly encountered reference panel
design and chain-type design. If we regard each batch as a node in
a graph and connect two nodes with an edge if the two batches
share at least two cell types, then BUSseq is identifiable as long as
the resulting graph is connected (Supplementary Fig. 2 and
Theorem 4 in “Methods”).

For scRNA-seq data, dropout rate depends on the underlying
expression levels6. Such missing data mechanism is called missing
not at random (MNAR) in statistics. It is very challenging to
establish identifiability for MNAR. Miao et al.33 showed that for
many cases even when both the outcome distribution and the
missing data mechanism has parametric forms, the model can be
nonidentifiable. However, fortunately, despite the dropout events
and the cell-specific size factors, we are able to prove Theorems
1–4 (Supplementary Note 3). The reference panel design, the
chain-type design, and the connected design liberalize researchers
from the ideal but often unrealistic requirement of the completely
randomized design.

BUSseq accurately learns the parameters and the missing data.
We first evaluated the performance of BUSseq via a simulation
study. We simulated a dataset with four batches and a total of five
cell types under the chain-type design (Fig. 2a–d and Theorem 3).
Every two consecutive batches share at least two cell types, but
none of the batches contains all of the cell types. The sample sizes
for each batch are (n1, n2, n3, n4) = (300, 300, 200, 200) (Sup-
plementary Table 1), and there are a total of 3000 genes, out of
which 500 genes are differentially expressed between cell types.
The remaining 2500 genes have no biological differences between
different cell types, so they are pure noises with only batch effects.
In real datasets, batch effects are often much larger than the cell
type effects (Fig. 3a) and not orthogonal to the cell type effects
(Supplementary Fig. 3). In the simulation study, we choose the
magnitude of the batch effects, cell type effects, the dropout rates,
and the cell-specific size factors to mimic real data scenarios
(Fig. 3a). The simulated observed data suffer from severe batch
effects and dropout events (Figs. 2d, 3c). The dropout rates for
the four batches are 26.79%, 24.53%, 28.36%, and 31.29%,
with the corresponding total zero proportions given by
44.13%, 48.85%, 53.07%, and 61.38%.

BUSseq correctly identifies the presence of five cell types
among the cells (Fig. 2e). Moreover, despite the dropout events,
BUSseq accurately estimates the cell type effects βgks (Fig. 2a, f),

the batch effects νbgs (Fig. 2b, g), and the cell-specific size factors
δbis (Fig. 2j). In particular, BUSseq outperforms existing
normalization methods, including DESeq normalization34,
trimmed mean of M-values (TMM) normalization35, library size
normalization, and the deconvolution normalization method36, in
estimating the cell-specific size factors δbis (Supplementary Fig. 4
and Supplementary Note 4). When controlling the Bayesian False
Discovery Rate (FDR) at 5%37,38, we identify all intrinsic genes
that differentiate cell types with the true FDR being 2%
(“Methods”).

Figure 2h demonstrates that BUSseq can learn the underlying
expression levels Xbigs well based on the observed data Ybigs,
which are subject to dropout events. This success arises because
BUSseq uses an integrative model to borrow strengths both across
genes and across cells from all batches. In comparison, we also
benchmarked BUSseq with three state-of-the-art imputation
methods for scRNA-seq data—SAVER39, DrImpute40, and
scImpute41. Once again, BUSseq performs the best in identifying
the true biological zeros and recovering the underlying expression
levels Xbigs for the dropout events (Supplementary Table 2 and
Supplementary Note 5).

ComBat offers a version of data that have been adjusted for
batch effects7. Here, we also provide batch-effects-corrected count
data based on quantile matching (“Methods”). The adjusted
count data no longer suffer from batch effects and dropout
events, and they even do not need further cell-specific normal-
ization (Fig. 2i). Therefore, they can be treated as if measured in a
single batch for downstream analysis.

To evaluate the robustness of BUSseq, we conducted extensive
sensitivity analyses, and they show that BUSseq is robust to the
choice of hyperparameters, high zero rates, model misspecifica-
tion and gene filtering (Supplementary Figs. 5–7, Supplementary
Tables 3 and 4, and Supplementary Note 6).

BUSseq outperforms existing methods in simulation study. We
benchmarked BUSseq with the state-of-the-art methods for batch
effects correction for scRNA-seq data—LIGER18, MNN14, Sca-
norama15, scVI25, Seurat17, and ZINB-WaVE24. The adjusted
Rand index (ARI) measures the consistency between two clus-
tering results and is between zero and one, a higher value indi-
cating better consistency42 (Supplementary Note 7). The ARI
between the inferred cell types bWbis by BUSseq and the true
underlying cell types Wbis is one. Thus, BUSseq can perfectly
recover the true cell type of each cell. In comparison, we applied
each of the compared methods to the dataset and then performed
their own clustering approaches (Supplementary Note 8). The
ARI is able to compare the consistency of two clustering results
even if the numbers of clusters differ, therefore, we chose the
number of cell types by the default approach of each method
rather than set it to a common number. The resulting ARIs are
0.837 for LIGER, 0.654 for MNN, 0.521 for Scanorama, 0.480 for
scVI, 0.632 for Seurat, and 0.571 for ZINB-WaVE. Moreover, the
t-SNE plots (Fig. 3c, d) show that only BUSseq can perfectly
cluster the cells by cell types rather than batches. We also cal-
culated the silhouette score for each cell for each compared
method (Supplementary Note 7). A high silhouette score indi-
cates that the cell is well matched to its own cluster and separated
from neighboring clusters. Figure 3b shows that BUSseq gives the
best segregated clusters.

BUSseq outperforms existing methods on hematopoietic data.
We re-analyzed the two hematopoietic datasets43,44 previously
studied by Haghverdi et al.14 (Fig. 4a and Supplementary Fig. 8a,
b). The two datasets shared at least three cell types, including the
common myeloid progenitors (CMP), megakaryocyte-erythrocyte
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progenitors (MEP) and granulocyte-monocyte progenitors
(GMP), thus they follow the chain-type design.

BUSseq fits the zero rates (Table 1 and Supplementary Note 9)
and the mean-variance trends (Fig. 5a, Supplementary Fig. 9 and
Supplementary Note 7) of the real data very well. In order to
compare BUSseq with existing methods, we compute the ARIs
between the clustering of each method and the FACS labels. The
resulting ARIs are 0.582 for BUSseq, 0.307 for LIGER, 0.575 for
MNN, 0.518 for Scanorama, 0.197 for scVI, 0.266 for Seurat, and
0.348 for ZINB-WaVE (Supplementary Table 5 and Supplemen-
tary Note 8). BUSseq thus outperforms all of the other methods in
being consistent with FACS labeling. BUSseq also has silhou-
ette coefficients that are comparable to those of MNN, which are
better than those of all the other methods (Fig. 4b and
Supplementary Fig. 10a, b).

Specifically, BUSseq learns six cell types from the dataset.
According to the FACS labels (Methods), Cluster 2, Cluster 5, and
Cluster 6 correspond to CMP, MEP, and GMP, respectively
(Figs. 4c, 6a–c). Cluster 1 is composed of long-term
hematopoietic stem cells and multi-potent progenitors (MPP).
These are cells from the early stage of differentiation. Cluster 4
consists of a mixture of MEP and CMP, while Cluster 3 is
dominated by cells labeled as other. Comparison between the
subpanel for BUSseq in Figs. 4c and 6b indicates that Cluster 4
are cells from an intermediate cell type between CMP and MEP.
In particular, according to Fig. 6e, the marker genes Apoe and
Gata2 are highly expressed in Cluster 4 but not in CMP (Cluster
2) and MEP (Cluster 6), and the marker gene Ctse is expressed in

MEP (Cluster 6) but not in Cluster 4 and CMP (Cluster 2).
Therefore, cells in Cluster 4 do form a unique group with distinct
expression patterns. This intermediate cell stage between CMP
and MEP is missed by all of the other methods considered.
Moreover, we find that well known B-cell lineage genes45, Ebf1,
Vpreb1, Vpreb3, and Igll1, are highly expressed in Cluster 3, but
not in the other clusters (Fig. 6c, e). To identify Cluster 3, which is
dominated by cells labeled as other by Nestorowa et al.43, we map
the mean expression profile of each cluster learned by BUSseq to
the Haemopedia RNA-seq dataset46. It turns out that Cluster 3
aligns well to common lymphoid progenitors (CLP) that give rise
to T-lineage cells, B-lineage cells and natural killer cells (Fig. 6d).
Therefore, Cluster 3 represents cells that differentiate from
lymphoid-primed multipotent progenitors (LMPP)44. Once
again, all the other methods fail to identify these cells as a
separate group.

Thus, although BUSseq does not assume any temporal
ordering between cell types, it is able to preserve the differentia-
tion trajectories (Fig. 6a, b); although BUSseq assumes that each
cell belongs to one cell type rather than conducts semisoft
clustering47, it is capable of capturing the subtle changes across
cell types and within a cell type due to continuous processes such
as development and differentiation (Supplementary Fig. 11 and
Supplementary Note 10).

We further inspect the functions of the intrinsic genes that
distinguish different cell types. BUSseq detects 1,419 intrinsic
genes at the Bayesian false discovery rate (FDR) cutoff of 0.05
(“Methods”). The gene set enrichment analysis48 shows that 51
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Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways49

are enriched among the intrinsic genes (p values < 0.05)
(Supplementary Note 11). The highest ranked pathway is the
Hematopoietic Cell Lineage Pathway, which corresponds to
the exact biological process studied in the two datasets. Among
the remaining 50 pathways, 13 are related to the immune system,
and another 9 are associated with cell growth and differentiation
(Supplementary Table 6). Therefore, the pathway analysis
demonstrates that BUSseq is able to capture the underlying true
biological variability, even if the batch effects are severe, as shown
in Figs. 3a and 4a.

BUSseq outperforms existing method on pancreas data. We
further studied the four scRNA-seq datasets of human pancreas
cells50–52 analyzed in Haghverdi et al.14. These cells were isolated
from deceased organ donors with and without type 2 diabetes. As
each patient has at least two pancreas cell types—alpha cells and
beta cells, the four datasets follow the chain-type design. We
obtained 7095 cells after quality control (Methods) and treated
each dataset as a batch following Haghverdi et al.14.

BUSseq recapitulates the properties of real scRNA-seq data
very well in terms of the zero rates (Table 1 and Supplementary
Note 9) and the mean-variance trend (Fig. 5b and Supplementary
Fig. 12). In particular, the posterior predictive check shows that
BUSseq fits the zero rates much better than a model that ignores

dropout events, especially when scRNA-seq data are assayed
by protocols that do not incorporate UMI counts, such as
SMART-seq2.

We can compare the clustering results from each batch effects
correction method with the cell-type labels provided by
Segerstolpe et al.52 and Lawlor et al.51 (Fig. 7a, b and
Supplementary Fig. 8c, d). The pancreas is highly heterogeneous
and consists of two major categories of cells: islet cells and non-
islet cells. Islet cells include alpha, beta, gamma, and delta cells,
while non-islet cells include acinar and ductal cells. BUSseq
identifies a total of eight cell types: five for islet cells, two for non-
islet cells and one for the labeled other cells. Specifically, the five
islet cell types identified by BUSseq correspond to three groups of
alpha cells, a group of beta cells, and a group of delta and gamma
cells. The two non-islet cell types identified by BUSseq
correspond exactly to the acinar and ductal cells. Compared with
all of the other methods, BUSseq gives the best separation
between islet and non-islet cells, as well as the best segregation
within islet cells. In particular, the median silhouette coefficient
by BUSseq is higher than that of any other method (Fig. 7c and
Supplementary Fig. 10c).

The ARIs of all methods are 0.608 for BUSseq, 0.542 for
LIGER, 0.279 for MNN, 0.527 for Scanorama, 0.282 for scVI,
0.287 for Seurat, and 0.380 for ZINB-WaVE (“Methods” and
Supplementary Table 5). Thus, BUSseq outperforms all of the
other methods in being consistent with the cell-type labels
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Fig. 3 Comparison of batch effects correction methods in the simulation study. a Comparison of the magnitude of cell type effects and batch effects in
the simulation study and two real applications. The subpanel for the simulation study jitters around the assumed values for β and ν. The boxplots show the
distributions of the estimated cell type effects bβ and batch effects bν by BUSseq in the two real studies. The magnitude of the batch effects and cell type
effects in the simulation study were chosen to mimic the real data scenarios. b The boxplots of silhouette coefficients for all compared methods. In these
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BUSseq successfully corrects the batch effects and perfectly clusters cells into different cell types in the simulation study, whose batch effects and cell type
effects are at the same scale as those of the two real datasets.
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according to marker genes. In Fig. 7d, the locally high expression
levels of marker genes for each cell type show that BUSseq
correctly clusters cells according to their biological cell types.

BUSseq identifies 426 intrinsic genes at the Bayesian FDR
cutoff of 5% (Methods). We conducted the gene set enrichment
analysis48 with the KEGG pathways49 (Supplementary Note 11).
There are 14 enriched pathways (p values < 0.05). Among them,
three are diabetes pathways; two are pancreatic and insulin
secretion pathways; and another two pathways are related to
metabolism (Supplementary Table 7). Recall that the four datasets
assayed pancreas cells from type 2 diabetes and healthy
individuals, therefore, the pathway analysis once again confirms
that BUSseq provides biologically and clinically valid cell typing.

BUSseq is applicable to droplet-based scRNA-seq data. We
further analyzed a dataset that contains samples assayed by

droplet-based scRNA-seq protocols. Comparing the performance
of different methods on real scRNA-seq data is challenging due to
the lack of true cell type labels in real application. Fortunately,
Tian et al.53 created scRNA-seq datasets with known cell type
labels by profiling cells from cancer cell lines. In one experiment,
they assayed three lung adenocarcinoma (LUAD) cell lines—
HCC827, H1975, and H2228 on three platforms with CELseq2,
10x Chromium and Drop-seq protocols, respectively. As a result,
1401 cells were totally measured on three batches. Each batch
consists of all of the three cell types, and data from different
batches have different levels of sparsity. Consequently, this study
satisfies the complete setting, which is a special case of both the
reference-panel design and the chain-type design.

We selected the top 6000 highly variable genes (HVGs) within
each batch and obtained 2267 common HVGs across three
batches (“Methods”). The t-SNE and PCA plots of the raw count
data show that significant batch effects occur across the three
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Table 1 Zero-count rates and dropout rates of the hematopoietic and pancreas studies.

Study Protocol UMI ρ0 ρd bρBUSseq0 jbρBUSseq0 � ρ0j bρBUSseq-nzf0 jbρBUSseq-nzf0 � ρ0j
Hematopoietic MARS-seq Yes 0.892 <0.001 0.887 0.005 0.874 0.018
Hematopoietic SMART-seq2 No 0.421 <0.001 0.424 0.003 0.445 0.024
Pancreas CEL-seq2 Yes 0.689 <0.001 0.625 0.064 0.682 0.007
Pancreas CEL-seq2 Yes 0.517 0.017 0.558 0.041 0.617 0.100
Pancreas SMART-seq2 No 0.609 0.167 0.531 0.078 0.430 0.179
Pancreas SMART-seq2 No 0.480 0.551 0.485 0.005 0.329 0.161

ρ0 denotes the observed zero rate in each batch; ρd represents the inferred dropout rate by BUSseq; bρBUSseq0 denotes the posterior mean of zero rate inferred by BUSseq; and bρBUSseq-nzf0 represents the
posterior mean of zero rate inferred by a reduced model of BUSseq that ignores dropout events and hence uses negative binomial distribution without zero inflation, abbreviated as BUSseq-nzf. BUSseq
detects the existence of dropout events automatically and performs better than BUSseq-nzf in terms of the posterior predictive check of zero rates.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16905-2 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:3274 | https://doi.org/10.1038/s41467-020-16905-2 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


protocols (Fig. 8a, b and Supplementary Fig. 13a, b). We applied
BUSseq and varied the number of cell type K from 2 to 6.
Although the BIC selects four cell types instead of three cell lines
(Supplementary Fig. 14), two of the four identified clusters
correspond to two subpopulations of the H1975 cell lines
(Supplementary Table 8). We further visualized the log-scale
mean expression levels of intrinsic genes of the four learned cell
types (Fig. 8e). The first two cell types have similar expression
patterns, but some differentially expressed genes are observed
between them. Moreover, the t-SNE (Fig. 8c, d) and PCA

(Supplementary Fig. 13c, d) plots demonstrate the high level of
similarity of the first two estimated cell types and confirm that the
corrected count data ~xbig obtained by BUSseq cluster cells by cell
type instead of by batch (Fig. 8f).

We also applied the benchmarked methods to compare their
clustering accuracy. The ARIs of all methods are 0.841 for
BUSseq, 0.825 for LIGER, 0.650 for MNN, 0.637 for Scanorama,
0.429 for scVI, 0.324 for Seurat, and 0.398 for ZINB-WaVE. Thus,
BUSseq outperforms all of the other methods in clustering
accuracy. We further compared BUSseq with a recently proposed
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semi-supervised batch-effect-correction methods, CellAssign.
CellAssign requires the number of cell types and the input of a
set of marker genes for each cell type. It then annotates scRNA-
seq into predefined or de novo cell types54. To allow a fair
comparison, we also set the number of cell types as the priori
known three for BUSseq, and the resulting ARI for BUSseq
becomes 0.993. Even though CellAssign is semi-supervised
whereas BUSseq is unsupervised, BUSseq outperforms CellAssign
in the LUAD dataset as well (ARI for CellAssign is 0.972,
Supplementary Table 9). Thus, BUSseq also works very well for
scRNA-seq data with high levels of sparsity, such as those
generated by droplet-based protocols.

Discussion
For the completely randomized experimental design, it seems that
everyone is talking but no one is listening. Due to time and
budget constraints, it is always difficult to implement a com-
pletely randomized design in practice. Consequently, researchers
often pretend to be blind to the issue when carrying out their
scRNA-seq experiments. In this paper, we mathematically prove
and empirically show that under the more realistic reference
panel and chain-type designs, batch effects can also be adjusted
for scRNA-seq experiments. We hope that our results will alarm
researchers of confounded experimental designs and encourage
them to implement valid designs for scRNA-seq experiments in
real applications.

BUSseq provides one-stop services. In contrast, most existing
methods are multi-stage approaches—clustering can only be
performed after the batch effects have been corrected and the
differential expressed genes can only be called after the cells have
been clustered. The major issue with multi-stage methods is that

uncertainties in the previous stages are often ignored. For
instance, when cells have been first clustered into different cell
types and then differential gene expression identification is con-
ducted, the clustering results are taken as if they were the
underlying truth. As the clustering results may be prone to errors
in practice, this can lead to false positives and false negatives. In
contrast, BUSseq simultaneously corrects batch effects, clusters
cell types, imputes missing data, and identifies intrinsic genes that
differentiate cell types. BUSseq thus accounts for all uncertainties
and fully exploits the information embedded in the data. As a
result, BUSseq is able to capture subtler changes between cell
types, such as the cluster corresponding to LMPP lineage that is
missed by all of the state-of-the-art methods.

BUSseq employs MCMC algorithm for statistical inference.
Although MCMC algorithms are well-known for heavy compu-
tation load, fortunately, the computational complexity of BUSseq
is OðPB

b¼1 nbGKÞ, which is both linear in the number of genes G
and in the total number of cells N ¼ PB

b¼1 nb. Moreover, most
steps of the MCMC algorithm for BUSseq are parallelizable
(Supplementary Note 12). We implement a parallel multi-core-
CPU version and a parallel GPU version of the algorithm,
respectively. Running the GPU version of the algorithm with a
single core of an Intel Xeon Gold 6132 Processor and one NVI-
DIA Tesla P100 GPU took 0.35, 1.15, 1.5 h for the simulation, the
hematopoietic, and the human pancreas data, respectively (Sup-
plementary Table 10). Experiments show that the running time
and random-access memory (RAM) usage are indeed linear in the
number of genes G and the number of cells N for both the CPU
and the GPU parallel version of BUSseq (Fig. 9 and Supple-
mentary Note 13). Moreover, by writing the posterior samples to
the hard disk every a few iterations, we can further reduce the
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RAM usage so that BUSseq is affordable by a commonly available
cluster node rather than a high-end one (Supplementary Table 11
and Supplementary Fig. 15). Compared with the time for pre-
paring samples and conducting the scRNA-seq experiments, the

computation time of BUSseq is affordable and worthwhile for the
accuracy.

Practical and valid experimental designs are urgently required
for scRNA-seq experiments. We envision that the flexible
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reference panel and the chain-type designs will be widely adopted
in scRNA-seq experiments and BUSseq will greatly facilitate the
analysis of scRNA-seq data.

Methods
BUSseq model. The hierarchical model of BUSseq can be summarized as:

PrðWbi ¼ kÞ ¼ πbk;
XK
k¼1

πbk ¼ 1;

Xbig jWbi ¼ k � NBðμbig ; ϕbgÞ; log ðμbigÞ ¼ αg þ βgk þ νbg þ δbi;

Zbig jXbig ¼ xbig � BernoulliðpbigÞ; log ð
pbig

1� pbig
Þ ¼ γb0 þ γb1xbig ;

Ybig ¼ Xbig jZbig ¼ 0;Ybig ¼ 0jZbig ¼ 1:

Collectively, Y ¼ fYbiggg¼1;���;G
b¼1;���;B;i¼1; ���;nb

are the observed data; the underlying

expression levels X ¼ fXbiggg¼1;���;G
b¼1;���;B;i¼1;���;nb

, the dropout indicators Z ¼
fZbiggg¼1;���;G

b¼1;���;B;i¼1;���;nb
and the cell type indicators W ¼ fWbigb¼1;���;B;i¼1;���;nb are all

missing data; the log-scale baseline gene expression levels α ¼ fαggg¼1;���;G, the cell

type effects β ¼ fβgkgg¼1;���;G
k¼2;���;K , the location batch effects ν ¼ fνbggg¼1;���;G

b¼2;���;B , the

overdispersion parameters ϕ ¼ fϕbggg¼1;���;G
b¼1;���;B , the cell-specific size factors

Δ ¼ fδbigi¼2;���;nb
b¼1;���;B , the dropout parameters Γ ¼ fγb0; γb1gb¼1;���;B and the cell

compositions π ¼ fπbkgk¼1;���;K
b¼1;���;B are the parameters. Without loss of generality, for

model identifiability, we assume that the first batch is the reference batch measured
without batch effects with ν1g = 0 for every gene and the first cell type is the
baseline cell type with βg1 = 0 for every gene. Similarly, we take the cell-specific size
factor δb1 = 0 for the first cell of each batch. We gather all the parameters as
Θ = {α, β, ν, ϕ, Δ, Γ, π}.

Consequently, the observed data likelihood function becomes

LoðΘjyÞ ¼
YB
b¼1

Ynb
i¼1

½
XK
k¼1

πbk
YG
g¼1

PrðYbig ¼ ybig jΘÞ�; ð1Þ

where

PrðYbig ¼ ybig jΘÞ ¼

P1
x¼1

expðγb0þγb1xÞ
1þexpðγb0þγb1xÞ f NBðx; expðαg þ βgk þ νbg þ δbiÞ; ϕbgÞ
þf NBð0; expðαg þ βgk þ νbg þ δbiÞ; ϕbgÞ ybig ¼ 0;
1

1þexpðγb0þγb1ybig Þ f NBðybig ; expðαg þ βgk þ νbg þ δbiÞ; ϕbgÞ ybig > 0:

8>><
>>:

and f NBðx; μ; ϕÞ ¼ Cϕþx�1
x ð μ

μþϕÞ
xð ϕ

μþϕÞ
ϕ
denotes the probability mass function of

the negative binomial distribution NB(μ, ϕ). For ybig = 0, f NBð0; expðαg þ βgk þ
νbg þ δbiÞ; ϕbg Þ corresponds to a biological zero, whereasP1

x¼1
expðγb0þγb1xÞ

1þexpðγb0þγb1xÞ f NBðx; expðαg þ βgk þ νbg þ δbiÞ; ϕbgÞ corresponds to a

dropout event.

Experimental designs. By creating a set of functions similar to the probability
generating function, we prove that BUSseq is identifiable, in other words, if two sets
of parameters are different, then their probability distribution functions for the
observed data are different, for not only the complete setting but also the reference
panel and the chain-type designs (see the proofs in Supplementary Note 3).

Theorem 1 (The Complete Setting) If πbk > 0 for every batch b and cell type k,
given that (I) γb1 < 0 for every b, (II) for any two cell types k1 and k2, there exist at
least two differentially expressed genes g1 and g2—βg1k1≠ βg1k2 and βg2k1≠ βg2k2 , and
(III) for any two distinct cell-type pairs (k1, k2) ≠ (k3, k4), their differences in cell-type
effects are not the same βk1 � βk2≠ βk3 � βk4 , then BUSseq is identifiable (up to label
switching) in the sense that Lo(Θ∣y) = Lo(Θ*∣y) for any y implies that πbk ¼
π�bρðkÞ; ðγb0; γb1Þ ¼ ðγ�b0; γ�b1Þ; αg þ βgk ¼ α�g þ β�gρðkÞ; νgb ¼ ν�gb; δbi ¼ δ�bi and ϕbg ¼
ϕ�bg for every gene g and batch b, where ρ is a permutation of {1, 2, ⋯ , K}.

In the following, we denote the cell types that are present in batch b as Cb and
count the number of cell types existing in batch b as Kb= ∣Cb∣.

Theorem 2 (The Reference Panel Design) If there are a total of K cell types
∪ B

b¼1Cb ¼ f1; 2; � � � ;Kg, Kb≥ 2 for every batch b, and there exists a batch ~b such
that it contains all of the cell types C~b ¼ f1; 2; � � � ;Kg, then given that conditions
(I)–(III) hold, BUSseq is identifiable (up to label switching).

Theorem 3 (The Chain-type Design) If there are a total of K cell types ∪ B
b¼1Cb ¼

f1; 2; � � � ;Kg and every two consecutive batches share at least two cell types ∣Cb ∩ Cb

−1∣ ≥ 2 for all b ≥ 2, then given that conditions (I)–(III) hold, BUSseq is identifiable
(up to label switching).

Therefore, even for the reference panel and chain-type designs that do not assay
all cell types in each batch, batch effects can be removed; cell types can be clustered;
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and missing data due to dropout events can be imputed. Both the reference panel
design and the chain-type design belong to the more general connected design.

Theorem 4 (The Connected Design) We define a batch graph G = (V, E). Each
node b ∈ V represents a batch. There is an edge e ∈ E between two nodes b1 and b2 if
and only if batches b1 and b2 share at least two cell types. If the batch graph is
connected and conditions (I)–(III) hold, then BUSseq is identifiable (up to label
switching).

Statistical inference. We conduct the statistical inference under the Bayesian
framework. We assign independent priors to each component of Θ as fol-
lows (Supplementary Table 3):

πb ¼ ðπb1; � � � ; πbK Þ � Dirichletðξ; � � � ; ξÞ; 1≤ b≤B;
γb0 � Nð0; σ2z0Þ; 1≤ b≤B;

�γb1 � Gammaðaγ; bγÞ; 1≤ b≤B;
αg � Nðma; σ

2
aÞ; 1≤ g ≤G;

νbg � Nðmc; σ
2
c Þ; 2≤ b≤B; g ¼ 1; � � � ;G;

δbi � Nðmd ; σ
2
dÞ; 1≤ b ≤B; 2 ≤ i≤ nb;

ϕbg � Gammaðκ; τÞ; 1≤ b≤B; 1≤ g ≤G:
We are interested in detecting genes that differentiate cell types. Therefore, we

impose a spike-and-slab prior55 using a normal mixture to the cell-type effect βgk.
The spike component concentrates on zero with a small variance τ2β0, whereas the

slab component tends to deviate from zero, thus having a larger variance τ2β1. We
introduce another latent variable Lgk to indicate which component βgk comes from.
Lgk = 0 if gene g is not differentially expressed between cell type k and cell type one,
and Lgk = 1, otherwise. We further define Dg ¼

PK
k¼2 Lgk. If Dg > 0, then the

expression level of gene g does not stay the same across cell types. Following Huo
et al.13, we call such genes intrinsic genes, which differentiate cell types. To control
for multiple hypothesis testing, we let Lgk ~ Bernoulli(p) and assign a conjugate
prior Beta(ap, bp) to p. We set τβ1 to a large number and let τβ0 follow an inverse-
gamma prior Inv—Gamma(aτ, bτ) with a small prior mean.

We develop an MCMC algorithm to sample from the posterior distribution
(Supplementary Note 2). After the burn-in period, we take the mean of the
posterior samples to estimate γb, αg, βgk, νbg, δbi, and ϕbg and use the mode of
posterior samples of Wbi to infer the cell type for each cell.

We have actually also implemented an Expectation-Maximization (EM)
algorithm56 for a simplified version of the BUSseq model. Unfortunately,
consistent with the literature57,58, we found that inference by the EM algorithm can
be very sensitive to small disturbance of observed data and the initial values. Thus,
we choose to use the MCMC algorithm for inference. The extra benefit of the
MCMC algorithm is that it not only provides point estimates but also explores the
entire posterior distributions and hence allow the users to quantify the uncertainty
of estimates.

Identification of intrinsic genes. When inferring the differential expression indicator
Lgk, we control the Bayesian FDR37 defined as

FDRðκÞ ¼

PG
g¼1

PK
k¼2

ξgkIðξgk ≤ κÞ

PG
g¼1

PK
k¼2

Iðξgk ≤ κÞ
;

where ξgk = Pr(Lgk = 0∣y) is the posterior marginal probability that gene g is not
differentially expressed between cell type k and cell type one, which can be esti-

mated by the T posterior samples LðtÞgk s collected after the burn-in period as
1
T

PT
t¼1ð1� LðtÞgk Þ. Given a control level α such as 0.1, we search for the largest κ0 ≤

0.5 such that the estimated dFDRðκÞ based on bξgks is smaller than α and declare

bLgk ¼ 1 if bξgk ≤ κ0. The upper bound 0.5 for κ0 prevents us from calling differen-
tially expressed genes with small posterior probability Pr(Lgk = 1∣y). Consequently,
we identify the genes with bDg ¼

PK
k¼2

bLgk>0 as the intrinsic genes. We set α = 0.05
in both the simulation study and the real applications. Here, we follow Huo et al.13

to define intrinsic genes as genes that are differentially expressed between at least
two cell types. In contrast, marker genes are genes that feature certain cell types
according to the literature. For example, in the pancreas study, GCG gene is known
to be highly expressed in alpha islet cells, so this gene often serves as a marker to
label alpha islet cells51.

Convergence of the MCMC algorithm. To rigorously assess the convergence of the
Markov chain, we adopt the EPSR factors criterion59 (Supplementary Note 14). We
are interested in the log-scale baseline expression level {αg, g = 1, 2, ⋯ , G}, the cell
type effects {βgk, g = 1, 2, ⋯ , G, k = 2, 3, ⋯ , K}, the location batch effects
{νbg, g = 1, 2, ⋯ , G, b = 2, 3, ⋯ , B} and the overdispersion parameters
{ϕbg, g = 1, 2, ⋯ , G, b = 1, 2, ⋯ , B}. To avoid the impact of label switching of cell
types (Supplementary Fig. 16 and Supplementary Note 14), we consider the log-scale
cell-type-specific expression level θgk = αg + βgk, g = 1, 2, ⋯ , G, k = 1, 2, ⋯ , K and

match the cell type indicators in different chains such that most cells in the different
chains are assigned to the same cell types. If the EPSR factors of most parameters are
close to one, we treat the posterior sampling as attaining stationary. Thus, we use the
following rule to diagnose the convergence of the MCMC algorithm for BUSseq:

1. More than 80% of {EPSR(θgk)} are <1.3;
2. More than 80% of {EPSR(νbg)} are <1.3;
3. More than 80% of {EPSR(ϕbg)} are <1.3.

Implementation of the MCMC algorithm. In the simulation study, we ran the
MCMC algorithm for 4000 iterations and discarded the first 2000 iterations as
burn-ins. In the three real data analysis, we ran BUSseq for 8000 iterations and
discarded the first 4000 iterations as burin-ins. Both the estimated potential scale
reduction (EPSR) factors (Supplementary Table 12) and the acceptance rates of the
Metropolis steps of the MCMC algorithm (Supplementary Tables 13 and 14, and
Supplementary Note 14) demonstrate that the Markov chain has converged with
good mixing.

Selection of cell type numbers. BUSseq allows the user to input the total number of
cell types K according to prior knowledge. When K is unknown, BUSseq selects the
number of cell types bK such that it achieves the minimum BIC31. BIC adds a
penalty term to the observed data log-likelihood LoðbΘjyÞ as Eq. (1).

BICðKÞ ¼ �2log ðLoðbΘjyÞÞ þ ½KðBþ GÞ þ 2Bþ ð2B� 1ÞGþ
XB
b¼1

ðnb � 1Þ� � log ð
XB
b¼1

nbGÞ;

where bΘ ¼ ðbα;bβ;bγ;bν; bϕ;bδ; bπÞ denotes the posterior mean of parameters. As a
result, the penalty in BIC helps the model selection to balance between goodness-
of-fit and the model complexity (Supplementary Figs. 17–19, Supplementary
Tables 15 and 16, and Supplementary Note 15).

Inference of dropout events. In the BUSseq model, a dropout event occurs for gene g
in cell i of batch b if the observed value ybig = 0 but the imputed count data bxbig>0.
The identification allows us to calculate the frequency of dropout events in each
batch. We calculate the zero rate of each batch as following:

ρ0 ¼
1

G � nb
XG
g¼1

Xnb
i¼1

Iðybig ¼ 0Þ; ð2Þ

and compute the dropout rate as the proportion of dropout events among the
observations with zero counts:

ρd ¼

PG
g¼1

Pnb
i¼1

Iðybig ¼ 0 and bxbig>0Þ
PG
g¼1

Pnb
i¼1

Iðybig ¼ 0Þ
:

Posterior predictive check. We evaluate how well BUSseq fits the data via posterior
predictive checks60. In particular, we focus on the zero rates. In the posterior
predictive check, we take MCMC samples of all the parameters after the burn-in
iterations to simulate replicated datasets Yrep

j ; j ¼ 1; 2; � � � ; J for G genes and N ¼PB
b¼1 nb cells, where J denotes the total number of collected iterations after burn-

ins. In our real data analyses, we ran 8000 iterations with the first 4000 iterations as
burn-ins, so we generated J = 8000 − 4000 = 4000 replicated datasets for both the
hematopoietic and Pancreas studies. For each generated replicate dataset, we cal-
culated the zero rates of each batch according to Eq. (2). Finally, we average the
zero rates over all the J iterations to calculate the posterior mean bρ0 of the zero rate
of each batch and compare it with the corresponding observed zero rate. Moreover,
we also compare BUSseq with a reduced model of BUSseq which ignores dropout
events and hence uses negative binomial distribution without zero inflation,
abbreviated as BUSseq-nzf (Supplementary Note 9), via the posterior predictive
check (Supplementary Note 16).

Batch-effects-corrected values. To facilitate further downstream analysis, we also

provide a version of count data eX ¼ feXbigg
g¼1;���;G
b¼1;���;B;i¼1;���;nb

for which the batch effects

are removed and the biological variability is retained similar to that of ComBat7.

Ideally, if xbig is the αth percentile of NBðexpðbαg þ bβ
gbwbi

þ bνbg þ bδbiÞ; bϕbgÞ, we aim to

take the αth percentile of NBðexpðbαg þ bβ
gbwbi

Þ; bϕbgÞ as the corrected value ~xbig .

However, the negative binomial distribution is a discrete distribution. As a result,
several ~xs can lie between the Pr(x ≤ xbig − 1)-percentile and Pr(x ≤ xbig)-percentile of
the distribution of eXbig . For example, if Xbig � NBðexpð2Þ; 3Þ, eXbig � NBðexpð3Þ; 5Þ,
and our observed value xbig = 8, then Pr(xbig≤ 7) and Pr(xbig≤ 8) correspond to the
58.67th and 65.76th percentiles of NBðexpð2Þ; 3Þ. However, three numbers—21, 22,
and 23—lie between 58.67th and 65.76th percentile of NBðexpð3Þ; 5Þ. Thus, to avoid
bias, we draw one number uniformly from 21, 22, and 23 rather than take the
maximum or the minimum to calculate exbig .
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Thus, we develop a quantile matching approach based on inverse sampling.
Specifically, given the fitted model and the inferred underlying expression level bxbig ,
we first sample ubig from Unif ½FNBðbxbig � 1; expðbαg þ bβ

gbwbi
þ bνbg þ bδbiÞ; bϕbgÞ;

FNBðbxbig ; expðbαg þ bβ
gbwbi

þ bνbg þ bδbiÞ;bϕbgÞ� where Unif[a, b] denotes the uniform

distribution on the interval [a, b] and FNB( ⋅ ; μ, r) denotes the cumulative
distribution function of a negative binomial distribution with mean μ and

overdispersion parameter r. Next, we calculate the uthbig quantile of NBðexpðbαg þbβ
gbwbi

Þ;bϕ1gÞ as the corrected value exbig .
The corrected data eX are not only protected from batch effects but also impute

the missing data due to dropout events. Moreover, further cell-specific
normalization is not needed. Meanwhile, the biological variability is retained
thanks to the quantile transformation and sampling step. Therefore, we can directly
perform downstream analysis on eX.

Preprocessing of the real datasets
Gene filtering. A common practice of scRNA-seq data analysis is to focus on the set
of HVGs14,17,18,24,25 or the genes with the high mean expression levels across
cells61. Although BUSseq is robust to gene filtering strategies in real studies
(Supplementary Tables 17 and 18), comparing the ARIs resulting from the two
gene filtering strategies, we recommend filtering HVGs in preprocessing (Supple-
mentary Note 17). An intrinsic gene that well distinguishes cell types may be highly
expressed in one cell type but lowly expressed in other cell types. As a result, its
mean expression level across all of the cells may be low, and hence such a gene will
be missed by filtering according to mean expression levels. Thus, filtering genes
according to mean expression levels is likely to select genes whose expression levels
are high but remain the same across all of the cell types. Unfortunately, such genes
can provide very limited information for differentiating cell types. We therefore
filter out HVGs for the downstream analysis in real data analyses.

Hematopoietic study. For the two hematopoietic datasets, we downloaded the read
count matrix of the 1920 cells profiled by Paul et al.44 and the 2729 cells labeled as
myeloid progenitor cells by Nestorowa et al.43 from the NCBI Gene Expression
Omnibus (GEO) with the accession numbers GSE72857 and GSE81682. Following
Brennecke et al.62, we first labeled cells using FACS labels and then performed the
size factor normalization within each batch. Next, we filtered out the common
HVGs identified by Nestorowa et al.43 between two datasets. These HVGs were
denoted by Ensembl ID. The genes in the GSE81682 dataset were named by
Ensembl ID, but the genes in the GSE72857 dataset were named by Gene Symbol.
The R package biomaRt was used to query the corresponding Gene Symbol by
Ensembl ID. Finally, we obtained 3,470 common HVGs shared by the two datasets.

Pancreas study. Two of the pancreas datasets profiled by the CEL-seq2 platform
were downloaded from GEO with accession number GSE8017650 and GSE8524163.
The two datasets assayed by the SMART-seq2 platform were obtained from
GSE8647351 and from ArrayExpress accession number E-MATB-506152. Following
Haghverdi et al.14, we excluded cells with low library sizes (<100,000 reads), low
numbers of expressed genes (>40% total counts from ribosomal RNA genes), or
high ERCC content (>20% of total counts from spike-in transcripts) resulting in
7095 cells. We selected the 2480 HVGs shared by the four datasets according to
Brennecke et al.62 by sorting the ratio of variance and mean expression level after
adjusting technical noise with the variances of spike-in transcripts. GSE86473 and
EMATB-5061 have the cell type labels for all of the cells, but the cell type labels of
GSE81076 and GSE85241 were inferred by the marker genes used in the original
publications by Lawlor et al.51 and Grün et al.50.

To assign cell type labels for the GSE81076 and GSE85241 datasets, following
Haghverdi et al.14, we first extracted the normalized expression levels of the
selected HVGs within each dataset. Next, we obtained the low dimensional
embedding of HVGs by tSNE for visualization. At the same time, we applied robust
k-means clustering to the normalized expression levels of the selected HVGs using
the pam function in the R package cluster. The number of clusters was set as nine.
Next, we drew t-SNE plots colored by the expression levels of the marker genes. It
is known that GCG is highly expressed in alpha islet cells, INS in beta islet cells, SST
in delta islet cells, PPY in gamma islet cells (pancreatic polypeptide cells), PRSS1 in
acinar cells, KRT19 in ductal cells and COL1A1 in mescenchymal cells50,51, so we
labeled each cluster by its corresponding highly expressed marker gene.

LUAD cancer cell line study. We downloaded the raw count data from the GitHub
repository https://github.com/LuyiTian/sc_mixology with accession number
GSE118767. We selected the top 6000 HVGs within each batch using the trendVar
and decomposeVar functions in the R package scran64 and obtained 2,267 com-
mon HVGs across three batches (Supplementary Note 15).

Naming clusters learned by BUSseq according to FACS labels. In the two
real data examples, we first identify the cell type of each individual cell according to
FACS labeling. Then, for each cluster learned by BUSseq, we calculate the proportion

of labeled cell types. If a cell type accounts for more than one-third of the cells in a
given cluster, we assign this cell type to the cluster. Although a cluster may be assigned
more than one cell type, most identified clusters by BUSseq are dominated by only
one cell type. For example, in the hematopoietic study, BUSseq identifies 1165 cells for
Cluster 5. According to FACS labels, 1127 of the 1165 cells are megakaryocyte-
erythrocyte progenitors (MEP). Therefore, we name Cluster 5 as MEP.

Mapping clusters to haemopedia. Haemopedia is a database of gene expression
profiles from diverse types of hematopoietic cells46. It collected flow sorted cell
populations from healthy mice.

To understand Cluster 3 learned by BUSseq for the hematopoietic data, which is
dominated by cells classified as other according to the FACS labeling, we mapped
the cluster means learned by BUSseq to the Haemopedia RNA-seq dataset.

We first applied TMM normalization35 to all the samples in the Haemopedia
RNA-seq dataset. Then, we extracted seven types of hematopoietic stem and
progenitor cells from Haemopedia, including Lin−Sca-1+c-Kit+ cells, short-term
hematopoietic stem cells, MPP, CLP, CMP, MEP, and GMP. Each selected cell type
had two RNA-seq samples in Haemopedia, so we averaged over the two replicates
for each cell type. Further, we added one to the normalized expression levels as a
pseudo read count to handle genes with zero read count and log-transformed the
data. Finally, we scaled the data across the seven cell types for each gene. To be
comparable, we transformed the cluster mean learned by BUSseq as mgk ¼
log ð1þ expðαg þ βgkÞÞ for gene g in the cluster k and scaled mgk across all cell
types as well. Finally, we calculated the correlation between the cluster means
inferred by BUSseq and the reference expression profiles in Haemopedia for 37
marker genes. The 37 marker genes were retrieved from Paul et al.44 (31 maker
genes for HSPC) and Herman et al.45 (6 maker genes for LMPP).

Software availability
The C++ source code of the parallel multi-core-CPU version of BUSseq is
available on GitHub https://github.com/songfd2018/BUSseq-1.0, and the CUDA C
source code of the GPU version of BUSseq is available on GitHub https://github.
com/Anguscgm/BUSseq_gpu. All code for producing results and figures in this
manuscript are also available on GitHub (https://github.com/songfd2018/BUSseq-
1.1_implementation). Furthermore, we wrap C++ source code as an R package,
BUSseq (https://github.com/songfd2018/BUSseq-Rpackage).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The published datasets used in this manuscript are available through the following
accession numbers: SMART-seq2 platform hematopoietic data with GEO GSE81682 by
Nestorowa et al.43; MARS-seq platform hematopoietic data with GEO GSE72857 by Paul
et al.44; CEL-seq platform pancreas data with GEO GSE81076 by Grün et al.50; CEL-seq2
platform pancreas data with GEO GSE85241 by Muraro et al.63; SMART-seq2 platform
pancreas data with GEO GSE86473 by Lawlor et al.51; and SMART-seq2 platform
pancreas data with ArrayExpress E-MTAB-5061 by Segerstolpe et al.52; human lung
adenocarcinoma cell line data with GEO GSE118767 by Tian et al.65. The parameter
settings for the simulation study and the simulated data are available on GitHub (https://
github.com/songfd2018/BUSseq-1.1_implementation).
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