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Abstract: In this study, epoxy putties with novel compositions were developed for the filling of
structural voids in carbon-fiber-reinforced plastics (CFRPs), which are used to fabricate automotive
parts. Two constituent solutions—one consisting of epoxy resins and the other consisting of a
hardener—were formulated, mixed, and then coated on CFRP surfaces, followed by curing. The
surfaces were then evaluated to determine the shrinkage rates (calculated based on the liquid densities
and cured mixtures), adhesion properties (determined by a peel test), and color differences (measured
with a colorimeter) of the synthesized putties. The last two properties were compared with those
of the commercially available putties to ascertain the thermal resistance of the developed putties.
The results indicated that the synthesized epoxy putties were more strongly adhesive and exhibited
less difference in color. Furthermore, after thermal impact, both the adhesive properties and color
stabilities of the synthesized epoxy putties were found to be superior to those of the commercial putty.

Keywords: composites; putty; epoxy; unsaturated polyester resin

1. Introduction

Carbon-fiber-reinforced plastics (CFRPs) are widely used in the aircraft, automotive,
and construction industries owing to their low weight and high strength [1–10]. However,
during the compression molding process involved in their manufacturing, inhomogeneous
heat transfer and resin flow frequently lead to the formation of structural voids [11].
These voids can deteriorate both the surface quality and mechanical properties [12–19].
Although the formation of voids during the resin-transfer molding process can be reduced
by controlling the curing process, the rate of resin impregnation, and the direction of resin
flow [20–24], the complete elimination of such voids is crucial for aesthetic purposes and
for maintaining the quality of the coating. Additionally, because voids always exist in
CFRPs, the minimization of void formation during the preparation of CFRPs is critical [25].
The parts of automobiles are composed of inner plates and outer plates. For the fabrication
of the inner plates of composite materials, materials with a void content above 2% are
rejected, as they often do not provide the required structural performance [26]. However,
because the requirements for the mechanical properties of the outer plate materials are not
as stringent, a higher void content is acceptable, and thus putty is often used to fill the
surface defects.

Surface voids are usually treated by the conventional painting method. However, this
is not always feasible due to the considerable time and cost required to cover all of the
voids. In the case of iron or aluminum products, the defects are painted only after the voids
are filled with putty. However, CFRPs contain voids throughout their structures; thus, if
the number of voids increases, more appearance defects may manifest themselves after
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painting the entire product surface, compared to painting just a specific part. Therefore,
contrary to the traditional puttying method, which is used only on specific parts of the
metal surfaces, in the case of a CFRP, the putty is sprayed over its entire surface. In
addition, when CFRPs are used to fabricate the exterior parts of vehicles, transparent paint
is applied to them to enhance their visual appeal for marketing purposes. Thus, the putty
must be transparent as well so that the carbon-fiber pattern can be seen with the naked
eye. Therefore, transparent putty is generally applied over the voids before the coating
process [27]. Transparent putty based on unsaturated polyester resin (UPR) is generally
used as a filler. However, its poor adhesion and high shrinkage limit its applicability. In
particular, when the shrinkage rate is high, even if all the voids are completely filled with
putty, it shrinks at some point after the completion of painting and curing, leading to the
formation of pinhole defects. Therefore, to reduce the rate of defect formation in CFRPs
that are used in automobile exterior panels, the putty that is used must be transparent as
well as exhibit a high penetration rate, low shrinkage, and high adhesion.

In this study, a novel putty based on a transparent epoxy resin with fortified adhesion
to CFRPs was developed in order to overcome the disadvantages of UPR putty [28,29]. In
addition, the physical properties of CFRPs that were treated with traditional unsaturated
polyester putty were analyzed using the cross-cut adhesion method and by comparing the
color of the samples before and after exposure to high temperatures. Two mixtures—one
composed of resin and the other of hardener—were prepared for the experiments. Digly-
cidyl ether of bisphenol A (DGEBA) was chosen as the resin for reducing the shrinkage rate.
For the hardener, four different compositions of triethylene tetramine (TETA), diethylene
tetramine (DETA), bisphenol A (BPA), and isophorone diamine (IPDA) were studied. The
newly developed putty systems and the UPR putty were tested using the same methods,
and the corresponding results were compared.

2. Materials and Methods
2.1. Materials

Carbon clear putty 3K (Gelson, Milan, Italy) was purchased and used without further
treatment. Prepreg carbon fiber (SK Chemicals, Seongnam, Republic of Korea) was used as
the symmetrically laminated reinforcement. The outermost layers (1st and 4th plies) were
woven with Toray T700 carbon fibers (3K; fiber areal weight (FAW): 200 g/m2) with an
orientation of 0◦/90◦. In addition, the inner layers (2nd and 3rd plies) were woven with
Zoltek (50K; FAW: 240 g/m2) non-crimp fabrics with an orientation of +45◦/−45◦. The
carbon fabric prepreg details are shown in Table 1.

Table 1. Carbon fabric prepreg information.

FAW 1 (g/m2) Angle (◦) Thickness (mm) Fiber

1st ply (WSN 03KT) 200 0/90 0.224 Toray T700, 3K

2nd ply (WSN 50KMA) 240 ±45 0.267 Zoltek, 50K

3rd ply (WSN 50KMB) 240 ±45 0.267 Zoltek, 50K

4th ply (WSN 03KT) 200 0/90 0.224 Toray T700, 3K
1 FAW, fiber areal weight.

DGEBA was obtained from Kukdo Chemical (Seoul, Korea), and TETA was pur-
chased from Huntsman (Woodlands, TX, USA). IPDA and DETA were purchased from
Merck (Darmstadt, Germany). NRB DP 2411- and NRB DC 2411-type primers were ob-
tained from NoRoo Bee Chemicals (Seoul, Korea). All of the chemicals were used without
further purification.

2.2. Preparation of CFRP Test Specimens

The prepreg carbon fibers were cured for 5 h in an autoclave that was maintained
at a pressure of 3 bar. The curing temperature was steadily increased to 140 ◦C, at a rate
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of 2 ◦C/min. After this curing process, the oven was allowed to cool naturally to room
temperature (Figure 1). The laminates were first cleaned with acetone and then sanded
with sandpaper. Thereafter, the putty was sprayed on the laminates under an air pressure
of 2–3 bar until it formed a 30–50 µm-thick film, followed by curing of the sample at 60 ◦C
for 1 h. The NRB DP 2411 primer was then sprayed on the sample with an air spray gun
until it formed a 50–60 µm-thick film, followed by sanding with sandpaper. Then, the
sample was again cured at 60 ◦C for 1 h. For the clear-coating process, the laminates,
cleaned with acetone, were sprayed with the NRB DC 2411 primer until they formed a
50–60 µm thick film and were subsequently cured at 60 ◦C for 1 h. Finally, the sample
was again sprayed with 50–60 µm of NRB DC 2411 and cured at 75 ◦C for 2 h, as shown
in Figure 2.

Figure 1. CFRP-preparation process: (a) material cutting and lamination, (b) vacuum processing,
and (c) autoclave curing.

Figure 2. Coating process after putty treatment.

2.3. Preparation of Epoxy Compositions and Curing

Four different epoxy putties were prepared by mixing DGEBA with curing agents of
four distinct compositions, as shown in Table 2.

Table 2. Compositions and viscosities of the developed and commercial putties.

Sample Name Resin Hardener Resin-to-Hardener
Mixing Ratio (g)

H-1

DGEBA

TETA 100:14

H-2 DETA:BPA (7:3) 100:18

H-3 IPDA:TETA (7:3) 100:19

H-4 IPDA 100:24

Commercial UPR putty 100:2.5
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The components were mixed and stirred for 2 h by a mechanical stirrer operating at
1000 rpm and then sprayed onto the prepared CFRPs with a spray gun.

2.4. Characterization and Analysis

The thickness of the sprayed putty was measured using an optical microscope (DM6000 M,
Leica, Wetzlar, Germany). The cross-cut adhesion test was conducted on the putty in
accordance with the ISO 2409 standards: First, the test sample and a cutting guide were
placed on a horizontal surface and a coated surface, respectively. Next, the coating was
penetrated with a cutting knife, which drew a line inclined at 30◦ with respect to the
material. This process was repeated to draw 10 such lines at 2 mm intervals along the
coated surface, after which 10 additional vertical lines were drawn to form a total of
100 intersections. Finally, adhesive tape was attached to the surface and pulled off within
0.5 s in the 90◦ direction, and the detached surface was observed and rated based on the
scale provided by the test method. The results of the experiments were classified from class
0 to class 5.

The color difference (∆E* or dE) was measured using a colorimeter (Chroma Meter
CR-400, Konica Minolta, INC., Tokyo, Japan), by comparing the L*a*b* coordinates between
the reference and the thermally treated samples.

The heat resistance of the test sample was evaluated by leaving the samples in an oven
at 80 ◦C for 300 h, after which they were cooled to room temperature for 1 h.

The results of the adhesion tests and color-difference measurements were compared
with those of the UPR reference samples. The structure of the UPR putty was analyzed
by Fourier transform infrared (FTIR) spectroscopy (670 IR, VARIAN, Santa Clare, CA,
USA) and pyrolysis gas chromatography mass spectrometry (PyGCMS, Focus GC/ISQ,
THERMO, Waltham, MI, USA). The gel time was measured with a Giken GT-D (Eucaly,
Kawakuchi, Japan) by placing the resin on a hot plate equipped with a wire stirrer at 70 ◦C,
whereas the viscosity was determined using a viscometer (1/23 CAP 2000+H, Brookfield,
Middleboro, MA, USA) by following the ASTM D2196 method. The shrinkage rate was
calculated by using Equation (1) and the ISO 3521 method.

Shrinkage (%) =

{(
1

density of liquid mixture

)
−
(

1
density of cured specimen

)}
(

1
density of liquid mixture

) × 100 (1)

The curing behavior of the DGEBA–IPDA compositions was monitored using differ-
ential scanning calorimetry (DSC; Q2000, TA Instruments, New Castle, DE, USA) over
the operating temperature range from 25 to 250 ◦C and at a heating rate of 10 ◦C/min to
obtain ∆H.

3. Results and Discussion

Commercial UPR putty was analyzed by using FTIR and PyGCMS. The corresponding
results are shown in Figure 3. The FTIR spectrum (Figure 3a) shows the existence of an
ester C=O in the UPR (peak at 1730 cm−1), whereas the PyGCMS spectrum shows the
presence of monomers of fatty acids, trimethylolpropane, diethylene glycol, and phthalic
anhydride in the UPR (Figure 3b).
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Figure 3. Analysis of UPR putty using (a) FTIR spectroscopy and (b) PyGCMS (FA: fatty acids; TMP: trimethylolpropane;
PA: phthalic anhydride).

The observation of the coated layers under a microscope revealed that each layer was
uniform and well-arranged (Figure 4a). The adhesion property (Figure 4b) of the UPR-
treated laminated samples exhibited degradation with an increase in the putty thickness;
that is, it changed from class 0 (the edges of the cuts are clean) for the 52.0 µm thick putty to
class 0.5 (i.e., between class 0 and class 1, indicating that less than 5% of the cross-cut area
was detached) for the 62.6 µm thick putty, as depicted in Table 3. Furthermore, the color
differences of the heated samples increased with increasing putty thickness, exhibiting
the maximum difference of 2.33 at a thickness of 188.6 µm. The weak adhesion strength
and high color difference of the commercial putty after heat treatment demonstrate the
requirement for a new thermostable putty system.

Figure 4. (a) Coating layers under an optical microscope and (b) an example of the adhesion test.

Table 3. Adhesion property and color difference of UPR-putty-treated samples.

Thickness of Putty (µm)
Adhesion Property Color Difference (in dE)

UPR UPR (after Curing) UPR (after Curing)

31.7 Class 0 Class 0 1.10

40.5 Class 0 Class 0 0.97

52.0 Class 0 Class 0.5 1.54

62.6 Class 0.5 Class 1.5 1.63

188.6 Class 1.5 Class 4 2.33

The data presented in Table 4 indicate that the four different epoxy-based putties had
sufficient flow properties (with viscosities < 2000 cP) to fill the mold during the CFRP-
preparation process. Furthermore, compared to the UPR (shrinkage rate: 7.1% at 70 ◦C), all
four experimental samples exhibited lower shrinkage rates at 70 ◦C (2.8–4.2%).
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Table 4. Gel time, viscosity, and shrinkage rate of the epoxy putties.

Sample Name Gel Time at 70 ◦C (min) Mixed Viscosity
(cP) Shrinkage at 70 ◦C (%)

H-1 3.10 1600 4.2

H-2 1.5 1500 4.1

H-3 6.10 1300 3.4

H-4 10.25 1000 2.8

Commercial UPR putty 3.35 255 7.1

Table 4 indicates that although H-4 showed an excellent shrinkage rate of 2.8%, which
was much lower than those of the other samples, it exhibited a relatively long gel time
of 10.25 min and a low viscosity, both of which lengthen the time during which the resin
would be wet in the carbon fiber. Specifically, a low shrinkage rate of the putty can curtail
the generation of pinholes after curing, as shown in Figure 5. Considering the gel time, low
viscosity, and shrinkage rate, sample H-4 was chosen for further analysis. First, the curing
behavior of H-4 was studied via DSC measurements in order to calculate the degree of
conversion (α) as a function of time using Equation (2) (Figure 6) [30].

α(t) = ∆Ht/∆H0, (2)

where t is curing time, α is the fractional conversion by curing, ∆Ht is the amount of heat
released for time t, and ∆H0 is the total reaction heat in the system.

Figure 5. Low shrinkage rate of putty can reduce the number of pinholes after curing.
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Figure 6. Cure conversion of the DGEBA–IPDA system heated at 60 ◦C for 3 h and then at 75 ◦C for 2 h.

Figure 5 clearly shows that the degree of conversion of H-4 converges to a point over
0.9 after 210 min.

The changes in the physical properties of the H-4 sample and UPR epoxy putty after
thermal exposure were also observed by conducting adhesion and color-difference tests
(Table 5). The adhesion rating of a 64.9 µm-thick film of the H-4 sample was found to be
M-1.0, whereas that of the UPR putty with a comparable thickness of 62.6 µm was found to
be M-1.5. Additionally, the H-4 sample after heat exposure showed a low color difference
of 0.67–0.89 dE when the coating thickness was in the range of 47.8–78.9 µm, whereas the
UPR-treated CFRPs, after exposure to heat, showed more discernible color differences
ranging from 1.1 to 1.63 dE for coating thicknesses from 31.7 to 62.6 µm. Both of these
results suggest that when compared to the CFRPs that were treated with commercial UPR
putty, those treated with the epoxy putty that was synthesized in this study are much more
strongly adhesive and exhibit smaller color differences against thermal shock.

Table 5. Adhesion property and color differences of the epoxy-putty-treated samples.

Thickness of Putty (µm) Adhesion Property after Curing Color Difference after Curing (dE)

47.8 Class 0 0.67

54.0 Class 0 0.71

64.0 Class 0 0.75

78.9 Class 0.5 0.89

87.2 Class 00.5 0.91

4. Conclusions

In this study, novel epoxy compositions were formulated as putties and applied to
CFRP surface defects, which were then coated with primers. The developed epoxy putty
demonstrated lower shrinkage rates than the commercially available UPR putty, as well
as a stronger adhesion and higher heat resistance according to the results of the cross-cut
adhesion and color-difference tests. Specifically, the H-4 composition displayed a 60.6%
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lower shrinkage rate than the UPR putty. Furthermore, it showed an adhesion rating of
M-1.0 at a thickness of 64 µm, whereas the UPR putty exhibited an adhesion of M-1.5 at a
comparable thickness of 62.6 µm. The sample H-4 also exhibited a lower color difference of
0.75 dE, compared to the UPR putty, which showed a more discernible color difference of
1.63 dE for approximately the same thickness.
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