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Abstract. Colorectal cancer is the third most common type of 
cancer, with high morbidity and mortality rates. In particular, 
locally advanced rectal cancer (LARC) is difficult to treat 
and has a high recurrence rate. Neoadjuvant chemoradio‑
therapy (NCRT) is one of the standard treatment programs 
of LARC. If the response to treatment and prognosis in 
patients with LARC can be predicted, it will guide clinical 
decision‑making. Radiomics is characterized by the extrac‑
tion of high‑dimensional quantitative features from medical 
imaging data, followed by data analysis and model construc‑
tion, which can be used for tumor diagnosis, staging, prediction 
of treatment response and prognosis. In recent years, a number 
of studies have assessed the role of radiomics in NCRT for 
LARC. MRI‑based radiomics provides valuable data and 
is expected to become an imaging biomarker for predicting 
treatment response and prognosis. The potential of radiomics 
to guide personalized medicine is widely recognized; however, 
current limitations and challenges prevent its application to 
clinical decision‑making. The present review summarizes 

the applications, limitations and prospects of MRI‑based 
radiomics in LARC.
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1. Introduction

Colorectal cancer is the third most common type of cancer in 
the world and the second leading cause of cancer‑associated 
death in the United States (1,2). According to the global 
cancer statistics in 2020, there were >1.9 million new cases 
of colorectal cancer, among which rectal cancer accounted for 
30‑50%, and 935,000 associated deaths (3,4). Approximately 
half of rectal cancer diagnoses are of locally advanced rectal 
cancer (LARC), which is difficult to treat and has a poor 
prognosis (5). According to the Tumor‑Node‑Metastasis clas‑
sification (6,7), LARC is defined as patients with cT3‑cT4 or 
N+ (stage II or III) rectal cancer without distant metastasis (8). 
Neoadjuvant chemoradiotherapy (NCRT) followed by total 
mesorectal excision (TME) after 6‑10 weeks is the preferred 
treatment for LARC (9,10). NCRT can decrease the tumor size 
and tumor stage, block tumor invasion, and improve resection 
during surgery and the probability of sphincter preservation, 
thus increasing the local control rate and the survival rate of 
the patient (10‑13).

Identifying biomarkers that predict the response to NCRT 
is a constant challenge. Numerous studies have proposed 
biomarkers that could predict response to NCRT in patients 
with LARC, such as tumor stage, tumor regression grade, 
tumor markers (carcinoembryonic antigen), circulating 
tumor‑derived DNA, DNA methylation level and cancer 
related‑inflammatory markers; however, their accuracy is 
not perfect (14‑17). As LARC has great heterogeneity in 
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proteins, genes, cells and tissues (18), it is difficult to capture 
its heterogeneity by using examinations such as pathological 
biopsy, colonoscopy and hematology (19‑21). By contrast, 
as a new non‑invasive imaging technology, radiomics trans‑
forms medical imaging into high‑dimensional data that can 
be mined to reveal a large number of quantitative features, 
including texture, grayscales, wavelet and fractal, and 
combines quantitative features with clinical features, protein 
genome information and other information (22,23). With its 
advantages, such as being easy to operate, a low cost and a 
high efficiency in capturing the heterogeneity of tumors, it can 
be used for tumor diagnosis, staging, prognosis and predicting 
treatment response (24‑27); it also has great potential to be an 
imaging biomarker for predicting the response to NCRT and 
determining the prognosis.

In recent years, there has been an increase in the amount 
of research into MRI‑based radiomics in LARC. In the present 
review, based on existing research, the workflow of radiomics 
will first be introduced, and then the research into MRI‑based 
radiomics for predicting the response of patients with LARC 
to NCRT, and their prognosis, will be summarized. Lastly, the 
challenges and development trends of MRI‑based radiomics 
will be discussed.

2. Process of radiomics

Radiomics generally includes the following steps (Fig. 1): 
i) Obtaining medical imaging data is the first step of 
radiomics. The accuracy and repeatability of the radiomics 
model are associated with the quality of the images. ii) Image 
segmentation to obtain the region of interest (ROI). This is 
a key and challenging step, and subsequent feature extrac‑
tion is taken from this region. The acquired images differ 
due to different scanning models and parameters; therefore, 
it is necessary to standardize the images before acquiring 
the ROI. The ROI segmentation can be divided into three 
types: Manual, semi‑automatic and automatic. Manual 
segmentation is considered the gold standard. However, it 
is relatively time‑consuming, cumbersome and susceptible 
to operator variability (28,29). iii) Selecting and extracting 
features. Radiomics features can be roughly divided into four 
categories: Size and shape features, first‑order statistical, 
second‑order statistical and change‑based features, such 
as intensity, shape, texture and wavelet features. The most 
common feature is texture. Feature selection and extraction 
is a process of data dimension reduction, and can be divided 
into supervised dimension reduction [such as least absolute 
shrinkage and selection operator (LASSO), linear discrimi‑
nate analysis] and unsupervised dimension reduction (such 
as principal component analysis and cluster analysis) (30‑32). 
iv) Analysis (establishing models). Establishing a practical 
and accurate model to predict clinical outcomes is the ulti‑
mate goal of radiomics. Commonly used models include 
Cox proportional hazard regression, logistic regression, 
LASSO, random forest algorithm and support vector 
machine (22,33‑35). It is worth noting that in the actual 
modeling process, it is often necessary to use a variety of 
modeling methods to avoid the shortcomings of different 
modeling methods in order to establish a more accurate 
radiomics model (26). v) Model application (classification and 

prediction). This can be used for tumor diagnosis, staging, 
prognosis and predicting treatment response.

3. Application of MRI radiomics in NCRT of LARC

Imaging examination is an important medical technique, 
which is mainly used to assist clinical decision‑making in 
clinical practice (36). With the rapid development of medical 
technology, imaging examination has gradually evolved from 
a clinical diagnostic tool to a powerful tool for personalized 
medicine (37). The most common imaging examinations for 
the diagnosis and staging of rectal cancer include CT, MRI, 
positron emission tomography (PET)/CT and ultrasound 
endoscopy (38). CT is able to show the structural character‑
istics of tumors, and is often used in dosimetry research and 
tumor staging of rectal cancer radiotherapy (39). However, it 
also has some shortcomings, such as the inability to describe 
the function of solid tumors, limited T staging of early rectal 
cancer, high radiation and low contrast (40,41). PET/CT is 
mainly used to evaluate the metabolic activity of tumors, 
which are usually more active than normal tissue (42). In addi‑
tion, it is used for tumor diagnosis, staging and assessment 
of metastasis in rectal cancer; however, its spatial resolution 
is low, thus tumor T staging is limited. At the same time, 
PET/CT not only has a high price, high radiation toxicity 
and relatively complicated usability, but it is also difficult to 
describe and analyze the features of its lesions in radiomics 
research (40,43). By contrast, MRI has high resolution for 
soft tissue, and has the advantages of being radiation‑free, 
multi‑orientational, multi‑parameter and delineating the 
tumor boundary clearly (44,45). MRI is considered as the stan‑
dard for the evaluation and staging of rectal cancer, and has 
wide application value in LARC (38,46,47). In recent years, 
the research into radiomics in rectal cancer has increased 
year on year, and there is more research into radiomics‑based 
on MRI than that based on CT or PET/CT. This indicates 
that radiomics‑based on MRI is of great research signifi‑
cance and has potential in rectal cancer (Fig. 2). MRI has 
multi‑parameter characteristics, which can be divided into 
morphological and functional parameters. Morphological 
parameters include T1‑weighted imaging (T1WI) and 
T2‑weighted imaging (T2WI), while functional parameters 
include diffusion‑weighted imaging and enhanced scanning. 
The most commonly used examination parameter (sequence) 
is T2WI, with an accuracy of 65‑94% for T staging and 35‑75% 
for N staging in rectal cancer (32,48) (Fig. 3). Morphological 
imaging is beneficial to provide detailed information of 
rectal cancer and its surrounding structures. Functional 
imaging distinguishes residual tumors from fibrosis (49). 
The information provided by the various imaging methods is 
different. Combining different imaging features can improve 
the prediction efficiency of the model. MRI radiomics, as an 
imaging biomarker, can predict the response of patients with 
rectal cancer to NCRT and the prognosis of the tumor from 
numerous aspects, including pathological complete response 
(PCR) determination, lymph node status, KRAS status, 
tumor‑stroma ratio and tumor heterogeneity (31,50‑52). The 
following is an analysis from the three aspects: PCR determi‑
nation, lymph node status and KRAS status (Table I). Data for 
the present study, including Table I, was obtained by searching 
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the Pubmed (http://www.ncbi.nlm.nih.gov), WebofScience 
(http://www.webofscience.com) and Metstroge (https://www.
metstr.com) databases from mainly the last 6 years (with a few 
studies prior to 2015). The key words used include radiomics 
and locally advanced rectal cancer rectal cancer, NCRT, MRI, 
CT, PET, PCR, lymph nodes, Kras, challenges, limitations and 
prospects. Approximately >300 studies were searched, and 
>100 studies were finally cited.

MRI‑based radiomics to predict PCR. The curative effect of 
NCRT on LARC is notable; however, the individual response 
to treatment varies, from a PCR to almost no tumor regres‑
sion, while some patients have tumor progression (53). In 
total, ~20% of the patients can attain a PCR (54), and a PCR 
is equivalent to no residual tumor cells (55‑57). Patients with 
a PCR are able to receive ‘waiting or watching’ treatment, 
which is a non‑surgical treatment strategy used for patients 
to obtain complete clinical remission (58,59). If PCR can be 
predicted prior to surgery, personalized medicine can be used. 
A large number of studies have shown that MRI radiomics is 
effective in predicting the tumor response of LARC following 
NCRT. Yi et al (50) used T2WI radiomics, combining imaging 
features with clinical pathological characteristics to construct 
a prediction model. The results showed good diagnostic 
accuracy in predicting a PCR, a good response and tumor 
degradation in patients with LARC who had progressed to 
NCRT, and the area under curve values were 0.908, 0.902 and 
0.930, respectively. Dinapoli et al (60) analyzed the radiomics 
of 221 patients from three different centers and concluded that 
the MRI radiomics model could predict the probability of a 
PCR in patients with LARC using pre‑treatment imaging. The 
study also established external verification (performed with 
patients from two other institutions) to further improve the 
credibility of its model. In addition, Li et al (61) completed 

MRI prior to and following NCRT, and analyzed the images in 
parallel. By comparing the changes in the images during treat‑
ment, seven radiomics features were extracted. The prediction 
model could effectively predict a PCR following NCRT. It 
could be concluded that MRI prior to and following NCRT 
is an important source of radiomics data. At the same time, 
the radiomics model also predicted patients who were unre‑
sponsive or low in response to treatment. This was beneficial 
as the treatment plan could be adjusted in clinical practice, 
unnecessary toxicity of radiotherapy and chemotherapy could 
be avoided, and the economic burden for the patients could be 
reduced. Zhou et al (62) analyzed the multi‑parameter MRI in 
425 patients with LARC prior to NCRT. It was concluded that 
the features of multi‑parameter MRI prior to treatment could 
effectively predict patients who were non‑response to NCRT. 
Therefore, MRI‑based radiomics, whether multi‑parameter 
or single‑sequence MRI radiomics, is of great significance in 
evaluating PCR and unresponsiveness following NCRT. This 
could provide an improved basis for personalized treatment.

MRI‑based radiomics to predict lymph node status. Most treat‑
ment responses following NCRT are evaluated by observing 
the primary tumor; however, lymph nodes can also be evalu‑
ated, as NCRT can cause heterogeneous response of the lymph 
nodes (63). NCRT can cause certain changes in the lymph 
nodes, such as changes in their morphology, size, number and 
texture. In addition, the response of the lymph nodes to NCRT 
varies, ranging from a large number of residual cancer cells to 
a completely fibrotic response (the surrounding normal cells 
continue to proliferate to repair the damage caused by radio‑
therapy and chemotherapy, which specifically means that there 
are no residual tumor cells). Therefore, it can be complicated to 
interpret the prognostic impact of the lymph nodes following 
NCRT due to the changes in the lymph nodes (64). A large 

Figure 1. Radiomics workflow. (i) Obtaining medical imaging data; (ii) image segmentation to obtain the region of interest; (iii) selecting and extracting 
features; (iv) statistical analysis and model building; (v) classification and prediction. T1W, T1‑weighted; CT1W, contrast enhanced T1‑weighted images.



ZHANG et al:  MRI‑BASED RADIOMICS IN RECTAL CANCER4

number of previous studies have shown that the positive mesen‑
teric lymph nodes are the main cause of the local recurrence and 
distant spread of rectal cancer (51,65‑67). TME is significantly 
effective for local tumor control; however, there are numerous 
complications, such as sexual dysfunction, poor urination and 
infection (68‑70). Therefore, organ preservation strategies, 
such as watchful waiting and local excision following NCRT, 
are particularly important in preserving organ function and 
improving the quality of life of the patients (71,72). It is worth 
noting that the status of the lymph nodes following NCRT is 
an important indicator of organ preservation strategies (63,73). 
Hence, assessing the status of the lymph nodes following 
NCRT is of great significance in assessing treatment response, 
predicting prognosis and improving the quality of life of patients.

In the past, clinicians often used the size of the lymph 
nodes to estimate which lymph nodes could have metastases 
and which could be free of metastatic foci (74), to assess the 
volume reduction rate prior to and following treatment to 
evaluate lymph node metastasis (75), or to predict the status 
of the lymph nodes using clinicopathological factors (76); 
however, precise prediction accuracy has not been achieved. 
In recent years, with the development of artificial intelligence 
and big data, radiomics studies have become increasingly 
popular in the clinic. A large number of studies have shown 
that radiomics can effectively predict the status of the lymph 
nodes and provide a basis for clinical decision‑making. For 
example, Zhou et al (72) predicted the status of the lymph 
nodes following NCRT using a multi‑parameter MRI 

Figure 2. Comparison of radiomics studies into rectal cancer in different imaging modalities (based on the Web of Science database). MRI radiomics 
studies were significantly higher in number compared with the CT/PET radiomics studies. PET, positron emission tomography. The data were obtained 
by searching the Web of Science and Pubmed databases, according to the search terms ‘Radiomics + Rectal cancer’, ‘MRI + Radiomics + Rectal cancer’, 
‘CT + Radiomics + Rectal cancer’ and ‘PET + Radiomics + Rectal cancer’. The literature retrieved was skimmed and compared, and then the qualified 
literature was included (the data may be incomplete, so are only for reference).

Figure 3. Comparison of different MRI sequences in a patient with locally advanced rectal cancer. Different images from a patient with cT4N1M0 rectal cancer 
using MRI, including (A) T1WI, (B) T2WI, (C) T2 high‑resolution sequence, (D) contrast‑enhanced T1WI, (E) diffusion‑weighted imaging and (F) apparent 
diffusion coefficient. T1WI, T1‑weighted imaging; T2WI, T2‑weighted imaging.
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radiomics model. The joint model of multi‑parameter MRI 
radiomics features and tumor staging was obtained. The 

receiver operating characteristic curve was 0.818 and the 
negative predictive value was 93.7% in the validation cohort, 

Table I. Summary of the application of MRI radiomics in locally advanced rectal cancer.

     Feature   
 Image  Feature Statistical selection   
First author, year modality Study design type method model Clinical utility (Refs.)

Bulens et al, 2020 T2WI, DWI, Retrospective Semantic Multivariate  LASSO Prediction PCR (30)
 ADC single‑center  analysis   
Zhang et al, 2021 T2WI Retrospective Texture Multivariate  LASSO Prediction  (31)
  single‑center  analysis  KRAS 
Petresc et al, 2020 T2WI Retrospective Wavelet,  Univariate  LASSO Prediction (32)
  single‑center texture analysis  NRs  
Yi et al, 2019 T2WI, T1WI,  Retrospective Texture Univariate  LASSO, Prediction PCR, (50)
 cT1W  single‑center  analysis RF, SVM GR, downstaging 
Cai et al, 2021 T2WI, Retrospective  Shape, Univariate  LASSO,  Prediction TSR (52)
 DWI, cT1W, single‑center texture,  analysis logistic   
 ADC   wavelet  regression  
De Cecco et al, 2015 T2WI Prospective Texture Multivariate  Mann‑Whitney Prediction PCR, (53)
  single‑center  analysis U test  PR, NRs 
Cui et al, 2021 T2WI,  Retrospective  First‑order Multivariate  Boruta Prediction DFS (54)
 T1WI, ADC single‑center statistical,  analysis algorithm, RF    
    shape,    
   texture    
Li et al, 2019 T2WI, T1WI Retrospective Texture Multivariate  Logistic  Prediction PCR (61)
  single‑center  analysis regression  
Zhou et al, 2019 T2WI, T1WI, Retrospective Texture Univariate, LASSO Prediction NRs (62)
 cT1W, DWI single‑center  multivariate   
    analysis   
Zhou et al, 2020 T2WI, T1WI, Retrospective Texture, Wilcoxon  LASSO,  Prediction  (72)
 DWI, single‑center LoG  rank‑sum logistic  lymph node 
 CE‑T1w  filtration   regression status 
Song et al, 2020 T2WI Retrospective Texture Univariate, Logistic  Prediction  (77)
  single‑center  multivariate regression lymph node 
    analysis  status 
Oh et al, 2020 T2WI Retrospective Texture Univariate  Decision tree Prediction  (91)
  single‑center  analysis  KRAS  
Li et al, 2020 CT MRI Retrospective Texture,  Multivariate  LASSO Prediction (97)
 (DCE‑T1w, single‑center morpho analysis  treatment 
 T2WI, ADC)  logical     response 
Giannini et al, 2019 PET MRI Retrospective First‑ Univariate, Mann‑Whitney Prediction (98)
 (T2WI, DWI, single‑center order  multivariate test treatment 
 ADC)   statistical, analysis  response 
   texture     
Cui et al, 2021 T2WI, cT1W, Prospective Texture Multivariate  RF, Cox Prediction  (54)
 ADC single‑cente  analysis regression survival time 
Cui et al, 2019 T2WI, DWI, Retrospective  Texture Multivariate  LASSO Prediction PCR (99)
 cT1W, ADC single‑center  analysis   

T2WI, T2‑weighted imaging; T1WI, T1‑weighted imaging; CT1W, contrast‑enhanced T1‑weighted images; DWI, diffusion‑weighted imaging; 
CE‑T1w, contrast‑enhanced T1‑weighted fast spin‑echo imaging; ADC, apparent diffusion coefficient; LASSO, left absolute shrinkage and 
selection operator; RF, random forest; SVM, support vector machine; PCR, pathological complete response; GR, good response; NRs, 
non‑response; TSR, tumor‑stroma ratio; LOG, Laplacian of Gaussian; DFS, disease‑free survival.
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which was higher than that in the single imaging model. In 
particular, the combined model had high accuracy in evalu‑
ating the lymph node status in patients with MRI T1‑2 tumors 
following NCRT, and its negative predictive value was as high 
as 100%. Song and Yin (77) found that the low energy of 
sagittal fat inhibition T2WI, and the high information correla‑
tion and short‑run low gray‑level emphasis of oblique T2WI, 
were independent predictors of lymph node invasion of rectal 
cancer. These have a certain value in judging preoperative 
lymph node invasion.

In summary, MRI‑based radiomics has the advantage of 
being non‑invasive and easy to use, with a high prediction 
accuracy and no need to visualize features (tumor shape, edge 
and size). MRI also has a good ability to identify lymph nodes, 
which has great potential in predicting the lymph node status 
of patients with LARC following NCRT. However, there are 
relatively few studies based on this aspect at present, which 
requires the support of big data and multi‑center research. 
This presents an opportunity for future scientific research.

MRI‑based radiomics to predict KRAS mutation. A large 
number of studies have reported that the KRAS mutation is 
a good biomarker to predict the resistance and prognosis of 
metastatic rectal cancer with anti‑epidermal growth factor 
receptor monoclonal antibody therapy (78,79). The KRAS 
gene is a murine sarcomatoid virus oncogene that belongs 
to the RAS gene family and has been associated with the 
development of human tumors. The KRAS mutation is the 
most common gene mutation in colorectal cancer. Between 
30 and 40% of patients with colorectal cancer carry the 
KRAS mutation (80). In LARC, the KRAS mutation has 
been associated with tumor invasion and metastasis, insen‑
sitivity to epidermal growth factor inhibitor and low overall 
survival time (81,82). Certain patients with LARC have low 
sensitivity to NCRT, and have side effects to radiotherapy 
and chemotherapy, such as trisomy, radiation proctitis and 
sexual dysfunction. Early in vitro experiments have proved 
that cell lines with the KRAS mutation are more prone to 
radiation resistance and mediate the radiation resistance 
of cells via the EGFR/PI3K/AKT pathway (83,84). At 
present, there are numerous studies investigating the asso‑
ciation between the KRAS mutation and treatment response 
following NCRT. For example, Zhou et al (82) retrospec‑
tively analyzed 1,886 patients with LARC, and found that 
the KRAS mutation was not associated with low PCR rate 
and tumor degradation following neoadjuvant treatment of 
LARC; however, the KRAS mutation was associated with low 
survival rate following NCRT, suggesting a poor prognosis. 
In another study, Peng et al (85) retrospectively analyzed 
70 patients with LARC who received NCRT prior to surgery 
at the Cancer Center of Sun Yat‑Sen University (Guangzhou, 
China). It was concluded that the 3‑year disease‑free survival 
rate and the 3‑year overall survival rate were lower in patients 
with the KRAS mutation gene than in patients who did not 
have the mutation. In addition, the response to preoperative 
radiotherapy and chemotherapy was worse in patients with 
the KRAS mutation compared with that in patients who did 
not have the mutation. Therefore, the detection of the KRAS 
mutation is of great importance for clinicians to predict the 
response to NCRT and determine the prognosis.

At present, the methods for detecting the KRAS mutation 
are mainly based on tumor biopsy specimens or surgical resec‑
tion specimens, and are performed following surgery. This has 
several disadvantages, including invasiveness, complexity and 
high cost, and the quality of the specimens may not be guar‑
anteed. If the gene mutation could be detected by radiomics 
prior to surgery, it would save on medical resources, relieve the 
distress of the patients and more importantly, provide effective 
prognostic indicators. Different molecular subtypes of rectal 
cancer often have different morphological features (86). In 
recent years, various MRI sequences (i.e. diffusion‑weighted 
MRI, routine MRI, dynamic contrast‑enhanced MRI and 
MR spectroscopy) have been used to evaluate the biological 
characteristics of the tumor and predict KRAS status (87‑89). 
In particular, radiomics analysis based on MRI has become 
a hot topic, as it is a non‑invasive method and can be used 
to evaluate the heterogeneity within the tumor, which is diffi‑
cult to determine using the naked eye (90). Zhang et al (31) 
established a radiomics model using MRI prior to NCRT 
and extracted the image feature X.LL_scaled_std, which 
has high predictive performance in predicting the KRAS 
mutation prior to NCRT in patients with LARC. Similarly, 
Oh et al (91) also confirmed that T2WI radiomics has high 
predictive performance for preoperative KRAS status of 
rectal cancer. Therefore, MRI‑based radiomics features could 
effectively predict KRAS mutation prior to NCRT in patients 
with LARC, and could be used to evaluate treatment response 
and determine prognosis. However, this still requires further 
verification using a large multicenter cohort and prospective 
trials. If applied to clinical decision‑making, it will avoid the 
side effects of radiotherapy and chemotherapy, and provide a 
non‑invasive treatment for targeted therapy.

4. Challenges and prospects

Current research provides clinical prospects regarding 
radiomics; however, there are still certain shortcomings. 
Firstly, due to the complexity of establishing the workflow of 
radiomics, the image acquisition and protocols of the different 
institutions vary. In addition, there are also differences among 
various scanning instruments, including in the standardiza‑
tion of the signal intensity and how the image data should 
be shared from different medical institutions, which requires 
resolving. Secondly, most radiomics features are extracted 
from the maximum cross‑sectional area of the tumor, rather 
than the whole tumor. This information may not be representa‑
tive of all the tumor information. Thirdly, the ROI is mainly 
determined manually, which is time‑consuming and laborious, 
and depends on the experience of the examiner, resulting in 
the reduction of repeatability. Fourthly, a large number of 
radiomics models have poor reproducibility, are mostly retro‑
spective studies and lack independent external verification. 
Finally, there is still a lack of large sample, multi‑center and 
prospective studies (26,50,92‑96).

If the aforementioned problems can be solved, it will lay 
a solid foundation for the realization of personalized medi‑
cine. Until now, most studies have only used single‑modality 
imaging methods, such as CT, MRI and PET. It has been 
reported that a multi‑modality radiomics model has higher 
prediction efficiency compared with that for a single‑modality 
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radiomics model. Li et al (97) combined the two imaging 
modalities of CT and MRI to establish a radiomics model, 
while comparing it with separate CT or MRI models. It was 
concluded that the multi‑modality radiomics model was more 
accurate in predicting the treatment response to NCRT. In 
another study combining 18F‑fluorodeoxyglucose PET and 
MRI radiomics, the combined model had higher predic‑
tive value in predicting the NCRT response in patients with 
LARC compared with that for the MRI model alone (98). 
There are also reports showing that the multi‑parameter MRI 
radiomics model had higher accuracy compared with that of 
the single‑sequence radiohistology model. In a study using a 
multi‑parameter MRI (T1WI, T2WI, diffusion‑weighted and 
contrast‑enhanced T1WI) radiomics model, a multi‑parameter 
prediction model and four single‑sequence prediction models 
were established. It was concluded that the multi‑parameter 
prediction model had more potential in predicting unrespon‑
sive patients following NCRT in patients with LARC (62). 
The studies by Cui et al (54,99) also showed similar results. 
In addition, the multi‑parameter MRI radiomics model had 
more potential in predicting the response to NCRT in patients 
with LARC. It has also been reported that a multi‑regional 
radiomics model could improve the predictive effectiveness 
of the model. Liu et al (100) combined multi‑regional (tumor 
and mesorectum) MRI radiomics features with clinical data 
to build a model, which effectively improved the rate of 
predicting lymph node metastasis in rectal cancer.

In recent years, a new artificial intelligence method, known 
as deep learning, has also emerged. Deep learning is a machine 
learning algorithm characterized by a neural network, which 
can be used in image classification, object detection, computer 
vision, speech recognition and natural language processing. 
Compared with radiomics, it does not require image segmen‑
tation and intermediate feature extraction (101). Deep learning 
has been applied to numerous aspects of medical image 
analysis, such as image acquisition, image rectification and 
image classification (102). In the future, if radiomics can be 
combined with deep learning or machine learning methods 
to build a higher performance model, they may create a new 
field of personalized imaging medicine (102‑104). At the same 
time, if a powerful and easy to use software was developed 
to obtain the ROI of the tumor, and semi‑automatic or even 
full‑automatic segmentation could be used, it would also save 
on medical resources.

5. Conclusion

In summary, radiomics provides new ideas and valuable data 
for clinical practice. MRI‑based radiomics can predict the 
response and prognosis in patients with LARC to NCRT 
using PCR determination, the lymph node status and the 
KRAS mutation status. However, there are still some limita‑
tions and challenges in its application in clinical practice. In 
the future, analyses from multi‑parameter, multi‑modality 
and multi‑regional radiomics may lead to improvements 
in the results. Radiomics may also be combined with 
machine learning methods, such as deep learning, to 
improve the predictive value. With the development of 
technology and medicine, radiomics has great potential as 
an imaging biomarker for predicting treatment response and 

determining prognosis, and could be used to assist clinical 
decision‑making.
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