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Simple Summary: The rumen is the main digestive and absorption organ of dairy cows. It contains
abundant microorganisms and can effectively use human-indigestible plant mass. Therefore, we used
metagenomics to explore the role of rumen microbes in the regulation of milk protein and fat in dairy
cows. This study showed that Prevotella species and Neocallimastix californiae in the rumen of cows
are related to the synthesis of milk components due to their important functions in carbohydrate,
amino acid, pyruvate, insulin, and lipid metabolism and transportation metabolic pathways.

Abstract: The rumen contains abundant microorganisms that aid in the digestion of lignocellulosic
feed and are associated with host phenotype traits. Cows with extremely high milk protein and
fat percentages (HPF; n = 3) and low milk protein and fat percentages (LPF; n = 3) were selected
from 4000 lactating Holstein cows under the same nutritional and management conditions. We
found that the total concentration of volatile fatty acids, acetate, butyrate, and propionate in the
rumen fluid was significantly higher in the HPF group than in the LPF group. Moreover, we
identified 38 most abundant species displaying differential richness between the two groups, in
which Prevotella accounted for 68.8% of the species, with the highest abundance in the HPF group.
Functional annotation based on the Kyoto Encyclopedia of Gene and Genome (KEGG), evolutionary
genealogy of genes: Non-supervised Orthologous Groups (eggNOG), and Carbohydrate-Active
enzymes (CAZy) databases showed that the significantly more abundant species in the HPF group
are enriched in carbohydrate, amino acid, pyruvate, insulin, and lipid metabolism and transportation.
Furthermore, Spearman’s rank correlation analysis revealed that specific microbial taxa (mainly the
Prevotella species and Neocallimastix californiae) are positively correlated with total volatile fatty acids
(VFA). Collectively, we found that the HPF group was enriched with several Prevotella species related
to the total VFA, acetate, and amino acid synthesis. Thereby, these fulfilled the host’s needs for energy,
fat, and rumen microbial protein, which can be used for increased biosynthesis of milk fat and milk
protein. Our findings provide novel information for elucidation of the regulatory mechanism of the
rumen in the formation of milk composition.

Keywords: dairy cattle; milk protein; milk fat; metagenome sequencing; rumen microbiome

1. Introduction

Cow’s milk, unmatched by other foods, is full of essential energy elements, such
as amino acids and nutrients, ensuring proper human growth and development, includ-
ing bone formation [1]. With an increase in the world population, milk consumption
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is expected to rise steadily over the next 50 years [2]. Meanwhile, people have become
more aware of milk quality, which is mainly determined by the milk protein and fat
content [3,4]. Therefore, intensifying milk production efficiency and quality has been a
continued priority [5].

The rumen of dairy cows is the main digestion and absorption organ. Similar to a large
anaerobic fermenter, the rumen contains abundant microorganisms, comprising bacteria,
protozoa, and fungi, that can use grass, food, and non-protein nitrogen, thereby promoting
the growth and development and milk production of animals [6–10]. The microorganisms
in the rumen aid in the digestion of complex fibrous substrates into fermentable sugars. Ul-
timately, the sugars fermented by rumen bacteria are primarily converted into volatile fatty
acids (VFA) [11]. Notably, the ruminal VFA and microbial proteins derived from microbial
fermentation are the key factors directly affecting milk biosynthesis [12]. Approximately
90% of the rumen VFA are acetate, butyrate, and propionate that are absorbed into the
blood through the rumen wall and then transported to the liver. Subsequently, the liver
transports cholesterol to the mammary gland for lipid synthesis as lipoproteins [13–19].
For lactose biosynthesis, glucose produced from the digestion of carbohydrates in the
rumen enters the mammary gland through the blood circulation and then is converted
into lactose [20]. In a similar way, for milk protein biosynthesis, rumen microorganisms
decompose feed and synthesize microbial proteins in the rumen. The microbial proteins
and undegraded dietary proteins that are digested into amino acids are transported to
the liver and then finally transported to the mammary gland via the blood circulation to
synthesize milk protein [21].

Metagenomics is the analysis of microbial communities in particular habitat(s) em-
ploying high-throughput sequencing without the obligation of laboratory culture and
isolation of individual strains [22,23]. It has been widely used to examine the microbial
diversity and metabolic capabilities of microbes in different ecological niches, fermented
food, wastewater treatment facilities, and the gastrointestinal tract in humans and ani-
mals [20,21,24–27]. In ruminants, rumen microbes play a vital role in the decomposition of
plant lignocellulosic matter [28–30]. Xue et al. [31] revealed that rumen bacterial richness
and the relative abundance of several bacterial taxa were significantly different between
dairy cows with high and low milk protein yields, suggesting the importance of rumen mi-
crobiota for milk protein yield. Jami et al. [32] examined the degree of divergence between
distinct dairy cows and found that certain physiological parameters, such as milk yield
and milk fat yield, highly correlate with the abundance of various bacteria in the rumen
microbiome. So far, most studies through 16S rRNA sequencing in dairy cows have mainly
focused on phylum and genus levels of the rumen microbiota to study their effects on milk
production, feed conversion ratio, and methane emissions. Notably, investigation of the
regulatory roles of the rumen microbiota in dairy cattle on milk composition traits is still
limited to the species level [33].

In this study, we examined the relationship between the rumen microorganism com-
position in lactating Holstein cows with extremely high and low milk protein percentages
(PP) and fat percentages (FP), ruminal fermentation, and milk quality parameters that may
be contributing to high-quality dairy milk production.

2. Materials and Methods
2.1. Animals and Sample Collection

Six healthy late-lactating Chinese Holstein cows (Table 1) were assigned to the high
milk protein and fat percentage (HPF) or the low milk protein and fat percentage (LPF)
group from a pool of 4000 lactating Holstein cows (Table 2) in the Sanyuanlvhe Dairy
Farming Center (Beijing, China).

All cows in this experiment were second parity. The cows were sacrificed before
morning feeding, and the rumen pH was measured immediately using a portable pH
meter (Testo 205, Testo AG, Lenzkirch, Germany). To obtain representative samples,
rumen contents were collected from four different parts, the cranial sac, the ventral sac,
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the caudodorsal blind sac, and the caudoventral blind sac, according to the detailed
description of the anatomic structure of the bovine rumen [34] within 15 min of slaughter.
The rumen contents were filtered through four layers of cheesecloth and immediately
frozen in liquid nitrogen to be stored at −80 ◦C for further analysis. VFA analysis was
performed with gas chromatography by using 1 mL of a corresponding rumen fluid sample,
as described previously [35]. Meanwhile, ammonia-N analysis was performed using the
phenol hypochlorite colorimetric method [36].

Table 1. Milk yield, composition, and body weight of dairy cows.

Items HPF LPF SEM p-Value

Milk, kg/d 35.172 34.826 0.851 0.876
DIM, days 244.231 237.336 11.653 0.812

Body weight, kg 637.752 617.210 8.258 0.316

Composition, %
Fat 4.393 1.940 0.252 0.004 **

Protein 3.943 2.923 0.102 0.002 **
** p < 0. 01. HPF, high milk protein and fat percentage; LPF, low milk protein and fat percentage; SEM, standard
error of the mean.

Table 2. Phenotypic values for milk protein and fat percentage of the 4000 Holstein cows.

Groups Protein Percentage Fat Percentage

High1 4.02% 4.66%
High2 3.86% 4.68%
High3 3.95% 3.84%

Average of 4000 cows 3.60% 3.10%
Low1 2.78% 1.92%
Low2 3.04% 1.86%
Low3 2.95% 2.04%

2.2. DNA Extraction and Metagenome Sequencing

A total of 5 mL of rumen fluid of each sample was lysed with a shaker, and then
total genomic DNA was extracted using the QIAamp DNA Stool Mini Kit (Qiagen Ltd.,
Hilden, Germany). DNA sample concentrations were measured by a UV–VIS NanoDrop
2000c spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA), and DNA
integrity was assessed using 1.0% agarose gel electrophoresis (Table S1 and Figure S1).
Subsequently, 1.98~2.55 µg of gDNA was used for library preparation. Sequencing libraries
were generated using the NEBNext® Ultra™ DNA Library Prep Kit (NEB, Ipswich, MA,
USA) following the manufacturer’s recommendations. Index codes were added to attribute
sequences to each sample. Briefly, the DNA sample was fragmented by sonication to a size
of 350 bp, and then the DNA fragments were end-polished, A-tailed, and ligated with a full-
length adaptor for PCR amplification. Finally, the PCR products were purified (AMPure
XP system, Beckman, CA, USA), and libraries were analyzed for size distribution by an
(Agilent2100 Bioanalyzer, Agilent, Palo Alto, CA, USA) and quantified using real-time
PCR. Metagenome sequencing was performed on an Illumina HiSeq sequencing platform
(Illumina Inc., San Diego, CA, USA, 150 bp paired-end sequencing).

2.3. Quality Control and Assembly of Metagenomic Data

For subsequent analysis, clean data were extracted from the raw data obtained from
the Illumina HiSeq sequencing platform using the Readfq program (https://github.com/
cjfields/readfq, Version 8 at 11 October 2011, accessed on 18 February 2021). Low-quality
reads of <40 bp length, N bases of 10 bp, and overlaps above 15 bp in length were removed.
To eliminate data contamination from the host, the clean data were compared against a
reference bovine genome UMD3.1.69. Bowtie (http://bowtie-bio.sourceforge.net/bowtie2
/index.shtml, Version 2.2.4, accessed on 18 February 2021) was used to filter the reads of host

https://github.com/cjfields/readfq
https://github.com/cjfields/readfq
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
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origin; the parameters were as follows: end-to-end, sensitive, I 200, and X 400. The potential
reads from the host were filtered out by applying the following parameters [37]: end-to-end,
sensitive, I 200, and X 400. Lastly, the filtered reads were assembled using SOAPdenovo
software (http://soap.genomics.org.cn/soapdenovo.html, Version 2.04, accessed on 18
February 2021). Scaffolds of >500 bp were extracted for subsequent genetic prediction and
annotation [38–40].

2.4. Gene and Taxonomy Prediction

For each sample, open reading frame (ORF) prediction in the Scaftigs (≥500 bp)
was performed using MetaGeneMark (http://topaz.gatech.edu/GeneMark, Version 2.10,
accessed on 18 February 2021) software [41–43]. Data redundancy was removed using CD-
HIT software (http://www.bioinformatics.org/cd-hit, Version V4.5.8 at September 2009, ac-
cessed on 18 February 2021), and a non-redundant initial gene catalog was obtained [44,45].
For taxonomic analysis, DIAMOND [46] (https://github.com/bbuchfink/diamond, Ver-
sion 0.9.9, accessed on 18 February 2021) was used to blast the unigenes against the bacteria,
fungi, archaea, and virus sequences in the Non-Redundant Protein Sequence Database (NR
database) of the NCBI (https://www.ncbi.nlm.nih.gov/ at 2 January 2018, accessed on 18
February 2021) using the parameter (blastp, evalue ≤10−5).

Using the R package, we used the log2 logarithmic transformation of the species-
level abundance value as the ordinate to draw the rank abundance curve of each sample,
presenting diversity of the bacterial communities.

2.5. Comparative Analysis of Microorganism Abundance in the HPF and LPF Groups

Krona was used to display the relative abundance and the abundance cluster heat
map. Principal component analysis (PCA) [47] (R ade4 package, version 2.15.3) and
NMDS [48] (R vegan package, version 2.15.3) decrease-dimension analysis were carried
out based on the abundance of the taxonomical hierarchy at genera and species levels.
ANOSIM was used to examine the differences in microorganism abundance within and
between groups (R vegan package, version 2.15.3 at 22 June 2012). Linear discriminant
analysis (LDA) effect size (LEfSe) and Metastats analyses were performed to identify the
species with different abundance between groups at the species level. LEfSe software
(http://huttenhower.sph.harvard.edu/galaxy/, accessed on 18 February 2021) was used
with the default threshold LDA score of 2 [49]. In Metastats analysis, for each taxonomy,
the permutation test was performed between groups to obtain the raw p-Value, which was
corrected by the Benjamini and Hochberg false discovery rate to acquire the q-Value.

2.6. Functional Annotation

To analyze the functions of rumen microorganisms, the unigenes were blasted using
DIAMOND software against functional databases, including the Kyoto Encyclopedia of
Gene and Genome (KEGG, http://www.kegg.jp/kegg at 1 January 2018, accessed on 18
February 2021), evolutionary genealogy of genes: Non-supervised Orthologous Groups
(eggNOG, http://eggnogdb.embl.de/#/app/home, Version 4.5, accessed on 18 February
2021), and Carbohydrate-Active enzymes (CAZy, http://www.cazy.org at 4 July 2015,
accessed on 18 February 2021). The best BLAST hits were subjected to subsequent analysis.
LEfSe and Metastats analyses were performed to identify the distinct functions between
HPF and LPF groups.

2.7. Correlation Analysis

Using the R package, Spearman’s rank correlation analysis was used to calculate
the correlation coefficients among the abundances of different ruminal microorganisms
between groups, VFA concentrations, and milk components, as well as to detect the
correlation coefficient between each rumen liquid sample, based on the gene abundances,
with p < 0.05 being considered significant.

http://soap.genomics.org.cn/soapdenovo.html
http://topaz.gatech.edu/GeneMark
http://www.bioinformatics.org/cd-hit
https://github.com/bbuchfink/diamond
https://www.ncbi.nlm.nih.gov/
http://huttenhower.sph.harvard.edu/galaxy/
http://www.kegg.jp/kegg
http://eggnogdb.embl.de/#/app/home
http://www.cazy.org
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3. Results
3.1. Ruminal pH and VFA Concentrations

Rumen pH and NH3-N (mg/dL) were similar between the HPF and LPF groups
(p > 0.05) (Table 3).

Table 3. Effects of differences between the HPF group and LPF group on metabolites in the rumen.

Items HPF LPF SEM p-Value

pH 6.466 6.606 0.083 0.458
NH3-N, mg/dL 17.956 17.701 0.102 0.221

Proportion - - - -
Acetate 67.104 47.508 4.599 0.003 **

Propionate 24.703 12.354 2.894 0.003 **
Butyrate 6.247 5.244 0.266 0.035 *

Isobutyrate 0.703 0.519 0.072 0.235
Valerate 0.936 0.809 0.126 0.667

Isovalerate 0.378 0.345 0.019 0.447
Total VFA,
mmol/L 100.071 66.780 7.754 0.002 **

* p < 0.05, ** p < 0.01. SEM, standard error of the mean.

The proportions of acetate, propionate, and butyrate, and total VFA concentrations
were markedly higher in the HPF group than in the LPF group (p < 0.05). However,
the proportions of isobutyrate, valerate, and isovalerate were not significantly different
between the two groups (p > 0.05).

3.2. Sequencing of the Rumen Microbiota

A total of 76 Gbp clean data were generated after quality control (Table S1). After
assembling the samples, a total of 1,524,250,289 bp Scaftigs were obtained. After prediction
and redundancy removal by MetaGeneMark and CD-HIT programs, we identified a total of
1,078,009 ORFs covering a total length of 667.24 Mbp in scaffolds longer than 500 bp. From
these, a total of 278,274 complete genes, accounting for 25.81%, were annotated (Table S3).
The correlation coefficients (R2) among the three samples within each group were 0.80
and 0.79, respectively, and R2 between HPF and LPF groups was 0.01, indicating the high
similarity of biological replicates and divergence between comparison groups (Figure S2).

3.3. Taxonomic Composition of the Rumen Microbiota

We obtained the annotated phylum and genus accounting for 80.48% and 66.82% of
the unigenes, respectively. Among these, 6977 microorganisms were detected, including
6259 bacteria, 397 eukaryota, 140 archaea, and 181 viruses. The predominant taxonomic
compositions of the rumen samples from six cows are displayed at phylum, class, order,
family, genus, and species levels in Figure S3. At the phylum level, the dominant bacterial
phyla were Bacteroidetes (51.4%), Firmicutes (8.72%), Proteobacteria (5.77%), and Fibrobacteres
(3.08%); at the genus level, the most abundant bacterial genera were Prevotella (38.48%), Fi-
brobacter (3.08%), and Bacteroides (2.47%) and the dominant bacterial species were Prevotella
ruminicola (3.85%), Prevotella sp. Ne3005 (3.33%), Prevotella sp. tc2-28 (2.77%), and Prevotella
sp. tf2-5 (2.31%).

3.4. Differential Abundance of the Rumen Microbiome between the HPF and LPF Groups with PP
and FP

We found that the species diversity in the LPF group was higher than that in the HPF
group, shown by the rank abundance curve (Figure S4). Using PCA and based on the
rumen microbiome abundance at genus and species levels, the six cows with extremely
high and low milk PP and FP were separated into two clusters (Figure 1A,B).
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Principal coordinate 1 accounted for 60.68% and 55.31%, while principal coordinate
2 accounted for 12.81% and 14.21% of the total variation in the two groups, respectively.
Furthermore, ANOSIM revealed significant differences in the abundances of rumen mi-
croorganisms between the cows of the HPF and LPF groups (R = 0.889, p = 0.1; R = 1,
p = 0.1; Figure 2).
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Among the top 10 most abundant genera, Prevotella exhibited the highest proportion in
the HPF and LPF groups, at 42.8% and 34.2%, respectively; Fibrobacter accounted for 3.13%
and 2.69%, and Bacteroides accounted for 3.02% and 2.25% in the two groups, respectively.
The abundances of another seven genera were 0.44–0.8% (Figure S1E). LEfSe analysis
detected 289 differential microorganisms (LDA > 2; Table S4). To find microbiota with more
significant differences, we used an LDA value greater than 3 for screening and identified
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40 kinds of microbiota with significant differential abundances between the HPF and LPF
groups (Figure 3).
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Meanwhile, Metastats analysis revealed that 2797 microorganisms showed significant
differential abundances between the two groups (p = 1.48 × 10−5~0.049; q = 0.037~0.048).
Of these, 38 species were commonly identified by both methods (Figure 4 and Table S5),
where 8 Prevotella sp., 2 unclassified_Bacteroidales, 2 unclassified_Bacteria, and 1 eukaryota
Neocallimastix californiae exhibited significantly higher abundance in the HPF group, while
25 species were significantly enriched in the LPF group.

Of these, the 35 most abundant microorganisms (abundance > 0.02%; Figure 5) in-
cluded 16 species of the phylum Bacteroidetes in the HPF group and 19 bacteria belonging
to four different phyla, namely Bacteroidetes, Firmicutes, Fibrobacteres, and Proteobacteria, in
the LPF group. Notably, 11 of the 16 species in the HPF group belonged to Prevotella, which
is involved in carbohydrate degradation.
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3.5. Correlation among Ruminal Microbiome, Ruminal Fermentation, and Milk Components

Spearman’s correlation analysis revealed the relationship among 38 differentially
expressed ruminal microbes, milk components, and the concentrations of the total VFA,
acetate, propionate, and butyrate. As shown in Figure 6, we found that Prevotella sp. tc2-28,
Prevotella sp. ne3005, and Neocallimastix californiae were positively correlated with total
VFA and acetate (R > 0.5; p < 0.01); Prevotella ruminicola was positively correlated with PP
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(R > 0.5; p < 0.01); and Tolumonas lignilytica and Succinatimonas sp CAG 777 were negatively
correlated with total VFA and acetate (R < −0.5; p < 0.01).
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3.6. Functional Enrichment of the Rumen Microbiome Exhibiting Differential Abundances between
the HPF and LPF Groups with PP and FP

To further understand the potential correlation of the rumen microbiome with milk
protein and fat traits, the differentially abundant rumen microbiome was functionally
annotated using the KEGG, eggNOG, and CAZy programs. Regarding KEGG, LEfSe
and Metastats analyses found 66 pathways significantly enriched in third-level path-
ways (LDA > 2.0, p < 0.05; Figure 7 and Table S6): 48 pathways involved species with
a significantly high abundance in the HPF group (4 Metabolism, 8 Cellular Processes,
13 Environmental Information Processing, 14 Organismal Systems, and 9 Human Diseases
pathways) while 18 pathways were enriched in the LPF group.



Animals 2021, 11, 1247 11 of 19Animals 2021, 11, x  11 of 19 
 

 
Figure 7. LDA effect size (LEfSe) analysis of the function of the Kyoto Encyclopedia of Gene and 
Genome (KEGG) between two groups. 

In KEGG orthology analysis, LEfSe and Metastats analyses found 37 significant KOs 
(LDA > 2, p < 0.05; Figure 8 and Table S7), including 7 KOs (K01190, K05349, K01811, 
K01847, K03737, K01006, and K00688) that are related to carbohydrate, galactose, starch 
and sucrose, lipid, sphingolipid, glycan, glutathione, butanoate, pyruvate, energy, and 
amino acid (AA) metabolism; glycolysis; valine, leucine, and isoleucine degradation; ala-
nine, aspartate, and glutamate metabolism; and the citrate cycle. All of these were en-
riched in the HPF group, while another 15 KOs that were highly abundant in the LPF 
group were related to DNA-damage-inducible protein J (K07473), ATP-dependent DNA 
helicase RecG (K03655), and flagellin (K02406). 

Figure 7. LDA effect size (LEfSe) analysis of the function of the Kyoto Encyclopedia of Gene and
Genome (KEGG) between two groups.

In KEGG orthology analysis, LEfSe and Metastats analyses found 37 significant KOs
(LDA > 2, p < 0.05; Figure 8 and Table S7), including 7 KOs (K01190, K05349, K01811,
K01847, K03737, K01006, and K00688) that are related to carbohydrate, galactose, starch
and sucrose, lipid, sphingolipid, glycan, glutathione, butanoate, pyruvate, energy, and
amino acid (AA) metabolism; glycolysis; valine, leucine, and isoleucine degradation;
alanine, aspartate, and glutamate metabolism; and the citrate cycle. All of these were
enriched in the HPF group, while another 15 KOs that were highly abundant in the LPF
group were related to DNA-damage-inducible protein J (K07473), ATP-dependent DNA
helicase RecG (K03655), and flagellin (K02406).
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Likewise for the eggNOG database, LEfSe and Metastats analyses revealed that eight
pathways significantly enriched in the HPF group were involved in carbohydrate trans-
port and metabolism; signal transduction metabolism; energy production and conversion;
translation ribosomal structure and biogenesis; nuclear structure; lipid transport and
metabolism; secondary metabolite biosynthesis, transport, and catabolism; and posttransla-
tional modification. On the contrary, five significantly enriched pathways in the LPF group
were related to replication recombination and repair, amino acid transport and metabolism,
coenzyme transport and metabolism, extracellular structures, and cell motility (LDA > 2,
p < 0.05; Figure 9 and Table S8).
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The CAZy database also revealed a total of 215 CAZyme encoding genes (Table S9),
which included 96 glycoside hydrolases (GHs), 46 carbohydrate-binding modules (CBMs),
45 glycosyltransferases (GTs), 12 carbohydrate esterases (CEs), 11 polysaccharide lyases
(PLs), and 5 auxiliary activities (AAs). LEfSe analysis detected 79 CAZyme encoding genes
(LDA > 2; Table S10). Of them, the GH51, GH97, GH31, GH2, GH3, and GH43 family of
glycoside hydrolases and CE1 were more significantly enriched in the HPF group, while 12
were enriched in the LPF group (5GH, 1CE, 3GT, and 3CBMs) (LDA > 3, p < 0.05; Figure 10
and Table S11).
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Based on the results, the potential regulatory mechanism of rumen microorganisms on
milk protein and fat synthesis is shown in Figure 11. In summary, more abundant Prevotella
ruminicola, Prevotella sp. Ne3005, Prevotella sp. tc2-28, and Neocallimastix californiae in the
HPF group might effectively degrade and ferment the cellulose, hemicellulose, and starch in
the rumen better to produce a large amount of pyruvate, which is subsequently transformed
into various kinds of short-chain fatty acids (acetic acid, propionic acid, butyric acid, etc.)
and amino acids. The metabolin is transferred to the mammary gland to synthesize milk
protein and fat through liver synthesis, intestinal absorption, and blood circulation.
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4. Discussion

In this study, using metagenomics, we investigated the rumen microbiome of Holstein
cows in the late lactation stage with extremely high and low milk protein and fat percent-
ages. We found that the differential abundances of the microorganisms at phylum, genus,
and species levels were significantly linked to milk protein and fat traits.

We detected a total of 6977 unique microorganisms. The three most abundant phyla
were Bacteroidetes, Firmicutes, and Proteobacteria. Notably, these results are consistent
with previous discoveries [50–52]. Besides, we also found that Neocallimastigomycota is
the major anaerobic fungus, which is similar to the report by Zhang et al. [51]. On the
contrary, based on 16S rRNA sequencing, Huang et al. suggested that Actinobacteria is the
most predominant phylum, besides Bacteroidetes and Firmicutes, in the rumen of lactating
Chinese Holstein cows [53]. This difference between the studies could be due to the distinct
feeding management and environment of the dairy farm where the samples were collected.
Consistent with the previous report by Xue et al. [52], we also found that Prevotella is the
most abundant genus in the rumen of lactating cows with high milk protein.

LEfSe and Metastats analyses revealed that Prevotella ruminicola, Prevotella sp. Ne3005,
and Prevotella sp. tc2-28 (LDA > 5, p < 0.05) are highly enriched in the HPF group. Notably,
Prevotella sp. ne3005 and Prevotella sp. tc2-28 were positively correlated with total VFA and
acetate (p < 0.01), and Prevotella ruminicola was positively correlated with PP (p < 0.01). The
genus Prevotella is known to aid the metabolism of cellulose and starch and the production
of acetate, butyrate, and propionate [54–58]. Chiquette et al. [59] reported that Prevotella
bryantii 25A can improve ruminal fermentation products and milk fat concentration in cows
in the early lactation stage. Likewise, Osborne et al. [60] suggested that Prevotella ruminicola,
along with other cellulolytic bacteria, can synergistically participate in plant cell wall
degradation to fully use forage cellulose, hemicellulose, and pectin for conversion into VFA.
Overall, these findings suggest that Prevotella species are essential for VFA biosynthesis.
In our study, a higher concentration of VFA (total VFA, acetate, propionate, and butyrate)
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in the HPF group than in the LPF group further suggests higher ruminal fermentation
efficiency in the former group. In addition, among the 35 most abundant microorganisms,
14 species with the highest abundance in the HPF group belonged to two genera, and 11 of
the 14 species belonged to the genus Prevotella. In contrast, in the LPF group, 19 species of
high abundance were distributed across four different genera. In the HPF group, cows with
high milk fat and protein contents showed the characteristics of lower diversity and higher
abundance at the genus level. Notably, microbial diversity is an important factor affecting
cow metabolism. Shabat et al. [61] found that lower richness of the microbiome gene content
and taxa is tightly linked to higher feed efficiency. Interestingly, at the eukaryote level,
Neocallimastix californiae, which was higher in the HPF group, was positively correlated
with the total VFA and acetate. This eukaryote can ease the inner tension of plant fiber,
facilitating degradation by rumen microbes [62]. The diversity and abundance of microbes
and mutualism between the dominant bacteria and anaerobic fungi create an excellent
rumen microbial environment enabling the HPF group to produce more VFA and use
sufficient raw materials for milk production.

Based on KEGG and eggNOG databases, we found that galactose, starch and sucrose,
glycolysis, lipid, energy, butanoate, and pyruvate metabolism were enriched in the HPF
group, indicating the increased production of hydrolytic products and pyruvate due to
the improved carbohydrate degradation ability of the microbiome in this group. Com-
pared with the LPF group, the highly abundant genes encoding CAZymes involved in
carbohydrate synthesis (GHs) and the higher concentrations of major VFA in the HPF
group suggest that their rumen microbiomes are more efficient in hydrolysis to produce
VFA and, in turn, improve lactogenesis. Altogether, Prevotella and VFA contents in the
HPF group were markedly higher than those in the LPF group. The differential Prevotella
content can alter the carbohydrate, energy, lipid, and amino acid metabolism, causing
an increase in acetate, butyrate, and propionate in the HPF group. Acetate and butyrate
are milk fat precursors, while propionate is the precursor of milk protein [63,64]. The
HPF group microbiome can effectively digest the feed ingredients to degrade them into
pyruvate, finally generating more VFA. Acetate and butyrate in the rumen are converted
into cholesterol by the liver to later participate in the synthesis of milk fat [13]. Propionate,
the main precursor of glucose synthesis in ruminants, is required for energy supply and
protein synthesis. An increase in propionate content can also stimulate insulin secretion,
blood flow to the breast, and synthesis of milk protein [65–67]. Interestingly, we found
that pathways related to valine, leucine, and isoleucine degradation and alanine, aspartate,
and glutamate metabolism are enriched in the HPF group. Essential AAs are critical for
multiple physiological processes [68]. Branched-chain AA (BCAA) supplementation has
been found to be beneficial for body weight, lipogenesis, and insulin resistance in several
species [69–71]. BCAAs are also known to improve milk and body protein synthesis and
get oxidized by the tricarboxylic acid cycle to produce ATP during catabolic states [72].
In the HPF group, the enrichment of the tricarboxylic acid cycle suggests an increase
in the mutual conversion of body fat, sugar, and protein and the increased synthesis of
microbial protein. This may provide sufficient protein to the mammary gland for milk
protein synthesis. Future studies must be conducted to identify the functions of differential
microbiomes, and single-bacterial cultures should validate the function of Prevotella species
in regulating milk fat and milk protein. In subsequent experiments, we also plan to test
bacteria and eukaryotes with significant differences in enzyme preparations as cow feed to
examine their effect on milk traits.

The present study had certain limitations. Only three biological replicates were used
for each condition, due to the limited availability of rumen liquid samples from lactating
cows, especially the high-production ones. Two previous studies evaluated the relationship
between detection capacity and the number of replicates. They found that the true positives,
the detection rate (recall) of differentially expressed genes and transcripts, and precision
were similar for two or more replicates if most commonly adopted software reads were
employed [73,74]. However, more biological replicates should be preferred to achieve
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broader examinations for improved detection. In addition, the potential regulatory roles of
the differentially expressed microorganisms (mainly Prevotella species and Neocallimastix
californiae) need to be further validated.

5. Conclusions

In the present study, using microgenomics, we identified the top 38 differentially
abundant species between the dairy cows with extremely high and low milk PP and FP,
which were involved in carbohydrate, amino acid, pyruvate, insulin, and lipid metabolism
and transportation. Prevotella ruminicola, Prevotella sp. tc2-28, and Neocallimastix californiae,
with higher abundance in the HPF group, were correlated with total VFA and acetate,
implying their better capability of digesting feed and providing an adequate substrate for
milk synthesis in the mammary glands.
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10.3390/ani11051247/s1, Figure S1: The 1% agarose el image of 6 samples; Figure S2: Heat map of
correlation coefficient between samples; Figure S3: Composition of the most predominant bacterial
in the rumen at different levels; Figure S4: Rank abundance curve graph. Table S1: The description of
gDNA; Table S2: Description of the assembly results of rumen microbiota from Chinese Holstein
cows with high and low milk PP and FP; Table S3: Summary of genetic prediction results; Table S4:
LDA value of rumen microbiota between two groups; Table S5: Different bacteria results display;
Table S6: LDA and p value of KEGG pathways between two groups; Table S7: LDA and p value of
KOs between two groups; Table S8: LDA value of eggNOG database between two groups; Table S9:
CAZyme database results display; Table S10: LDA value of CAZyme database between two groups;
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