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Abstract

A global obesity pandemic, coupled with an increasingly ageing population, is exacerbating the burden of cardiovascular disease. Indeed, clinical and 
experimental evidence underscores a potential connection between obesity and ageing in the pathogenesis of various cardiovascular disorders. This 
is further supported by the notion that weight reduction not only effectively reduces major cardiovascular events in elderly individuals but is also 
considered the gold standard for lifespan extension, in obese and non-obese model organisms. This review evaluates the intricate interplay between 
obesity and ageing from molecular mechanisms to whole organ function within the cardiovascular system. By comparatively analysing their charac
teristic features, shared molecular and cell biological signatures between obesity and ageing are unveiled, with the intent to shed light on how obesity 
accelerates cardiovascular ageing. This review also elaborates on how emerging metabolic interventions targeting obesity might protect from car
diovascular diseases largely through antagonizing key molecular mechanisms of the ageing process itself. In sum, this review aims to provide valuable 
insight into how understanding these interconnected processes could guide the development of novel and effective cardiovascular therapeutics for a 
growing aged population with a concerning obesity problem.

Keywords Cardiovascular disease • Inflammation • Autophagy • Mitochondrial dysfunction • Senescence • SGLT2 • GLP-1 • 
Caloric restriction

Introduction
Over recent decades, significant progress has been made in the care of 
patients with cardiovascular disease, thanks to major medical advances 
and breakthrough therapies. However, the net gains are offset by the 
substantial rise in the prevalence of cardiovascular disease driven by 
an increasingly ageing population. According to the 2023 United 
Nations report on world population ageing, there are 808 million adults 
aged 65 years or older globally, a figure projected to double by 2050.1

Concurrently, this demographic shift is mirrored by a surge in the 
prevalence of obesity,2 which constitutes another critical risk factor 
for a range of cardiovascular diseases, including atherosclerosis, hyper
tension, coronary heart disease, arrhythmias, and heart failure.3 Nearly 
880 million adults, or 16% of the global population, currently have a 
body mass index (BMI) of 30 kg/m2 or higher and, thus, are considered 
obese.2 As such, obesity and ageing are exacerbating the burden of car
diovascular disease to unpreceded levels across the globe (Figure 1).

Supporting this notion, elevated BMI strongly correlates with earlier 
incidence of cardiovascular events.6 Moreover, obesity induces meta
bolic disturbances in the hearts of young patients, reminiscent of those 
observed in older non-obese patients.7 Long-term obesity and progres
sive weight gain, starting at a young age, also increase the risk of atrial 
fibrillation8 and heart failure with preserved ejection fraction 
(HFpEF),9 both of which are prototypical age-related cardiovascular 
diseases.10,11 Overweight and obesity during adolescence also associate 
with increased and early development of other cardiomyopathies.12

Mechanistically, a multi-cohort study shed light on the relationship be
tween obesity and the development of otherwise age-related diseases. 
Remarkably, obesity substantially increased the risk of cardiovascular 
and other age-related diseases associated with classical hallmarks of 
ageing, and this effect is at least as important as that of other conven
tional risk factors, like smoking, high alcohol consumption, unhealthy 
dietary factors, and physical inactivity.13 Recent human studies also 
demonstrate that BMI positively correlates with omics-based measures 
of biological ageing, which are associated with the incidence of major 
cardiovascular and cerebrovascular disorders.14,15 Indeed, mid-life 
obesity has been linked to an increased risk of vascular dementia and 
cognitive decline,16 and with up to 10 years of life lost.17,18 Notably, 
the younger the age and the greater the excess weight of an individual, 
the higher is the impact of obesity on both years of life lost and healthy 
life years lost due to the increased risk of cardiovascular and metabolic 
diseases.19 Indeed, cardiovascular disease accounts for two-thirds of 

obesity-related excess mortality.3 Thus, while cardiovascular ageing re
presents the accumulation of various insults over a lifetime, obesity can 
exacerbate the development of its common features within a shorter 
time frame. In contrast, weight reduction not only significantly reduces 
major cardiovascular events in elderly individuals but is also considered 
as the best strategy for extending general healthspan and lifespan, in
cluding in non-obese model organisms.20 This indicates that obesity 
may indeed accelerate biological ageing, which, unlike chronological 
age, can be modulated through various cellular and molecular 
mechanisms.21

In this review, we will explore the parallels between obesity and age
ing across various levels of integration within the cardiovascular system. 
Ageing in this context refers to biological ageing, which encompasses 
changes at the molecular, cellular, and whole organ levels. We will iden
tify shared effects and hallmarks between obesity and ageing, elucidating 
how obesity accelerates cardiovascular ageing and the manifestation of 
cardiovascular disease. Additionally, we will discuss how metabolic in
terventions targeting obesity can impact ageing mechanisms and path
ways, potentially offering novel anti-ageing therapies in clinical settings, 
even for non-obese elderly individuals at increased cardiovascular risk. 
Finally, we will highlight outstanding issues and propose future direc
tions to disentangle the intricate interplay between ageing and obesity, 
aiming to mitigate their combined detrimental effects for the benefit of 
patients.

Shared cardiovascular effects of 
obesity and ageing
Although the severity of obesity-related effects on the cardiovascular 
system largely depends on the duration and grade of obesity,22 several 
communalities can be drawn between obesity and ageing with respect 
to their cardiovascular effects at the whole organ as well as at tissue and 
cell levels (Figures 2 and 3). Like ageing, obesity might indirectly alter car
diovascular morphology through physical inactivity, sleep disorders and 
other associated risk factors, like dyslipidaemia, type 2 diabetes mellitus 
(T2DM), and hypertension, which collectively comprise metabolic syn
drome. However, both obesity and ageing can also directly affect the 
structure and function of the cardiovascular system independently of 
these common comorbidities.

Human studies support age-dependent cardiovascular decline be
cause (i) nearly half of the cardiovascular risk cannot be accounted 

2162                                                                                                                                                                                            Ruperez et al.



for by conventional risk factors,23 and (ii) residual cardiovascular risk is 
evident even in those with an optimal risk-factor profile.24 Mice on a 
C57BL/6 background, the most commonly used laboratory strain in 
biomedical research,25 also exhibit pronounced age-related cardiovas
cular alterations even if they are maintained in optimal conditions 
throughout their lifespan.26,27 These optimal conditions include a stan
dardized healthy diet, an environment free of air pollution and psycho
logical stress, perfectly regulated ambient temperatures and humidity, 
and specific pathogen-free housing. Additionally, these mice do not nat
urally develop diabetes, hypertension, or high cholesterol levels,26,27

underscoring the intrinsic nature of age-related cardiovascular changes 
even in the absence of comorbidities. Similarly, obesity, irrespective of 
its associated risk factors, can impact cardiovascular health through dir
ect physical compression exerted by accumulating adipose tissue in and 
around cardiovascular structures, but also through accumulation of 
toxic lipids within cardiovascular cell types. Indeed, individuals with 
obesity and a normal metabolic profile, a condition misleadingly re
ferred to as ‘metabolically healthy obesity’, were demonstrated to 
have a significantly higher risk of developing atherosclerotic cardiovas
cular disease, heart failure, and all-cause mortality compared to non- 

obese, metabolically healthy controls.28 Besides, indirect effects of 
obesity are mediated by a myriad of locally and systemically secreted 
factors from pericardial and perivascular adipocytes as well as classical 
adipose tissue depots, especially in the abdomen.29 For instance, 
angiotensin-II (Ang-II) is a potent vasoconstrictor agent that contributes 
to increased activation of the renin–angiotensin–aldosterone system 
(RAAS), increasing blood volume and pressure in patients with obes
ity.30 Additionally, Ang-II might act directly on cardiomyocytes to in
duce hypertrophy. Interestingly, ablation of the Ang-II type 1 
receptor (AT1) extends lifespan in mice, protecting against cardiac dys
function during ageing31 and obesity.32 In obesity, plasma concentra
tions of leptin are also elevated, contributing to hypertension and 
activation of the sympathetic nervous system (SNS). This leads to ele
vated heart rate and myocardial contractility, predisposing to cardiac 
remodelling. Moreover, leptin promotes lipid oxidation in the myocar
dium, leading to the accumulation of lipotoxic intermediates and in
creased production of reactive oxygen species (ROS).30,33 In 
contrast, visceral adipose tissue removal can restore cardiac function 
and reduce myocardial fibrotic remodelling in aged mice,34 suggesting 
a direct link between obesity and cardiac ageing.

Figure 1 Trends of ageing, obesity, and cardiovascular disease between 1990 and 2021. This figure illustrates the rising trends in ageing, obesity, and 
cardiovascular disease over a 31-year period. It depicts the proportion of elderly and adults with obesity in Europe (WHO region) and globally, high
lighting how these demographic shifts correlate with the increasing burden of cardiovascular diseases. Specifically, the figure shows the percentage of 
elderly individuals (≥65 years) as well as adults with obesity (BMI: >30 kg/m2) or cardiovascular diseases in Europe (A) and worldwide (B). Data on adults 
(>18 years) with obesity were extracted from the Global Health Observatory data repository (2024), World Health Organization.4 Data on population 
ageing and adults (≥20 years) with cardiovascular disease are from the Global Burden of Disease Study 2021 Results, Global Burden of Disease 
Collaborative Network.5

Obesity accelerates CV ageing                                                                                                                                                                     2163



Impact of obesity on the heart
In obesity, human hearts exhibit increased myocardial wall thickness 
and fibrosis, resulting in elevated left ventricular stiffness.35,36 This 
obesity-related cardiac hypertrophy and stiffening, akin to changes ob
served in ageing, impair left ventricular filling, leading to characteristic 
left atrial enlargement and diastolic dysfunction—both hallmark fea
tures of cardiac ageing.36,37 Indeed, a large cohort study identified 
obesity as the most important predictor of left atrial remodelling in 
non-elderly individuals.38 Obesity is also associated with impaired 
cardiac reserve, as evidenced by a compromised maximal heart rate 
increase.39 This impairment is due to the higher body mass necessitating 
a higher baseline cardiac output and heart rate. In contrast, the 
ageing-related impairment in cardiac functional reserve is primarily driven 
by a decline in beta-adrenergic responsiveness.40 Despite the different 
underlying mechanisms, both conditions similarly compromise effort tol
erance and exercise capacity in aged individuals and those with obesity.

It is important to note that obesity associates with cardiac remodelling 
and dysfunction even in the absence of any additional risk factors.41

Abnormal haemodynamics and neurohormonal signalling underlie 
such a cardiac detrimental impact of obesity.42 On the one hand, peo
ple with obesity exhibit higher total blood volume and increased per
ipheral tissue resistance, caused mainly by excessive accumulation of 
adipose tissue and the associated increase in oxygen demand. This, 
in turn, leads to disturbed haemodynamics in the form of an increased 
baseline cardiac output and abnormal left ventricular loading and re
modelling. On the other hand, the adipose tissue accumulating across 
the body including in ectopic locations in and around the heart and 
vessels is a rich source of neurohormonal factors. For instance, exces
sive adiposity disturbs the circulating and local levels of cytokines and 
adipokines, including MCP1, TNFα, IL6, IL8, leptin, adiponectin, and 
Ang-II precursors, amongst others, which further exacerbate cardiac 
remodelling and dysfunction.

Thus, obesity not only prematurely induces but also closely mimics 
the cardinal functional and structural characteristics of cardiac ageing. 
Further supporting the concept of obesity-dependent premature car
diac ageing, the degree of obesity-induced cardiac remodelling, and dys
function positively correlates with the duration of obesity.22 In contrast, 

Figure 2 Common features of adverse cardiac remodelling in obesity and ageing at different levels of integration. Both obesity and ageing affect cardiac 
structure and function, regardless of the associated risk factors. Neurohormonal stress and abnormal haemodynamics are key contributors to left ven
tricular diastolic dysfunction and left atrial remodelling in obese and/or aged hearts. At the tissue level, these alterations coincide with increased myo
cardial hypertrophy, fibrosis, and stiffness. At the cellular level, cardiac cells in obese hearts display several hallmarks of ageing, including impaired 
autophagy and proteostasis, altered mitochondrial function, increased oxidative stress, DNA instability, and premature accumulation of senescent cells.
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bariatric surgery and associated weight loss effectively improve several 
obesity-dependent cardiac abnormalities, including left ventricular 
hypertrophy, left atrial enlargement, diastolic dysfunction, as well as 
the baseline increase in heart rate and cardiac output.43

Impact of obesity on blood vessels
Although the underlying mechanisms might differ, the vasculature of in
dividuals with obesity exhibits various structural and functional altera
tions reminiscent of those observed in ageing. For instance, 
atherosclerotic remodelling and intima–media thickening—a classical 
feature of vascular ageing that is proposed as a measure of biological 
age44—increase in obesity and correlate with BMI independently of 
other potential risk factors.45 Another key feature of vascular ageing 
is an impaired endothelium-dependent vasodilatory response, which 
manifests in middle-aged individuals with obesity even if they are 
normotensive.46 Furthermore, similar to ageing, large arteries in indivi
duals with obesity increase their lumen size47 to accommodate higher 
blood volumes. However, these enlarged vessels lose their distensibil
ity,47 a phenomenon evident across a wide age range but more 

prominently at a younger age, indicating a state of premature vascular 
ageing in obesity.47 Indeed, the prevalence of hypertension increases 
approximately by six-fold in individuals with obesity,48 especially in 
those younger than 60 years.49

Obesity exerts a significant impact not only on large central arteries 
but also on the microcirculation50 and small vessels,51 which determine 
peripheral vascular resistance, blood pressure, and tissue perfusion. 
Although higher cardiac output in obesity might theoretically contrib
ute to increased blood pressure, obesity-related hypertension is largely 
driven by the increase in peripheral vascular resistance.29 Both micro
vascular structure and function decline in obesity, with evidence for 
compromised capillary endothelial-dependent vasodilation50 and re
duced capillary density, known as vascular rarefaction—a common fea
ture of vascular ageing52—reported in the skeletal muscles of 
individuals with obesity.53 Unlike in normal ageing, however, this does 
not depend on deficient VEGF signalling.53 Another common feature 
of vascular ageing is an elevation of cerebrovascular resistance, which 
is also increased in obesity, leading to reduced blood flow to the brain 
and a heightened risk of dementia and cognitive decline.54

Figure 3 Common features of adverse vascular remodelling in obesity and ageing at different levels of integration. The vascular system of individuals 
with obesity exhibits structural and functional alterations reminiscent of those observed in aged individuals. Despite distinct underlying mechanisms, 
both obesity and ageing cause arterial lumen enlargement, impaired vasodilatory function, increased peripheral vascular resistance, and chronic activa
tion of the RAAS system, increasing the risk of hypertension. At the tissue level, obesity accelerates atherosclerotic remodelling, intima–media thicken
ing, and vascular stiffening and dysfunction. At the cellular level, insulin resistance, mitochondrial dysfunction, and ROS accumulation drive these 
pathological alterations. RAAS, renin–angiotensin–aldosterone system; ROS, reactive oxygen species; VEGF, vascular endothelial growth factor.
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Taken together, the vascular and microcirculatory alterations ob
served in obesity mimic many aspects of vascular ageing, highlighting 
the premature ageing effects of obesity on the vasculature. 
Mechanistically, factors underlying the cardiac consequences of obesity 
also contribute to vascular remodelling. These factors, reviewed here,55

include various adipokines and cytokines released from adipocytes and 
the immune cells they attract, as well as the RAAS activation and insulin 
resistance, amongst others.

Common mechanisms of obesity 
and ageing in the cardiovascular 
system
In addition to its effects at the whole organ level, obesity mimics ageing 
at the cellular and molecular levels. Thus, rather than discussing the gen
eral mechanisms of obesity, which are well known,56–58 we focus here 
on the molecular and cellular hallmarks of ageing that manifest prema
turely in obesity (Figure 4). In doing so, we emphasize clinical and pre
clinical evidence demonstrating the mechanistic synergy between 
obesity and ageing, highlighting their detrimental impact on the onset 
and progression of cardiovascular pathologies (Table 1).

Autophagy repression and loss of 
proteostasis
The heart relies on efficient quality control mechanisms for the main
tenance of its contractile machinery. Chief amongst these mechan
isms is the degradation and recycling pathway of macroautophagy, 
herein referred to as autophagy. Autophagy is a highly conserved 
process in which portions of the cytosol are encapsulated in double- 
membrane structures, known as autophagosomes, which later fuse 
with lysosomes to degrade their cargo. This potentially pathogenic 
cargo typically consists of damaged, dysfunctional, or long-lived orga
nelles and proteins designated for degradation. Thus, defects in au
tophagy severely impair cardiac homoeostasis, and are implicated 
in both ageing- and obesity-related cardiovascular disorders.90,91

This is not surprising as nutrient sensors, such as insulin/insulin-like 
growth factor 1 (IGF1), mTOR, AMPK, EP300, and SIRT1, are also 
considered longevity pathways and key regulators of autophagy.91

Indeed, obesity down-regulates autophagic activity, leading to the 
accumulation of dysfunctional and damaged cell components across 
different organs, including the heart.92–94 Importantly, obesity- 
related suppression of autophagy aggravates myocardial ischaemia 
injury,92 highlighting the detrimental impact of obesity on cardiac 

Figure 4 Meta-hallmarks of ageing and obesity in the cardiovascular system. This figure illustrates the shared molecular and cellular mechanisms be
tween ageing and obesity that contribute to cardiac and vascular dysfunction, predisposing individuals to cardiovascular disease development and pro
gression. These mechanisms include autophagy repression and loss of proteostasis (A), mitochondrial dysfunction and redox imbalance (B), DNA 
instability (C), cell senescence (D), altered neuro-hormonal signalling (E), and chronic inflammation (F). Features that are not shared are highlighted 
in red (if specific to obesity) or in blue (if specific to ageing) font. AngII, angiotensin-II; CRP, C-reactive protein; ER, endoplasmic reticulum; FA, fatty 
acids; IGF1, insulin-like growth factor 1; IL, interleukin; RAAS, renin–angiotensin–aldosterone system; ROS, reactive oxygen species; SASP, 
senescence-associated secretory phenotype; TNF, tumour necrosis factor; UPS, ubiquitin–proteasome system.
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stress resilience. Similarly, deficiency of fibroblast growth factor 21, 
which is associated with impaired autophagy in aged and obese ani
mals,95 aggravates obesity-associated cardiomyopathy.96 Blocking 
autophagy and mitophagy by Atg7 and Parkin knockout, respectively, 
exacerbates cardiac lipid accumulation and mitochondrial damage in 
response to high-fat diet (HFD), causing cardiac systolic and diastolic 
dysfunction.59 Conversely, activation of autophagy and mitophagy by 
Tat-Beclin1 or spermidine significantly reduces cardiac lipid accumu
lation and improves mitochondrial respiration and cardiac functions 
in obesity and ageing models.26,59,93,97 These findings clearly 
implicate autophagy down-regulation in obesity-related cardiac ab
normalities, and establish autophagy as a potential targetable mech
anism to mitigate poor cardiac outcomes in elderly individuals with 
obesity. Indeed, markers of cardiac autophagic impairment have an 
independent prognostic role in patients with cardiomyopathy.98

Additionally, sodium-glucose cotransporter-2 inhibitors, which have 
shown substantial cardiovascular protective effects independently of 
their antidiabetic effects, are proposed to primarily act through autop
hagy activation.99

Besides autophagy, the ubiquitin–proteasome system (UPS) is a ma
jor pathway responsible for the degradation of misfolded and defective 
proteins, ensuring adequate turnover of sarcomeric components. 
Proteins targeted for degradation are ubiquitinated by an ubiquitin lig
ase and degraded in the proteasome in an ATP-dependent manner.100

This process is crucial for cardiomyocytes, as myofibrillar proteins are 
under constant mechanical and oxidative stress and, thus, require con
stant renewal. Supporting this, impaired UPS activity has been observed 
in various cardiomyopathies and heart failure101 and has been linked to 
increased cardiomyocyte apoptosis.102 The pharmacological inhibition 
of the proteasome induces global deterioration of cardiac function in 
patients.103 Specifically in obesity, high production of ROS promotes 
endoplasmic reticulum stress, causing the accumulation of misfolded 
proteins and impairing protein quality control.104 Specifically in obesity, 
the deubiquitination enzyme UPS25 is down-regulated, leading to the 
accumulation of ubiquitinated proteins and promoting cardiac dysfunc
tion.60 Further supporting the critical role of UPS dysregulation in car
diometabolic disease, mice with obesity and HFpEF exhibit impaired 
myocardial UPS activity.61 In contrast, caloric restriction (CR), which 
prolongs lifespan and reduces body weight, is linked to the up- 
regulation of UPS and improved proteostasis in skeletal and cardiac 
muscles.63 Notably, insulin signalling inhibits UPS activity,105 contribut
ing to insufficient proteostasis in obesity. However, insulin resistance 
developing at later stages of obesity can lead to excessive protein deg
radation,106 increasing muscle loss and physical incapacity (i.e. sarcobe
sity) in elderly individuals with obesity.

In sum, the impairment of different cellular quality control mechan
isms by obesity promotes the accumulation of defective proteins and 
organelles, accelerating processes naturally occurring at a slower 
pace during natural ageing and increasing the risk of cardiovascular dis
ease. Thus, therapeutic stimulation of autophagy or the UPS might miti
gate the adverse cardiac effects associated with obesity and ageing.

Mitochondrial dysfunction and redox 
imbalance
Both ageing and obesity induce mitochondrial dysfunction, with critical 
consequences on cardiac performance, bioenergetics, and metabolic 
flexibility.107,108 Human myocardial tissue samples from cardiac surgery 
patients of various ages with or without obesity, revealed significant im
pairments in mitochondrial function, biogenesis, and oxidative stress, 

associated with both older age and obesity. These mitochondrial abnor
malities were of similar magnitude in the hearts of young patients with 
obesity and old lean patients.7 A follow-up study also demonstrated a 
more pronounced decline, specifically in the activity of mitochondrial 
respiratory complex I, in the hearts of patients who were both old 
and obese.109 This suggests that obesity exacerbates age-related car
diac mitochondrial dysfunction in humans.

Mechanistically, increased cellular fatty acid uptake and oxidation are 
involved in the obesity-associated decline in mitochondrial function.110

Supporting this notion, mice that have been genetically modified to re
duce cardiac fatty acid uptake or to enhance mitochondrial fatty acid 
oxidation (through deletion of the fatty acid transporter CD36 or 
acetyl coenzyme A carboxylase 2, respectively) exhibit improved mito
chondrial homoeostasis and are protected from obesity-induced 
pathological cardiac remodelling and dysfunction.111–113 Although 
obesity may differ from ageing in that fatty acid oxidation is reportedly 
increased rather than decreased, both conditions are associated with 
enhanced cardiomyocyte fatty acid uptake and excessive ROS produc
tion.114 Overloading the mitochondrial respiratory chain with fatty 
acids in obesity inevitably leads to uncoupling and excessive ROS pro
duction.115 The limited capacity of the antioxidant machinery to man
age this ROS overload results in oxidative damage to DNA and other 
cellular components, including mitochondria themselves. Structurally, 
abnormal mitochondria are characterized by low membrane potential 
and small size, due to the up-regulation of mitochondrial fission in obes
ity.116 Mitochondrial fragmentation, which is evident both in mice and 
humans,117,118 is mediated by the small GTPase RalA.117 In contrast, 
aged mitochondria tend to be enlarged or swollen, with aberrant 
cristae morphology.21 Irrespectively, the removal of damaged mito
chondria via mitophagy is impaired in both ageing and obesity, contrib
uting to the accumulation of dysfunctional mitochondria with 
compromised ATP production.26,59 Furthermore, altered mitochon
drial structure and quality control, coupled with increased oxidative 
stress, render mitochondria in hearts of individuals with obesity bioe
nergetically inefficient115 as they lose their metabolic flexibility. 
Indeed, unlike lean individuals, those with obesity fail to increase skeletal 
muscles fatty acid oxidation in response to HFD.119 In the vasculature, 
mitochondrial alterations and excessive ROS contribute to the vascular 
endothelial dysfunction observed in individuals with obesity and 
T2DM.66,120 Indeed, intact endothelial mitochondria and controlled 
ROS production are critical for calcium homoeostasis,121 which is dys
regulated in individuals with obesity, increasing the risk of coronary ar
tery calcification.122 Thus, despite their relatively low mitochondrial 
content when compared to cardiomyocytes, vascular endothelial cells 
are deeply affected by mitochondrial dysfunction.

In conclusion, mitochondrial dysfunction is not only a hallmark of 
ageing but also a consequence of obesity. Exercise and CR have shown 
promise in improving mitochondrial health,123,124 but more research 
efforts are warranted for the development and translation of specific 
mitochondria-targeted interventions to counteract age- and obesity- 
related cardiovascular disorders.125

DNA instability
Genomic instability is a primary hallmark of ageing, contributing to cel
lular senescence in the cardiovascular system.21 Dietary interventions 
can mitigate age-related genomic damage and extend lifespan, establish
ing a direct connection between nutritional status, obesity and DNA 
damage in the nuclear and mitochondrial genomes.126 Accordingly, an 
inverse correlation has been reported between BMI and telomere 
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length in circulating leucocytes.72 DNA instability correlates with the 
duration of obesity, with more telomere shortening detectable in indi
viduals who develop obesity since their 30s compared to those who 
gained weight later in life.72 Obesity also induces DNA damage in 
mice due to compromised efficiency of DNA repair mechanisms in sev
eral organ systems.127 Obesity accentuates the detrimental effect of 
ageing on cardiomyocyte DNA stability and repair capacity.67

Sarcopenic obesity, a condition of high adiposity and low muscle 
mass in the elderly, has been associated with particularly short telo
meres commensurate with the elevated risk of cardiometabolic disor
ders and mortality.70 Interestingly, obesity-induced DNA damage may 
be reversed by dietary interventions and bariatric surgery in rodents 
and humans, respectively.71,128

Mechanistically, increased β-oxidation and mitochondrial damage as
sociated with obesity can cause acute exposure to ROS, thereby indu
cing oxidative DNA damage in relatively short periods, as recently 
reported in children and adolescents aged 10–18 years old.69 Unlike 
obesity, however, age-related DNA damage is cumulative and slower 
in nature, in tandem with the decline in repair mechanisms, due to 
chronic exposure to stressors during the course of life.21 Given their 
post-mitotic nature and limited regenerative potential, cardiomyocytes 
are especially susceptible to DNA damage. For instance, mice with mu
tations in the DNA repair genes Errc1 or Xpg suffer from spontaneous 
left ventricular remodelling at an early age, with rapid cardiac deterior
ation and chromocyte apoptosis.129,130 Similarly, mice deficient for 
RAP1, a protein subunit of the shelterin telomere protective complex, 
develop early-onset obesity, glucose intolerance, and cardiomyop
athy.68 Both mice and humans deficient in the DNA repair protein 
OGG1 exhibit a similarly poor cardiometabolic risk profile.131,132 In 
contrast, transgenic mice overexpressing human OGG1 are protected 
from diet-induced obesity and its associated cardiometabolic risk 
factors, including glucose and insulin intolerance, and high circulating 
cholesterol and triglycerides.133 Similarly, genetically modified mice 
possessing hyper-long telomeres have a lean phenotype, as they age 
without exhibiting the typical increase in body weight seen in middle- 
age, and exhibit improved glucose and insulin homoeostasis as well as 
lower total and LDL cholesterol levels compared to wildtype 
controls.134

In summary, both obesity and ageing compromise genomic stability. 
Thus, targeting DNA repair mechanisms and pathways may provide op
portunities to mitigate the augmented cardiovascular risks associated 
with obesity and ageing, especially when they co-exist.

Cell senescence
Cell senescence—defined as the permanent arrest of cell cycle, accom
panied by phenotypic and functional alterations—can result from telo
mere shortening, DNA damage, nutrient imbalance, mitochondrial 
dysfunction as well as oxidative and mechanical stress. These cellular 
stressors do not only come into action during normal ageing135 but 
also in obesity.136 Mechanistic studies in obese mice have even revealed 
that senescence is among the earliest events affecting adipose tissue, 
with markers of senescence detectable as soon as two weeks after 
starting HFD.73,74 In humans, BMI positively correlates with the senes
cence markers CDKN2A (p16) and CDKN1A (p21) in abdominal adi
pose tissue.80 Furthermore, adipose tissue senescence, measured using 
senescence-associated β-galactosidase, has been linked to clinical com
plications of obesity, including dyslipidaemia and T2DM.137 Importantly, 
obesity promotes senescence specifically in the heart and vessels of 
young mice,78,79 supporting the notion of premature cardiovascular 

ageing in obesity. Additionally, senescence-prone mice exhibit acceler
ated development of endothelial vasodilatory dysfunction, myocardial 
hypertrophy and fibrosis, left ventricular diastolic dysfunction, left atrial 
dilatation, and HFpEF when fed a Western-type obesogenic diet.138

Similarly, mutant mice lacking the LDL receptor and subjected to 
HFD manifest a surge in senescent cells in early-stage atherosclerotic 
lesions.76 More importantly, elimination of senescent cells (senolysis) 
improves metabolic and cardiovascular health in animal models of age
ing125 and obesity.139 These improvements include better glucose tol
erance, insulin sensitivity, reduced biomarkers of inflammation, as well 
as attenuated vascular dysfunction, atherosclerotic remodelling, and 
cardiac diastolic dysfunction in obese mice.75,77 Intriguingly, while the 
surgical removal of visceral adipose tissue from aged mice reduced 
myocardial fibrosis and enhanced measures of systolic and diastolic 
functions,34 it was associated with an increase, rather than a decrease, 
in cardiac fibroblast senescence. This is not entirely unexpected as sen
escent fibroblasts have been shown to limit excessive fibrotic remodel
ling in models of hypertrophic and ischaemic cardiomyopathy.140,141

The aforementioned observation highlights a key challenge for the 
possible use of senolytic drugs that would kill all senescent cells in a non- 
specific fashion. While senescence of many cell types contributes to 
ageing and age-related diseases, senescence affecting fibroblasts may 
have a positive effect as it limits their proliferative, pro-fibrotic, and 
pro-inflammatory potential. Another issue is the excessive clearance 
of senescent cells at a pace that exceeds the capacity of tissues to re
place them with healthy cells. This might be particularly relevant for im
mune and, even more so, for endothelial cells. For instance, adverse 
effects on blood-tissue barriers have been reported as a result of excessive 
clearance of senescent endothelial cells, leading to subsequent perivascular 
remodelling and health deterioration.142 Finally, the identification of senes
cent cells in tissues is not trivial, because senescence is a heterogeneous 
phenomenon,143 rendering the quantification of senolytic effects difficult. 
Thus, greater efforts are needed to harness the full potential of senolytic 
therapies in mitigating the pathological cardiovascular alterations asso
ciated with obesity and ageing. 

Altered neurohormonal signalling
Renin–angiotensin–aldosterone signalling
The RAAS is a key regulator of blood volume and systemic vascular re
sistance. Activation of the RAAS leads to a rapid increase in the circu
lating levels of Ang-II, which induce vasoconstriction, and aldosterone, 
which prompts fluid and electrolyte retention. RAAS activation is 
prevalent across a range of cardiovascular diseases, including hyperten
sion, coronary artery disease, and heart failure, making it a primary tar
get for the clinical management of these conditions.21 Notably, the 
RAAS intersects with fundamental signalling pathways regulated by age
ing and nutrient availability, like mTOR, sirtuins, and AMPK.144 Indeed, 
systemic RAAS activity correlates with both age and body weight.145,146

In obesity, both Ang-II and aldosterone levels are elevated, indicating 
RAAS activation,147 which is associated with adipose tissue hyper
trophy, increased activity of the SNS, hypertension, and cardiac hyper
trophy.148 Similarly, ageing increases the expression of Ang-II in the 
heart and vessels, as well as the circulating levels of renin and Ang-II 
in otherwise healthy rodents.145 Thus, obesity may promote acceler
ated RAAS activation at a young age. Indeed, even in individuals aged 
19–22 years, the plasma concentrations of Ang-II and renin positively 
correlate with BMI. These overweight young individuals were below 
the threshold of clinical hypertension, but exhibited markers of renal 
damage, highlighting the detrimental impact of obesity in seemingly 
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subclinical conditions.84 This detrimental impact on renal function, 
coupled with increased RAAS-mediated sodium retention, significantly 
heightens the risk of salt-sensitive hypertension and cardiovascular 
complications. This has sparked a debate suggesting that improving 
metabolic health to restore normal salt handling in individuals with 
obesity and metabolic disease may be a more relevant strategy than 
simply reducing salt intake.149 Regardless, mechanistic studies in mice 
have shown that interfering with RAAS activation or related 
pro-inflammatory signalling is sufficient to protect from hypertension 
and cardiomyopathy in diet-induced obesity.150,151 In menopausal wo
men with obesity, the levels of circulating RAAS factors were reduced 
in response to a weight loss of only 5%, leading to a consequent reduc
tion in blood pressure.85 Intriguingly, in rodents, overexpression of an
giotensinogen, an Ang-II precursor, in adipose tissue is sufficient to 
cause obesity,152 whereas the reduction of Ang-II expression in the 
brain reduces body weight and hypertension.153 This suggests the exist
ence of a feedforward cycle connecting obesity to RAAS.

Insulin/insulin-like growth-1 signalling
Obesity and ageing both lead to alterations in insulin and IGF1 signalling, 
with significant consequences on cardiac metabolism and function, in
creasing the risk of heart failure. Insulin resistance develops gradually 
with ageing and is accelerated in the context of obesity. Recently, a 
common mechanism involving membrane type 1 matrix metalloprotei
nase (MT1-MMP) has been proposed as a mediator of insulin resistance 
in ageing and obesity. MT1-MMP heterozygous mice are resistant 
to HFD-induced weight gain and maintain insulin sensitivity, while 
MT1-MMP overexpression promotes insulin resistance.81 Notably, cir
culating levels of IGF1 progressively decline with ageing,154 and this de
cline is accentuated in individuals with obesity.86 In contrast, cardiac 
IGF1 receptor expression increases with age and obesity in 
mice.155,156 Furthermore, genetic and pharmacological inhibition of 
IGF1 signalling protects mice from diabetic cardiomyopathy.157 It is im
portant to note however that the cardiac effects of IGF1 signalling are 
strongly influenced by age. Overexpression of IGF1 receptor in cardio
myocytes improves cardiac function in young mice, but accelerates age
ing and reduces lifespan in late life. Conversely, reduced cardiac IGF1 
signalling compromises heart function in young animals, but delays car
diac failure and increases the life expectancy in old age.83 Thus, a pre
mature decline in IGF1 in individuals with obesity might be 
particularly detrimental when obesity develops from a young age. 
Indeed, in individuals with obesity and low levels of IGF1, adiposity, dys
lipidaemia, and circulating inflammation markers are accentuated.86

Catecholamines and β-adrenergic signalling
The plasma levels of catecholamines rise with ageing, causing desensi
tization of cardiac β-adrenergic receptors due to chronic overstimula
tion with a consequent impairment of cardiac autonomic regulation.21

Initially, the increase in sympathetic tonus may serve as an adaptative 
mechanism to compensate for the decrease in heart rate that occurs 
with ageing. However, chronic activation and receptor desensitization 
have detrimental effects, contributing to cardiac dysfunction. Indeed, 
a relative unresponsiveness to adrenergic stimulation is a common fea
ture of heart failure.158 Obesity induces chronic stimulation and conse
quent desensitization of adrenergic receptors in children and 
adolescents, thus replicating a common feature of ageing at a young 
age.159 In rats, excessive catecholamine signalling predisposes to health 
deterioration by HFD including at the level of cardiovascular out
comes.160 Mechanistically, inflammation is a primary mechanism 

mediating β-adrenergic desensitization in obesity.161 Supporting this, 
deletion of the gene coding for allograft inflammatory factor-1 protects 
against HFD-induced obesity, increasing norepinephrine and 
β-adrenergic signalling in adipose tissue.82

In sum, several neurohormonal signalling abnormalities that occur 
with ageing manifest prematurely in obesity and can be potentially tar
geted to reduce the high cardiovascular risk in young and aged indivi
duals with obesity. This is exemplified by RAAS inhibition using the 
angiotensin-converting enzyme inhibitor captopril, which protects 
against diet-induced obesity,162 promotes longevity of mice,163 and re
duces major cardiovascular events in patients.164 Similarly, GLP-1 ago
nists, which are FDA-approved for the treatment of T2DM and 
obesity,165 delay ageing166 and substantially protect diabetic and non- 
diabetic patients from major cardiovascular events and mortality.167

Chronic inflammation
Chronic inflammation is a major driver of cardiovascular 
diseases.168–170 Systemic elevation of inflammatory cytokines, such as 
IL1, IL6, TNFα, and C-reactive protein, is associated with the progres
sion of atherosclerosis, plaque instability, and aggravated myocardial is
chaemic injury.171,172 In elderly individuals, inflammatory cytokines 
correlate with biological age, as measured by DNA methylation clocks, 
age-related diseases, and all-cause mortality.173

Similar to ageing,171 adiposity significantly contributes to immune cell 
reprogramming and systemic inflammation. Indeed, adipose tissue func
tions as an immunological organ that drives systemic low-grade inflam
mation in obesity through the secretion of bioactive adipocyte-derived 
cytokines (adipokines), such as TNFα and IL6.174 In mice, diet-induced 
obesity causes inflammation of the heart, as indicated by elevated myo
cardial levels of IL6 and TNFα, TLR4 signalling, and macrophage infiltra
tion.175 Similar increases in macrophages and pro-inflammatory 
signalling are observed in the adipose tissues of individuals with obesity 
and in the myocardial tissue of HF patients with morbid obesity.176,177 In 
contrast, knockout of NLRP3, which codes for an important component 
of the inflammasome, protects against HFD-induced cardiac remodel
ling and diastolic dysfunction, suggesting a causal implication of inflam
mation in obesity-associated cardiomyopathy.178 Similarly, inhibition 
of IL1β, which is the inflammasome product, mitigates mitochondrial 
dysfunction, cardiac hypertrophy and HFpEF induced by HFD.179,180

In humans, the association between obesity and poor HF outcomes 
is weakened when statistically adjusted for biomarkers of inflamma
tion.181 Moreover, bariatric surgery-induced weight loss entails a sup
pression of inflammation and reversed cardiac remodelling.182,183

Obesity and the related systemic inflammation apparently promote 
the thickening of epicardial adipose tissue, as well as the secretion of 
pro-inflammatory cytokines, which may precipitate cardiac remodelling 
and atrial fibrillation.184 A study involving monozygotic twins aged 23– 
33 demonstrated that twins with obesity presented significantly higher 
levels of C-reactive protein, epicardial fat and cardiac hypertrophy than 
their lean siblings.89 Obesity also impairs endothelial vasodilatory func
tion and promotes vascular stiffness and atherogenesis through the ac
tivation NLRP3 and TLR4 inflammatory signalling.185–187 Thus, although 
vascular stiffness develops naturally with ageing, obesity-induced inflam
mation can accelerate this process, even in children and adolescents.188

Taken together, these findings indicate that obesity-induced inflam
mation predisposes to the early onset of age-related cardiovascular dis
eases, particularly HFpEF, atherosclerosis, and vascular dementia,21,189

underscoring the importance of combating obesity and associated in
flammatory signalling to mitigate these conditions.
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Metabolic interventions counteract 
cardiovascular ageing
Several metabolic interventions aimed at combating obesity have been 
shown to exert anti-ageing effects on the cardiovascular system 
(Table 2), supporting the concept that obesity might represent a 
form of premature cardiovascular ageing.

Caloric restriction and fasting
CR, which involves reducing caloric intake while maintaining essential 
nutrients, causes weight loss and promotes healthspan and lifespan 
across different species.190 In rodents and humans, CR attenuates 
age-related myocardial hypertrophy and fibrosis as well as cardiac auto
nomic dysregulation and diastolic dysfunction.191,195,196 CR also re
duces oxidative stress, preserves vascular endothelial function, and 
reduces arterial stiffness in aged mice.192 Similar vasoprotective effects 
have been observed in middle-aged and older adults with overweight or 
obesity undergoing CR.197

In older individuals with obesity, CR reverses signs of metabolic syn
drome, reduces inflammatory markers, and increases exercise cap
acity.198 In older individuals with obesity and HFpEF, CR improves 
body composition as it reduces inflammatory markers, dyslipidaemia, 
cardiac hypertrophy, diastolic dysfunction, exercise intolerance, and 
other clinical symptoms of HFpEF.199 However, it is important to 
note that concomitant aerobic exercise was insufficient to completely 
prevent the loss of muscle mass associated with CR.199 This is concern
ing because, along with other potential adverse effects of CR on bone 
density and immunity, it could lead to an increased risk of physical 
frailty, falls, and infections, particularly in aged vulnerable patients.

Previously overfed mice with obesity retain epigenetic modifications 
and metabolic derangements later in life—a sort of ‘nutritional 
memory’—which has been proposed to limit the metabolic benefits 
of CR on adipose tissue when applied at an old age.230 However, this 
is not the case for the heart, where late-life CR effectively attenuates 
various aspects of ageing, inclduing improved cardiac function and re
modelling, reactivated autophagy, and attenuated inflammation, mito
chondrial damage, telomere shortening, senescence, and proteome 
remodelling in mice.193,194 Similarly, CR improves diastolic dysfunction 
in obese diabetic rats, coinciding with increased autophagy and tel
omerase activity, although no change in telomere length was 
observed.231

Mechanistically, CR directly affects diverse metabolic sensors and 
pathways, triggering protective actions against obesity and natural age
ing.190 For instance, CR activates AMPK and inhibits mTOR, promoting 
autophagy in the heart and vessels of aged models, with direct beneficial 
consequences on cardiovascular function.91 CR also activates sirtuins, 
which are a family of NAD+-dependent protein deacetylases that play 
a key role in promoting cardiomyocyte survival and preserving cardiac 
function.232 The NAD+/NADH ratio is controlled by nutrient availabil
ity, and is permanently shifted towards NADH abundance in obesity, 
suppressing SIRT1 activity. High-glucose and high-fat metabolic envir
onments also promote SIRT1 degradation via UPS.233 Thus, SIRT1 ac
tivation by CR is cardioprotective, and coincides with promoted 
autophagy in cardiomyocytes, through the deacetylation and activation 
of the transcription factor FoxO1.234 CR and fasting cause a surge in 
plasma spermidine levels in mice and humans. In model organisms, 
this surge in spermidine facilitates the hypusination of the translation 
regulator eIF5A, resulting in the induction of autophagy.235 It appears 
plausible yet remains to be demonstrated that this pathway is also 

activated in the heart to explain the capacity of oral spermidine supple
mentation to prevent cardiac ageing.26 In this context, it is intriguing 
that spermidine supplementation also has marked anti-obesity ef
fects.236,237 Thus, spermidine may be an endogenous mediator of the 
beneficial effects of CR.

Taken together, CR might represent a valid intervention to delay car
diovascular ageing and protect against related diseases in elderly indivi
duals with obesity. More impressively, CR and fasting have shown 
promising geroprotective actions, including in old non-obese mice 
and humans.235,238 This strongly supports the concept that obesity 
and ageing share several underlying detrimental mechanisms, at least 
at the cardiovascular level. However, it is also important to acknow
ledge the poor adherence to CR and other dietary modifications, along 
with potential adverse effects in those with immunological and muscu
loskeletal issues, which need to be carefully weighted.239 It is also im
portant to note that weight loss achieved through dietary and other 
lifestyle modifications is often followed by subsequent weight gain. 
Such weight fluctuations or ‘cycling’ can have negative health conse
quences and are associated with higher rates of cardiovascular events 
and mortality.240–242 Although this concept is not unchallenged,243,244

alternative interventions that promote stable body weight may lead 
to more favourable and sustainable outcomes.245

SGLT2 inhibitors
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are FDA-approved 
antidiabetics that lower circulating glucose levels by promoting its renal 
excretion. Lowering glucose levels can mimic at least in part the beneficial 
effects of CR, but SGLT2i also inhibit mTOR and stimulate AMPK and 
SIRT1 signalling, thereby activating autophagy.200 Furthermore, SGLT2i 
improve mitochondrial function, reduce oxidative stress and inflamma
tion, suggesting that they might mediate broad anti-ageing effects.201

Supporting this notion, the SGLT2i canagliflozin enhances the clearance 
of senescent cells in obese mice and decreases the size of atherosclerotic 
plaques as well.202 Canagliflozin also extends the lifespan of naturally aged 
male mice as well as that of progeroid mice of either sex.202,203 Notably, 
canagliflozin prevented the age-dependent increase in body weight and 
glucose intolerance in both male and female aged mice, suggesting that 
its male-specific longevity-promoting action is independent of its glucose- 
lowering effect.203

In humans, SGLT2i reduce body weight and blood pressure.246,247

Further studies linked SGLT2i to a reduced risk of dementia in patients 
with T2DM,248 and to improved cognitive and physical capacity in frail 
older adults with T2DM and hypertension, thereby supporting the anti- 
ageing properties of SGLT2i beyond glycaemia regulation.205 Indeed, 
SGLT2i moderately reduced cardiovascular and all-cause mortality, ir
respective of T2DM and across several trials involving patients with car
diometabolic or cardiorenal disease.206 In symptomatic patients with 
heart failure with preserved or reduced ejection fraction, SGLT2i 
also reduced the risk of cardiovascular death or hospitalization.207

SGLT2i also attenuated the risk of heart failure in patients with ischae
mic heart disease or chronic kidney disease.206,249

In sum, SGLT2i exert clinically proven benefits in the secondary pre
vention of cardiovascular, renal and metabolic diseases associated with 
ageing and obesity. The substantial cardiovascular efficacy of SGLT2i, a 
drug class primarily targeting the kidney, highlights the potential role of 
kidney disease in underlying the detrimental effects of obesity on car
diovascular health. Indeed, chronic kidney disease, which is strongly as
sociated with obesity (reviewed elsewhere147,250), stands out as one of 
the most critical risk factors for cardiovascular morbidity and mortality.
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GLP-1 receptor agonists
Initially developed to reduce circulating glucose levels in diabetic pa
tients, glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1RAs) 
have shown substantial efficacy as anti-obesity medications, as they sup
press appetite, reduce food intake and delay gastric emptying. For ex
ample, the GLP-1RA semaglutide demonstrated an ∼18% reduction 
in body weight after 68 weeks of treatment.212 Importantly, the efficacy 
of GLP-1RAs in reducing body weight is also seen in non-diabetic indi
viduals251 and in older adults.252,253

Beyond the cardiovascular benefits of weight loss in subjects with 
obesity, GLP-1RAs may have additional protective effects. For instance, 
treatment with the GLP-1RAs semaglutide or liraglutide improves car
diac remodelling and function as well as endothelial function in aged 
mice with obesity, hypertension and HFpEF.204,208 Notably, these ben
efits were more pronounced compared to animals that lost the same 
amount of weight through dietary restriction.204 Clinical trials revealed 
that treatment with GLP-1RAs is particularly efficient for patients with 
a combination of obesity and pre-existent cardiovascular conditions. 
For instance, the GLP-1RA liraglutide reduced all-cause mortality and 
major cardiovascular events, including death from cardiovascular 
causes, nonfatal myocardial infarction, or nonfatal stroke, in high-risk 
cardiovascular patients with T2DM.213 More impressively, semaglutide 
showed such benefits in non-diabetic patients with obesity and pre- 
existing cardiovascular disease,167 including those with heart failure.254

Specifically in aged patients with obesity and HFpEF, semaglutide im
proved symptoms, physical limitations, and quality of life, and these 
beneficial effects extended to patients without T2DM.214,255

Mechanistically, GLP-1RAs have systemic anti-inflammatory, anti- 
hypertensive, and lipid-lowering properties that contribute to their 
beneficial cardiovascular effects.209 Notably, the GLP-1 receptor is ex
pressed by cardiac and vascular endothelial cells and to a lesser extent 
by cardiomyocytes and vascular smooth muscle cells,209 indicating po
tential direct cardiovascular actions of GLP-1RAs. Additionally, 
GLP-1RAs promote the use of glucose as a metabolic substrate in 
the myocardium,210 and inhibit cardiomyocyte apoptosis. Accordingly, 
liraglutide improved survival of mice subjected to myocardial infarc
tion.211 Furthermore, GLP1-1RAs possess vasodilatory properties that 
contribute to reduced systemic vascular resistance, with relevant benefits 
for patients with obesity.210

Taken together, the effects of GLP-1RAs on individuals with obesity, 
T2DM, and cardiovascular disease hold great promise for extending 
body-wide healthspan. Several ongoing clinical trials might lead to regu
latory approval of the use of GLP-1RAs against a range of chronic dis
orders beyond the management of glucose and weight.256 Indeed, 
emerging preclinical evidence suggests that GLP-1 receptor agonism, 
even at a low dose that does not change body weight or food intake, 
can extend healthspan in mice by mitigating age-related molecular 
changes across multiple tissues and omic levels.166,257 Epidemiological 
evidence also supports a potential protective role of GLP-1RAs 
against dementia and cognitive dysfunction.258 A critical advantage of 
GLP-1RAs is that their metabolic benefits appear to be conserved in old
er individuals and that they can be easily administered thanks to new for
mulations that are orally bioavailable. Moreover, next-generation dual 
and triple agonists that additionally act on the receptors for glucose- 
dependent insulinotropic peptide and/or glucagon reportedly mediate 
even more potent anti-obesity and anti-inflammatory actions than 
pure GLP-1RAs.259,260 Indeed, in a Phase 3 trial, tirzepatide treatment 
of patients with obesity and HFpEF significantly lowered the risk of car
diovascular death and heart failure worsening.261

NAD+ precursors
Besides its crucial role in energy metabolism, the redox cofactor NAD+ 

serves as a rate-limiting substrate for poly ADP-ribose polymerases 
(PARPs), sirtuin deacetylases, and cyclic ADP-ribose synthases, like 
CD38, thereby regulating DNA repair, post-translational modifications, 
and Ca2+ signalling.262 Notably, intracellular NAD+ levels decrease with 
ageing and obesity.262 Mechanistically, a combination of increased DNA 
damage and increased expression of CD38 due to chronic inflamma
tion reduces NAD+ availability and limits sirtuin activity, leading to im
paired mitochondrial function and accentuated ageing.262

In animals, NAD+ replenishment mimics the metabolic and anti- 
ageing benefits of CR.263 Indeed, administration of NAD+ precursors, 
such as nicotinamide and nicotinamide riboside (NR) or the NAD+ 

intermediate nicotinamide mononucleotide (NMN), protects mice 
from glucose intolerance and insulin resistance associated with ageing 
or obesity,215,216 with additive benefits when mice are aged and ob
ese.264 Importantly, NAD+ precursors also attenuate cardinal signs of 
ageing in the heart. Specifically, nicotinamide improves diastolic dys
function and cardiac hypertrophy in aged mice and protects obese 
hypertensive rats with cardiometabolic syndrome from HFpEF.217

Protective effects against signs of vascular ageing, such as endothelial 
dysfunction, arterial stiffness, and cerebrovascular uncoupling, have 
also been observed in aged mice treated with NMN.218,219 Notably, 
despite these clear benefits of NAD+ precursors on cardiovascular 
and general healthspan, the evidence supporting a positive effect on life
span extension in mammals remains controversial.265,266

In humans, aged patients with overweight and HFpEF exhibit reduced 
levels of cardiac NAD+.217 In pairs of monozygotic twins with disparate 
BMIs, twins with overweight presented a lower NAD+ pool, higher ac
tivity of PARPs, and reduced regulation of mitochondrial proteostasis, 
demonstrating that obesity reduces NAD+ levels and its downstream 
activity in humans.267 Moreover, exploratory human trials have shown 
a potential beneficial effect of NR on blood pressure in middle-aged and 
elderly otherwise healthy women and men.220 NMN exerted a similar 
vasoprotective effect as NR, but only in individuals with high BMI.221

NMN also improved insulin signalling in women with overweight or 
obesity and pre-diabetes.222 In patients with heart failure, early-phase 
trials suggest that NR reduces inflammation and increases mitochon
drial respiration in peripheral blood mononuclear cells.268,269

Taken together, accumulating preclinical evidence supports the car
diovascular, metabolic, and anti-ageing benefits of NAD+ precursors in 
animals. However, the safety and efficacy of different NAD+ precursors 
and their long-term effects remain to be evaluated in large clinical trials 
before their use in patients. Nonetheless, preliminary clinical evidence 
suggests potential effects of NAD+ precursors against cardiovascular 
and metabolic diseases in elderly patients and those with obesity.

Bariatric surgery
Bariatric surgery is a highly effective method for drastically reducing 
body weight in patients with obesity. The sustained weight loss follow
ing surgery reduces the risk of cardiovascular disease and other 
age-related conditions.226 Indeed, bariatric surgery is associated with 
a reduced incidence of major cardiovascular events, including new- 
onset heart failure, myocardial infarction, and stroke.270,271

Accordingly, bariatric surgery reduces cardiovascular and overall mor
tality in both patients with and without diabetes.272

Notably, while life expectancy increases in patients with obesity after 
surgery, it remains lower than that of the general population, suggesting 
that not all pro-ageing effects of obesity can be reversed by weight loss 
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alone.227 Mechanistically, bariatric surgery has been shown to increase 
T cells telomere length within 6 months post-surgery, partially reversing 
the premature ageing caused by obesity.228 Furthermore, patients who 
underwent bariatric surgery exhibit a decline in pro-inflammatory and 
SASP-related cytokines, like IL6 and C-reactive protein.229

It is important to note that although the benefits of bariatric surgery 
are clinically relevant even in old age,273 its metabolic and body weight 
reducing effects are more pronounced in young patients than in those 
above 45 years of age.274 However, due to the inherent challenges as
sociated with conducting randomized clinical trials for surgical interven
tions, most of the available evidence on bariatric surgery is derived from 
observational studies. This reliance on observational data may intro
duce bias that could affect the accuracy of the estimated benefits or 
harms of bariatric surgery.

Concluding remarks and future 
perspectives
With the growing prevalence of obesity and population ageing, the 
medical and socioeconomic burden of cardiovascular disease is poised 
to reach unprecedented scales. Indeed, the severity of cardiovascular 
events often escalates with the degree of obesity,35 suggesting that 
both conditions, old age and obesity have cumulative effects on cardio
vascular health. Importantly, the connection between obesity and age
ing extends beyond mere epidemiological correlations. Robust 
experimental and clinical evidence suggests a direct mechanistic link be
tween obesity and ageing in the pathogenesis of various age-related car
diovascular disorders. This is further supported by weight reduction 
strategies which have shown efficacy—similar to, or even exceeding 
that of traditional cardiovascular medications—in reducing major car
diovascular events and increasing life expectancy in individuals with 
obesity. These observations support the hypothesis that obesity accel
erates biological cardiovascular ageing at multiple levels ranging from 
molecular and cellular aberrations to whole organ dysfunction and re
modelling. Intriguingly, dietary and pharmacological strategies that have 
initially been developed for their capacity to induce weight loss and 
counteract metabolic syndrome apparently mediate anti-ageing effects 
on rodents with a normal weight. Thus, further efforts are warranted to 
translate these promising preclinical gains to patients.

To achieve this, primary prevention outcome trials will be needed. 
Such trials need to recruit aged subjects both with and without obesity 
to provide conclusive clinical evidence that metabolic therapies, like 
SGLT2i and GLP-1RAs, can be repurposed as anti-ageing drugs. 
Other clinically less advanced interventions, like NAD+ precursors or 
emerging caloric restriction mimetics including spermidine and 
acyl-CoA-binding protein neutralizing antibodies,275 might follow suit 
and benefit from the experience gained in these initial trials. 
However, critical issues that might hinder clinical progress in this area 
need to be considered. For instance, the current definition of obesity 
and overweight is based on BMI, which has significant limitations for 
risk stratification as it does not capture body composition and adipose 
tissue phenotype. Indeed, stratified fat and lean mass indices, which can 
distinguish between sarcopenic and non-sarcopenic obesity unlike BMI, 
have demonstrated a stronger association with various cardiovascular 
diseases and related mortality, particularly in women.276,277 The impact 
of obesity on cardiovascular health is also significantly influenced by fat 
distribution, with visceral fat posing the greatest risk.278–280 Visceral fat 
is a superior predictor of cardiac remodelling and dysfunction com
pared to BMI281,282 and is an independent predictor of cardiovascular 

disease development and all-cause mortality.18,283,284 Therefore, there 
is a need for more precise and preferably simple measures of obesity 
that accurately reflect visceral adiposity.

Although further research is warranted, alternatives to BMI are 
emerging. For instance, the body roundness index, a novel anthropo
metric measure that reflects visceral obesity more accurately than 
body weight and BMI, strongly associates with the incidence of 
T2DM, cardiovascular disease, and all-cause mortality.285–287

Conventional measures, such as waist circumference and its ratio to 
hip circumference or height,288–290 are also useful, but they are not 
without issues either. Waist circumference was found to be less pre
dictive of T2DM risk than the body roundness index,285 and its meas
urement is not necessarily simpler than measuring body weight. Thus, 
further research is needed to establish even more appropriate and sim
ple measures of obesity. These new measures may also help address 
some controversies in the field such as the ‘obesity paradox’, which re
fers to the epidemiological observation that higher BMI is associated 
with better survival in elderly patients with established cardiovascular 
disease.291–294 Potential explanations include the presence of sarcope
nia or central adiposity in normal-weight individuals, both of which can
not be detected using BMI alone.280,295 Irrespectively, this observation 
should be interpreted with caution in the absence of randomized evi
dence supporting it. Thus, reverse causality cannot be excluded, espe
cially when the weight loss in association studies is more likely to be 
unintentional and could be even due to undiagnosed illnesses. Further 
randomized studies are warranted to address this issue and to deter
mine whether the benefits of weight loss extend to populations histor
ically excluded from clinical trials due to advanced age. These studies 
should specifically determine the age limits and degrees of obesity at 
which weight reduction remains both safe and effective. Until such evi
dence is available, caution is advised when recommending weight loss 
for individuals aged 75 and older, particularly those over 85 years. 
Notably, the obesity paradox, along with other controversies in the 
field, including ‘normal weight’ obesity and ‘metabolically healthy’ obes
ity has been comprehensively discussed elsewhere.292,296

Another key issue is the loss of muscle mass in response to weight loss 
interventions, which is particularly relevant for elderly individuals who al
ready have a low lean body mass and might be at risk of sarcopenia. This 
might be a significant hurdle in future studies evaluating the efficacy of 
GLP-1RAs in primary prevention of cardiovascular disease, especially if 
they also include aged individuals without obesity. Potential solutions to 
mitigate this include dietary modifications, resistance exercise, or medica
tions, like bimagrumab and enobosarm, which are currently being tested 
in combination with GLP-1RAs (NCT05616013, NCT06282458).297

Finally, although preclinical studies have delineated shared meta- 
hallmarks of ageing and obesity in the cardiovascular system 
(Graphical Abstract, Figure 4), additional factors such as dysbiosis and 
epigenetic alterations (e.g. DNA methylation, histone acetylation, and 
non-coding RNAs) are most likely involved and there is an urgent 
need for funding additional research to comprehensively elucidate their 
roles in accelerating cardiovascular ageing in the context of obesity. 
Moreover, extensive vascular research is necessary, as most evidence 
supporting these molecular and cellular hallmarks—except for inflam
mation and insulin resistance—has been primarily derived from heart- 
centric studies. Considering the extensive and sophisticated nature of 
the vascular system as well as its intimate connection to the physiology 
of nearly every cell in the body through a far-reaching microcirculation, 
the vasculature might be even more influential in general organismal 
ageing than previously recognized. Thus, while significant strides have 
been made in identifying common molecular and cellular hallmarks of 
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obesity and ageing in the cardiovascular system, a more holistic approach, 
integrating body-wide metabolic abnormalities including not only the adi
pose tissue but also skeletal muscle, vessels, and beyond, is necessary. 
Equally important is the use of models that combine obesity and ageing 
across different strains of mice of both sexes. This could be achieved by 
subjecting mice to obesogenic protocols and testing interventions that 
are initiated at early and late stages of the lifespan, rather than the current 
practice of using only a single sex and strain of young animals. In sum, 
these strategies will provide a comprehensive understanding of the com
plex interplay between obesity and cardiovascular ageing with greater 
potential for translation. Such an understanding is essential for developing 
targeted interventions to prevent and treat cardiovascular and related 
diseases in a growing obese elderly population (Figure 5).
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