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Abstract

Objective

This study examined adaptive responses to auditory perturbation of fundamental frequency

(fo) in speakers with Parkinson’s disease (PD) and control speakers.

Method

Sixteen speakers with PD and nineteen control speakers produced sustained vowels while

they received perturbed auditory feedback (i.e., fo shifted upward or downward). Speakers’

pitch acuity was quantified using a just-noticeable-difference (JND) paradigm. Twelve listen-

ers provided estimates of the speech intelligibility for speakers with PD.

Results

Fifteen responses from each speaker group for each shift direction were included in analy-

ses. While control speakers generally showed consistent adaptive responses opposing the

perturbation, speakers with PD showed no compensation on average, with individual PD

speakers showing highly variable responses. In the PD group, the degree of compensation

was not significantly correlated with age, disease progression, pitch acuity, or intelligibility.

Conclusions

These findings indicate reduced adaptation to sustained fo perturbation and higher variability

in PD compared to control participants. No significant differences were seen in pitch acuity

between groups, suggesting that the fo adaptation deficit in PD is not the result of purely per-

ceptual mechanisms.

Significance

These results suggest there is an impairment in vocal motor control in PD. Building on these

results, contributions can be made to developing targeted voice treatments for PD.
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Introduction

Parkinson’s disease (PD) is a slowly progressing neurodegenerative condition. It affects

approximately 3–5% of the population over the age of 85 years [1], with a prevalence that is

predicted to increase drastically [2]. In addition to the cardinal motor deficits such as bradyki-

nesia, rigidity, tremor, and postural instability, over 90% of individuals with PD develop hypo-

kinetic dysarthria, a motor speech disorder [3]. Hypokinetic dysarthria is primarily

distinguished by reduced speech loudness [4], but also frequently encompasses dysprosody,

which can involve ‘monopitch’, or the perception of reduced fluctuation in fundamental fre-

quency (fo) during speech production [5, 6]. These disruptions in typical prosodic patterns in

speakers with PD have been shown to negatively influence listeners’ perceptions of the speak-

ers’ tone, personality, and mood [7] and to correlate to listeners’ perception of the ‘naturalness’

of their speech [8]. Given the importance of prosody for speech intelligibility and social com-

munication in PD [9–12], it is necessary to better characterize the underlying causes of pro-

sodic impairments in order to improve the assessment and treatment of speech in PD. This

study aims to investigate the patterns of sensorimotor adaptation to perturbation of voice fo in

speakers with PD to clarify deficits in fo control in PD.

Many studies of auditory-motor control involve distortion of auditory feedback during

speech. These studies have revealed that typical individuals generally show compensatory

(opposing the direction of the perturbation) responses to both sustained and brief, unantici-

pated modifications in auditory feedback. Studies show that as feedback of voice fo is increased

gradually over many productions (i.e., a sustained perturbation), speakers show compensatory

adaptive responses by gradually lowering their fo across the experiment [13–18]. Studies

involving brief, unanticipated perturbation of auditory feedback similarly showed that speak-

ers had compensatory reflexive responses: as fo is suddenly increased, speakers respond by

quickly lowering their fo [19, 20]. The adaptive responses to sustained modifications and the

reflexive responses to sudden modifications observed in these experiments can be accounted

for by the Directions Into Velocities of Articulators (DIVA) model, a neural network model of

speech motor skill acquisition and speech production.

The DIVA model [21, 22] is a widely used characterization of the neural and computational

processes underlying speech production that describes how feedforward and feedback control

processes are combined to produce speech movements. Similar to other modern theories of

speech motor control [23, 24], DIVA posits there are separate processes governing perception

of auditory feedback and the creation of future vocal motor actions. According to the DIVA

model, an unexpected perturbation of auditory feedback during speech leads to a mismatch

between expected and perceived auditory signals; if this “auditory error signal” passes a certain

threshold, it is then transformed into a corrective motor command by the auditory feedback

control system, resulting in a reflexive response as described above [25, 26]. Although similar

to DIVA, the State Feedback Controller (SFC) model for speech [23] states that when auditory

feedback is received, there is also an internal model taking into account vocal tract controls.

Furthermore, in the SFC model, errors are continuously generated (not solely when the audi-

tory error signal has reached a specific threshold, as in DIVA). Regardless, if a perturbation is

maintained for a sustained period of time, corrective commands generated by the auditory

feedback control system become subsumed into feedforward commands; in other words, the

feedforward controller adapts to the sustained perturbation [e.g.,15, 16, 27–29].

In the speech domain, reflexive responses to sudden, brief, perturbations of the acoustical

characteristics of vowels [i.e. formants; 30] in PD have revealed significantly reduced compen-

satory gain (the magnitude of the compensation divided by the magnitude of the feedback

shift) compared to controls during formant changes of 15% but comparable compensatory
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gain between groups for larger formant changes of 30%. One study thus far investigated adap-

tive responses to sustained alterations in formants in speakers with PD [31]. Speakers with PD

had reduced adaptive responses to a 30% perturbation compared to healthy control speakers

when analyzed on a group level. Thus, during reflexive formant changes of 30%, PD speakers

show comparable responses relative to controls, whereas adaptive responses to gradual for-

mant changes of 30% show reduced responses in PD speakers relative to controls. Reflexive

responses to sudden, brief, perturbations of fo in PD have revealed larger reflexive response

magnitudes [32, 33] and compensatory gains [30] to perturbations and longer response dura-

tions [34] relative to control speakers.

Articulatory motor control (which primarily affects formants) may differ from control of

vocal parameters such as fo [21, 30, 35, 36]. Furthermore, vocal characteristics in PD appear to

have a different timeline compared with articulatory symptoms [37–39]. Therefore, it is neces-

sary to characterize adaptive responses to sustained perturbations to both articulatory pertur-

bations and vocal parameters such as fo in PD.

To our knowledge, adaptive responses to sustained perturbations of fo have not yet been

studied in PD. In the current work, auditory-motor control of fo was investigated by compar-

ing adaptive responses to a sustained 100 cent perturbation of fo (implemented gradually over

time) in speakers with PD relative to control speakers. A cent is a logarithmic unit of measure

of changes in frequency, like the semitone; 100 cents are equivalent to 1 semitone. We hypoth-

esized that speakers with PD would show reduced adaptation to sustained perturbation of fo as

compared to control speakers due to disordered sensorimotor integration. Furthermore, based

on previous findings that individuals with better pitch acuity had larger adaptive responses to

formant perturbation [29], we hypothesized that, in the current study, individuals with better

pitch acuity would have a larger degree of compensation to perturbations in fo. We also

hypothesized that speakers with PD who had less intelligible speech, suggesting impaired vocal

prosody, would have reduced adaptive responses due to a smaller vocal pitch range. Lastly,

given the evidence for variable onset times of voice difficulties in the progression of PD, we

did not expect disease severity to be a predictor of adaptive responses.

Materials and methods

Participants

All participants provided written consent in compliance with the Boston University Institu-

tional Review Board under protocol 2625, which approved this study. Twenty-one speakers

with PD and twenty-eight control speakers were recruited to participate in the study. Four

speakers with PD were excluded from the study group due to abnormal hearing thresholds for

older adults (N = 2, see Hearing Thresholds) or inability to complete the main experimental

task (N = 2). Eight control speakers were excluded from the study group due abnormal hearing

thresholds (N = 6), perceptually atypical voice (N = 1), or failure of a pre-study cognitive

screening (N = 1). One speaker with PD and one control speaker were excluded due to data

analyses restrictions on the primary experimental task (see Data Analysis). Thus, sixteen

speakers with PD aged 52–73 years (7 female) and nineteen healthy control speakers aged 50–

77 years (8 female) were included in the study (see Table 1). The complete study lasted two ses-

sions. Fourteen speakers with PD and eleven control speakers completed both sessions, and

two speakers with PD and eight control speakers completed a single session. All speakers with

PD were diagnosed with idiopathic PD by a neurologist prior to participation in the study and

were receiving daily levodopa/carbidopa therapy. Twelve naïve listeners aged 18–23 years (6

female) were included in the study to assess the speech intelligibility of the speakers with PD
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(see Data Analysis). Control speakers and listeners denied any known neurological, speech,

hearing, cognitive, or language disorders.

Movement Disorder Society Unified Parkinson’s Disease Rating Scale

(MDS-UPDRS)

Part III (Motor Examination) of the Movement Disorder Society sponsored revision of the

Unified Parkinson’s Disease Ratings Scale [MDS-UPDRS; 40] was provided to each participant

with PD to assess the motor signs of PD. This documents the severity of abnormalities during

execution of motor function tasks such as speech, upper and lower extremity movements, and

walking. The first author, certified to administer MDS-UPDRS, scored each examination per

protocol. The UPDRS total motor score (see Table 1) was used as a correlate of disease

progression.

Hearing thresholds

Each participant underwent pure-tone hearing threshold testing at 250, 500, 1000, 1500, 2000,

3000, and 4000 Hz using 3MTM E-A-RTONETM Gold 3A insert earphones and the Grason-

Stadler GSI 18 Screening Audiometer. All participants had hearing thresholds within normal

range for older adults [under 25 dB HL for frequencies 1000 Hz and below, and under 40 dB

HL above 1000 Hz; 41]. None of the participants wore hearing aids.

fo Adaptation procedure

All experimental sessions were conducted in a sound-attenuating audiometric booth. Partici-

pants were seated in front of a computer monitor and wore a Shure omnidirectional MX153

earset microphone positioned at approximately 45 degrees from the midline and 7 cm from

the corner of the mouth. The microphone signal was amplified via an RME Quadmic II micro-

phone preamplifier and digitized via a MOTU Ultralite-mk3 Hybrid soundcard with a sam-

pling rate of 48000 Hz. The auditory feedback was amplified at least 5 dB relative to the sound

pressure level (SPL) at the microphone [based on relative dB between microphone and ear;

42]. Due to the length of the experimental procedure (3 conditions × 30 minutes each), sound

exposure was kept to the minimum possible sound pressure level that allowed participants to

adapt to auditory feedback changes. For calibration, the intensity of the auditory feedback in

the headphones was measured using an IEC 60318–1 coupler (Type 4153, Bruel & Kjaer Inc.,

Norcross, GA) connected to a sound level meter (Type 2250 Hand Held Analyzer with Type

4947 ½” Pressure Field Microphone, Bruel & Kjaer Inc., Norcross, GA) such that an electrolar-

ynx (TruTone Artificial Larynx, Griffin Laboratories, Temecula, CA) input with an intensity

of 75 dB SPL approximately 7 cm from the microphone resulted in at least 80 dB SPL output

Table 1. Participant characteristics (M: mean, SD: standard deviation).

Speakers with PD Control Speakers Listeners

Age (years) M = 64.8, SD = 6.3

Range: 52–73

M = 65.3, SD = 4.6

Range: 50–77

M = 21.9, SD = 2.9

Range: 18–23

Sex 8 F, 8 M 10 F, 9 M 6 F, 6 M

Time since diagnosis (years) M = 6.97, SD = 7.05

Range: 1.5–30

N/A N/A

Hoehn and Yahr M = 2.1, SD = 0.6

Range: 1–3

N/A N/A

UPDRS Part III score (total motor score) M = 41.0, SD = 13.6

Range: 22–72

N/A N/A

https://doi.org/10.1371/journal.pone.0191839.t001
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in the headphones. Auditory feedback was administered via Sennheiser HD 280 Pro head-

phones, which attenuate air-conducted sound by approximately 32 dB (Sennheiser Electronic

Corporation). The Sennheiser HD 280 Pro headphone set used across participants had a differ-

ent response for some PD and control participants, but data were analyzed for adaptation

response differences and there was no clear effect of the headphone response. The fo was

manipulated using Audapter [43], a MATLAB software package for configurable real-time

manipulation of acoustic parameters of speech, using the ASIO4ALL driver. The total process-

ing delay was 45 ms, which is below the threshold at which delayed auditory feedback can

cause speech dysfluency [44].

The adaptive responses to fo perturbation were recorded under three conditions: ‘‘shift-up”,

“shift-down”, and “control”, with the order counterbalanced across participants. Each condi-

tion consisted of 160 trials and each trial was 11 s in duration. Participants were instructed to

produce a sustained /α/ for 3 s when “aaa” was displayed in green on the computer monitor

and to then rest their voice for the remaining 8 s until the next trial began. The “shift-up” and

“shift-down” conditions consisted of trials over four ordered stages: baseline, ramp, hold, and

after-effect. In the “shift-up” condition, the first 20 utterances, referred to as the baseline, were

produced while receiving typical (unperturbed) feedback. In the following 60 trials, referred to

as the ramp, the fo in the auditory feedback increased by 1.69 cents with each successive trial,

reaching a total level of 100 cents of perturbation above the participant’s true fo. For the next

40 trials, referred to as the hold, the fo of the auditory feedback was maintained at the level of

+100 cents of perturbation. In the last 40 trials, referred to as the after-effect, the auditory feed-

back was the same as the baseline (i.e., there was no fo perturbation). The “shift-down” condi-

tion was identical, except that, during the ramp, the fo of the auditory feedback decreased by

1.6 cents in each successive utterance, reaching a total level of -100 cents of perturbation by the

end of the ramp. Perturbations during the ramp and hold phases were applied throughout the

entire period of voicing. In the “control” condition, participants received their typical (unper-

turbed) feedback during all 160 trials (similar to the baseline and after-effect periods of the

“shift-up” and “shift-down” conditions). The participants did not receive any information

about differences among the three conditions.

Pitch acuity

All participants completed a pitch discrimination task to assess auditory acuity to fo, or pitch

acuity. Each trial consisted of two pure tones, presented via Sennheiser HD 280 Pro head-

phones. Each tone was 2 seconds in duration. The tones in each trial were separated by approx-

imately 20 ms and were presented in random order. Stimulus presentation was controlled

using a custom-written MATLAB (The Mathworks, Inc., 2013, Version 8.1.0.604 [R2013b])

script. Tones were played at an intensity of 65 dB, calibrated using the same method as the

adaptation procedure but using the MATLAB generated stimuli as the input. Participants were

asked to judge whether the tones were the ‘same’ or ‘different’. The initial difference between

the two tones was 40 cents (10 Hz) with a reference tone of 440 Hz. Two consecutive correct

judgments resulted in a progressively smaller difference (downstep) between the two tones in

subsequent trials, whereas an incorrect judgment resulted in a progressively larger difference

(upstep) between subsequent sets of tones, with a set ratio of downstep = upstep/2.448. The

magnitude of the upstep was initially 20 cents (5 Hz). As trial number increased, the upstep

decreased to 10 cents (2.5 Hz), 5 cents (1.27 Hz), and 1 cent (0.25 Hz), at the tenth, twentieth,

and thirtieth trial, respectively. The experiment continued until there were 16 ‘reversals’ (an

upstep followed by a downstep, or vice versa). Catch trials with no difference between the two

tones were presented pseudo-randomly in 33% of trials to ensure data validity and attention to
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the task. Each participant performed between 36 and 85 trials, with an average of 70 trials. The

duration of this task was 6–10 min.

Speech Intelligibility Test (SIT)

Speakers with PD completed a randomly generated short Speech Intelligibility Test [SIT; 45]

consisting of a set of 11 sentences increasing in word count from 5 to 15 words per sentence.

Speakers were instructed to read the sentences in their typical speaking voice. Using the same

recording equipment as the adaptation paradigm, speech was recorded in Audacity (Audacity

Team, 2012, Audacity1. Version 2.0.0. audio editor and recorder).

Data analysis

Adaptive responses. To determine adaptive responses, the mean fo was calculated over

each trial using an autocorrelation method via Praat (Boersma & Weenink, 2014, Version

5.4.08 –Version 6.0) scripts. All trials were inspected and manually corrected for tracking

issues or noise by selecting a stable portion of the signal with a minimum duration of 1 second.

The mean fo of each selected portion was converted to cents, using the mean fo of the baseline

of that condition as the reference frequency. In order to account for normal variation in fo
over the course of 160 trials, the fo during the control condition in which no perturbation was

applied was subtracted from the “shift-up” and “shift-down” conditions to determine the

resulting adaptive responses. Data from one speaker with PD and one control speaker were

excluded due to unstable vocal control during the control condition. Unstable vocal control

was defined as a greater than 300 cents range within one phase (baseline, ramp, hold, and/or

after-effect). Since the control condition was used to normalize the “shift-up” and “shift-

down” conditions, a 300 cents or greater variability in the control condition was determined to

result in adaptive responses that were likely not representative. Two additional control speak-

ers had unstable vocalizations during the control condition; however, they were able to return

to repeat the task another day. Likewise, three control speakers experienced equipment failures

during one of their conditions and repeated those conditions. In total, eleven control speakers

and fourteen speakers with PD completed all three conditions: “shift-up”, “shift-down”, and

control. Eight control speakers and two speakers with PD were only able to complete the con-

trol condition and either the “shift-up” or “shift-down” condition. Given the counterbalancing

of condition order and excluded participants, fifteen total adaptive responses were successfully

recorded and used in analyses for each “shift-up” and “shift-down” condition for both the con-

trol and PD group. The two-way mixed-model analyses of variance (ANOVAs) were per-

formed on the “shift-up” and “shift-down” adaptive responses to assess the effects of group

(between-participant; speakers with PD vs. control speakers), phase (within-participant; base-

line, ramp, hold, after-effect), and their interaction. Factor effect sizes were quantified using

the squared partial curvilinear correlation, ηp
2. An alpha of 0.05 or less was determined to be

statistically significant. In order to ensure that group differences in the adaptive responses

were not driven by potential differences in the control condition that was used in the response

calculations, the fo variability between groups during the control (no perturbation) condition

was assessed using a two-sample, two sided, t-test comparing the average variance over the

course of the 160 control trials for each participant by group.

Two-tailed Student’s t-tests were used to determine whether each individual adaptive

response during the hold phase was significantly different than zero (no response). These were

performed for the adaptive responses (normalized to the control condition) of both the “shift-

up” and “shift-down” conditions. An alpha of 0.05 or less was determined to be statistically sig-

nificant. Given the nature of this individual investigation, corrections for alpha inflation were
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not applied to account for the multiple tests. After group analysis, individual responses were

classified as following, compensating, or non-responsive. For the “shift-up” condition, individ-

ual adaptive responses were termed as compensating if they were statistically less than zero

and as following if they were statistically greater than zero. For the “shift-down” condition,

individual adaptive responses were termed as compensating if they were statistically greater

than zero and as following if they were statistically less than zero. In both conditions, responses

were termed as unresponsive if they were not statistically different from zero.

The average degree of compensation during the hold phase of the “shift-up” and “shift-

down” adaptive tasks was calculated as the mean of the response during the hold phase for

“shift-up” responses and the additive inverse of the mean of the response during the hold

phase for “shift-down” responses (so that larger positive values can be interpreted as larger

degrees of compensation, regardless of condition). In the PD group, the average degree of

compensation for both shift directions was compared to participant age, years since diagnosis,

UPDRS total motor score, intelligibility, and pitch acuity using Pearson-product moment cor-

relation coefficients.

Previous studies have found a relationship between fo variability in the baseline (unper-

turbed) phase and the amount of compensation during brief, unexpected perturbations to fo in

both control speakers [46] and speakers with PD [47]. Thus, to investigate the effects of vocal

fo control in the baseline phase in the current work, the average degree of compensation was

compared to baseline fo variability for both the “shift-up” and “shift-down” conditions for

both participant groups using Pearson-product moment correlation coefficients. The baseline

fo variability was calculated by determining the fo variability across a 200 ms period of each

trial of the baseline phase in cents, using the mean fo of that trial as a reference frequency, and

taking the average fo variability of all 20 baseline trials. In both the PD and control group, the

average degree of compensation for both shift directions was compared to their average base-

line fo variability using Pearson-product moment correlation coefficients.

Pitch acuity. Pitch acuity of each speaker was quantified as a just-noticeable-difference

(JND) in cents and was calculated by averaging data from the last six reversals in the adaptive

forced-choice procedure. This estimated the degree of fo difference that could be detected by

the participant with 70.9% accuracy [48]. A two-sample, two-sided, Student’s t-test was used to

compare pitch JND values between all 19 control speakers and all 16 speakers with PD.

A Bonferroni correction was applied to the interpretation of the t-tests and Pearson’s corre-

lation p-values to account for the 16 multiple comparisons (1 t-test for fo variability during the

control condition, 1 t-test for pitch JND values, and 14 correlations) applied at the group level,

such that an alpha of 0.05/16 = 0.00313 or less was determined to be statistically significant.

Speech Intelligibility Test (SIT). Of the 16 speakers with PD, one speaker did not com-

plete the SIT due to having missed the second session. The remaining 15 SIT speech record-

ings from the PD group were normalized to have equal amplitudes and were then combined

with multi-speaker babble from five male and five female voices using a custom script in

MATLAB (Mathworks, 2013 Version 8.1.0.604 [R2013a]). The resulting signal-to-noise ratio

(SNR) was 3.5 dB. Stimuli were presented via Sennheiser HD 280 Pro headphones at a level of

70 dB SPL. The calibration procedure was the same as described for the adaptation procedure

but the normalized speech samples playing from the MATLAB script were used as the input.

Twelve listeners were instructed to listen to recordings and transcribe what they heard to the

best of their ability after listening to each speech sample a maximum of two times. The order

of presentation of the speech samples was randomized per listener to prevent order bias. Initial

intelligibility scores for the listener transcriptions of the SIT sentences were calculated with a

custom script in MATLAB (Mathworks, 2013 Version 8.1.0.604 [R2013a]). Scores were calcu-

lated as the total words matching phonemically between the listener transcription and the SIT
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sentences divided by the total number of words [49, 50]. A document was generated with cal-

culated scores and was then hand-checked for each listener to include misspellings and hom-

onyms as correct [49]. The intelligibility score used in further analyses was the SIT sentence

scores of each speaker with PD averaged over all listeners and sentences.

Results

Consistent with previous studies in typical speakers [13, 15], control speakers generally com-

pensated in the sensorimotor adaptation task. Control speakers generally decreased their fo
during the ramp and hold phases of their “shift-up” responses and increased their fo during

the ramp and hold phases of their “shift-down” responses (see Fig 1). At a group level, our

results in speakers with PD are consistent with previous work showing reduced compensations

in speakers with PD relative to control speakers during sustained vowel formant perturbation

[31]; the speakers with PD had significantly reduced compensatory responses to fo as com-

pared to control speakers in both perturbation shift directions (Fig 1). Overall, the adaptive

responses showed significant interactions between group and phase for both “shift-up” (η2
p =

0.06, F = 19.9, p< 0.001) and “shift-down” paradigms (η2
p = 0.04, F = 12.4, p< 0.001). These

effects were not driven by differences in the control condition: there was not a statistically sig-

nificant difference in fo variability between the two groups during the control condition,

(p = 0.36).

During the hold phase, although the control speakers showed average compensatory

responses of -91 cents (SD = 59 cents) for “shift-up” and 80 cents (SD = 84 cents) for “shift-

down”, the average responses of speakers with PD were only 7 cents (SD = 107 cents) for

“shift-up” and 8 cents (SD = 110 cents) for “shift-down”. However, at an individual level, the

responses are qualitatively different between control speakers and speakers with PD: while

most control speakers showed compensation to perturbations in fo, speakers with PD dis-

played highly variable responses spanning both the compensatory and following (i.e., the same

direction as the perturbation) directions (see Fig 2). For the “shift-up” condition, the PD

group had seven compensatory, three non-responsive, and five following responses. In the

control group, fourteen of the fifteen “shift-up” responses were compensatory; one was non-

responsive and no responses were following. For the “shift-down” condition, the PD group

had seven compensatory, three non-responsive, and five following responses. In the control

group, twelve responses were compensatory, two were non-responsive, and one response was

following.

Fig 1. Average adaptive responses by group. An adaptive “shift-up” (left) and “shift-down” (right) perturbation was

applied to the fo of auditory feedback with a maximum perturbation of 100 cents or -100 cents respectively

(schematized in upper panel). Mean adaptive responses in cents are plotted as the mean across five-trial blocks for

control speakers (dark blue line) and speakers with Parkinson’s disease (light pink line) with shading indicating 95%

confidence intervals.

https://doi.org/10.1371/journal.pone.0191839.g001
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The Pearson-product moment correlation between baseline fo variability and degree of

compensation, for both the “shift-up” and “shift-down” conditions are listed in Table 2. For

both the “shift-up” and “shift-down” conditions, no significant correlations were found

between baseline fo variability and degree of compensation in either speaker group (Fig 3).

The average pitch JND of control speakers was 48 cents (SD = 52 cents) and the average for

speakers with PD was 52 cents (SD = 51 cents); there was not a statistically significant differ-

ence between the two groups (df = 32, T = -0.19, p = 0.85).

The heterogeneity in the adaptive responses of speakers in the PD group was not

explained by any of the catalogued descriptors. The Pearson’s correlations between the

degree of compensation during the hold phase of the “shift-up” and “shift-down” tasks and

age, years since diagnosis, UPDRS total motor score, pitch JND, and intelligibility were all

nonsignificant (p> 0.0033; see Table 3). Given our conservative correction for multiple

comparisons, it is worth noting that, although non-significant, there were a few substantial

trends. The average degree of compensation during “shift-up” was associated with intelligi-

bility (r = -0.45, p = 0.10), with less intelligible individuals compensating to a greater degree.

The average degree of compensation during “shift-down” was associated with age (r = -0.53,

p = 0.04); younger participants tended to have a greater degree of compensation than older

participants.

Fig 2. Individual adaptive responses by group. Individual adaptive responses in cents for “shift-up” (left) and “shift-

down” (right) perturbations (schematized in upper panel). Responses are plotted as the mean across five-trial blocks

for fifteen adaptive responses from control speakers (upper) and fifteen adaptive responses from speakers with

Parkinson’s disease (lower).

https://doi.org/10.1371/journal.pone.0191839.g002

Table 2. Pearson’s product-moment correlations between the degree of compensation and baseline fo variability.

“shift-up” compensation “shift-down” compensation

Control group baseline fo variability 0.13

(p = 0.64)

0.57

(p = 0.03)

PD group baseline fo variability 0.34

(p = 0.22)

-0.08

(p = 0.78)

https://doi.org/10.1371/journal.pone.0191839.t002
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Fig 3. Baseline fo variability compared to the degree of compensation. Relationship between baseline fo variability

(cents) and degree of compensation (cents) for speakers with PD (upper panel) and for control speakers (lower panel)

during the “shift-up” (blue, closed circles) and “shift-down” (orange, open circles) conditions. Lines of best fit are

plotted for the “shift-up” (blue solid line) and the “shift-down” (orange solid line) conditions.

https://doi.org/10.1371/journal.pone.0191839.g003

Table 3. Pearson’s product-moment correlations for speakers with PD.

“shift-up” compensation “shift-down” compensation

age 0.31

(p = 0.27)

-0.53

(p = 0.04)

years post-diagnosis 0.27

(p = 0.33)

-0.02

(p = 0.93)

UPDRS total motor score 0.24

(p = 0.38)

0.03

(p = 0.33)

pitch JND 0.25

(p = 0.36)

-0.34

(p = 0.21)

intelligibility -0.45

(p = 0.10)

0.08

(p = 0.78)

https://doi.org/10.1371/journal.pone.0191839.t003
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Discussion

Adaptive responses to fo perturbation in PD

Sensorimotor adaptation has been studied extensively in PD, but only one prior study investi-

gated sensorimotor adaptation in PD in the speech domain [31]. Adaptive responses to pertur-

bations of the first formant of vowels (F1) during word productions were analyzed and

reported at a group level. The study found reduced responses in the PD group compared to the

healthy control group [31]. The data presented here, at a group level, extend this finding to the

control of fo. Furthermore, on an individual level, these data demonstrate qualitatively differ-

ent responses between control speakers and speakers with PD. In speakers with PD, responses

were also not consistent among shift directions (ie, speakers who compensated in the shift

down condition did not always compensate in the shift up condition or vice versa). While con-

trol speakers showed relatively consistent compensatory responses to perturbation, speakers

with PD had highly variable responses, with either compensatory responses, no response, or

even “following” responses (changing fo in the same direction as the perturbation). There was

no clear pattern in these responses. In the PD group, 2/15 subjects only completed one shift

condition. Of the remaining 13/15 who completed both conditions, 7/13 had the same result

regardless of direction (3 compensated, 2 did not respond, and 2 followed). The remaining 6/

13 subjects who completed shifts in both directions did not show the same response in the two

directions: 2 compensated in one direction and did not respond in the other, 3 compensated

in one direction and followed in the other, and 1 followed in one direction and did not

respond in the other. Using a reflexive paradigm, Kiran and Larson [34] also found more “fol-

lowing” reflexive responses to unanticipated perturbations of fo in speakers with PD than in

control speakers. However, the relationship between following reflexive and following adaptive

response types in PD is unclear, especially given the lack of consensus between adaptive and

reflexive response types in general.

While the group-level responses in the current findings align with those reported by Mol-

laei, Shiller [31], the individual responses differ. The heterogeneous results seen in the current

work were an unexpected outcome of the study. These responses could be due to several differ-

ences between the current work and Mollaei, Shiller [31]: perturbing vocal vs. articulatory

characteristics of speech (fo vs. F1) or differences in how the perturbation was introduced and

the experimental set up. Perturbations of fo and F1 may involve different control systems.

Based on short- and long-term effects of auditory deprivation, it has been hypothesized that

so-called ‘postural’ parameters such as fo are more heavily reliant on auditory feedback control

processes than so-called ‘segmental’ parameters such as F1, which are more heavily reliant on

feedforward control processes [51, 52]. This suggests that a potential feedforward system

impairment in auditory-motor integration [refinement and updating of the feedforward sys-

tem basedon on systematic changes in auditory feedback; e.g., 21] might have a greater effect

on articulatory (F1) motor control relative to vocal (fo) motor control. Furthermore, reduced

loudness is a hallmark feature in PD [4], which has a biomechanical relationship with fo [53,

54]. Thus, some interaction between hypophonia and fo in the speakers with PD could have

contributed to the variability in fo adaptive responses. Other than the parameter to which the

perturbation was applied, there are additional methodological differences between the current

study and Mollaei, Shiller [31]. The paradigm used by Mollaei, Shiller [31] differed from most

current speech adaptation paradigms [15, 29, 55]: a ramp phase was not included to gradually

introduce the perturbation. This paradigm difference is important to note when comparing

the adaptive responses. Visuomotor studies have shown differences in responses to sudden (no

ramp) and gradual introduction (with ramp) of perturbation in healthy controls [56, 57] and

individuals with PD [58]. Lastly, the current study applied auditory perturbations in cents,

Adaptation of fundamental frequency in Parkinson’s disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0191839 January 26, 2018 11 / 21

https://doi.org/10.1371/journal.pone.0191839


which are a relative measure of frequency, rather than changing feedback by the same set fre-

quency for all subjects. This is a common method used in fo perturbation paradigms [16, 25,

30, 59] and ensures that all subjects perceive the same magnitude of feedback perturbation

since the just-noticeable-difference for frequency acuity increases as a function of frequency

[60, 61]. In formant perturbations, shifts are applied as a set frequency change in the vowel for-

mants rather than a subject specific shift in cents [27, 62], which may contribute to variations

in results between the current work and formant perturbations in PD [31].

The individual responses seen in the current study during the after-effect stage align well

with a study of visuomotor control in PD. Contreras-Vidal and Buch [63] found heteroge-

neous responses in speakers with PD during the after-effect stage of a visuomotor adaptation

task that were not seen in healthy controls. Similar heterogeneous responses were found in the

current work during the after-effect stage in the PD group; however, these may have been a

continuation of the heterogeneous responses that were also seen in the ramp and hold.

In terms of the relationship between baseline fo variability and degree of compensation, the

current results showed no significant correlations for either speaker group for both “shift-up”

or “shift-down” conditions (Table 2). The results for speakers with PD are in contrast to

Huang, Chen [47] who reported a significant positive correlation in a PD group between base-

line fo variability (during a 200 ms baseline phase) and the degree of compensation to unex-

pected fo perturbations. The lack of significant correlations in the current work is likely due to

the differences between so-called “reflexive” and “adaptive” responses to sensory perturba-

tions. Such distinctions between unexpected reflexive shifts and studies of adaptation (repeated

perturbation applied on many consecutive trials, causing changes in the sensorimotor control

system that continue to affect movements for a number of trials after the perturbation has

been removed) have been made in a large number of studies of both speech production [e.g.

15, 64–66] and motor control more generally [e.g. 56, 57, 58, 67–70].

Interpretation of potential neurophysiological mechanisms

The atypical responses to gradual, repeated, fo perturbation seen in the current study support

the hypothesis that there may be an impairment in the auditory-motor learning process in PD.

Using the DIVA and SFC models to interpret these findings, in neurotypical participants, the

feedback system compares the output fo to the target fo, and generates an error signal due to a

mismatch between the two. In the case of the SFC model, an internal vocal tract model is also

present and is continuously keeping track of the state of vocal articulators to use this informa-

tion for future commands. If either the feedback controller or the internal model (in the case

of SFC) register an error signal, a corrective motor command is generated to oppose the shift

in fo. This is communicated to the feedforward subsystem which is adapted (over multiple per-

turbed productions) to reduce the mismatch between target and output in future productions.

The heterogeneous responses seen in the adaptive responses of the individuals with PD suggest

that either: 1) the fo perturbation was not correctly detected by the auditory feedback controller

(DIVA) or the internal vocal tract model (SFC), 2) detected auditory errors were not properly

translated into corrective motor commands, or 3) the feedforward system did not correctly

modify motor commands for subsequent productions by incorporating corrective motor com-

mands from the auditory feedback controller. These possibilities are addressed in the following

paragraphs.

If atypical adaptive responses were due to a problem with fo detection in the auditory sys-

tem in speakers with PD, this would suggest less sensitive pitch discrimination compared to

healthy speakers. In the current results, there was no significant difference in pitch acuity

between speakers with PD and control speakers. Additionally, pitch acuity was not correlated
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with the degree of compensation in adaptive responses in speakers with PD. Interpreting these

results with the DIVA and SFC models, this indicates that there was not likely a deficit in

detecting pitch changes in the speakers with PD. The pitch acuity findings in the current study

are in contrast with previous work that found reduced ability to discriminate pitch in 12 indi-

viduals with PD compared to 15 healthy controls [71]. The conflicting results could potentially

be explained by natural variation in musical experience of participants, paradigm differences,

or the limited sample sizes employed by both studies. Previous work has shown that musicians

may be better than non-musicians at discriminating pitch [72, 73]. Since neither Troche, Tro-

che [71] or this current study reported musical training, it is possible that it contributed to dif-

ferences between study results. Paradigm differences between Troche, Troche [71] and the

current study could also explain the different findings. Among other differences, tones were

presented with an inter-stimulus interval (ISI) of 750 ms in Troche, Troche [71]. In the current

study, an ISI of only 20 ms was used. It is possible that the longer ISI employed by Troche, Tro-

che [71] is responsible for the poorer pitch acuity seen in speakers with PD in that study:

assessment procedures for frequency discrimination are known to be impacted by relative

attentional and cognitive ability [74]. In fact, reduced cognitive function has specifically been

shown to interact with ISI, resulting in differentially poorer frequency discrimination in indi-

viduals with Alzheimer’s disease when long ISIs are used [75]. Future studies comparing pitch

acuity measures as a function of ISI in speakers with and without PD are necessary to confirm

this. Finally, especially given the heterogeneity in PD presentation, differences between the

two studies may simply be a function of sample size. That said, since pitch acuity was not cor-

related with the adaptive responses in the speakers with PD in the current study, it does not

appear to be a driving factor of the adaptive responses in this sample. However, given that indi-

viduals with PD demonstrate difficulty in correcting for sensorimotor errors during self-gener-

ated movements [76–78], we cannot rule out the possibility that the perception during self-

productions (autophonic judgments) may have contributed to the atypical adaptive responses

in PD. Previous work has found that when listening to their own voice playback, individuals

with PD are able to determine the vocal loudness within normal limits [79], whereas during an

active speech task, individuals with PD overestimated their own vocal loudness [80]. Addition-

ally, Huang, Chen [47] revealed differences at the cortical level between individuals with PD

and healthy controls during an active speech task with frequency-altered-feedback, but no dif-

ferences were seen when individuals with PD were passively listening to the playback of their

own voice.

The atypical responses seen in the current study could also be due to a deficit in the feed-

back system in correcting the detected errors. However, because studies of reflexive responses

to sudden, brief, perturbation of fo have demonstrated that speakers with PD have larger com-

pensatory response magnitudes [30, 32, 33] relative to control speakers, there is evidence that

the ability to produce corrective responses to detected errors during auditory perturbations is

not impaired in PD. Thus, it is unlikely that the current results are due to an inability of the

feedback system to compensate for detected errors in fo. The larger reflexive compensations in

the PD group seen by Liu, Wang [33] were in response to a 100 cent fo perturbation and Chen,

Zhu [32] reported similar results with 50, 100 and 200 cent perturbation conditions. Addition-

ally, Chen, Zhu [32] found an increase in response magnitude as perturbation size increased.

Mollaei, Shiller [30] also observed that a PD group had larger compensatory response gain as

compared to controls when the perturbation was 50 cents, but found no group difference in

compensatory response gain when the perturbation was 100 cents. Larger compensation mag-

nitudes suggest that the feedback system is not impaired and that, in fact, there may be a higher

reliance on the feedback system in PD than in healthy speakers during reflexive responses to

fo. It is possible that speakers with PD rely more on their auditory feedback for fo control
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because of a feedforward system impairment. Additionally, these larger compensations may be

due to a deficiency in the weighting of somatosensory and auditory feedback in PD. This

weighting in known to vary in typical speakers, but more extreme variation could explain the

results shown here [28].

The current results, together with previous work, most directly support the possibility that

fo control in speakers with PD is impaired due to a deficit in the updating of the feedforward

control system after an error signal has been correctly generated. This would mean the fo
changes are accurately detected and corrected by the feedback control system in speakers with

PD, but these corrective responses are not properly subsumed into the feedforward system.

This interpretation aligns with previous work suggesting the basal ganglia have a role in gener-

ating feedforward commands [81–83] and that the striatum (the primary target of cortical pro-

jections to the basal ganglia) contributes to motor learning processes [84]. Therefore, the

reduced dopaminergic signals in the striatum seen in PD [85, 86] would impact the integration

of corrective motor commands into consequent motor actions. This is further supported by

studies which found atypical sensorimotor integration [63, 87–91], including auditory-motor

integration [31], in PD. To clarify the contributions of the feedback and feedforward system to

vocal motor control in speakers with PD, a comprehensive experiment with both unexpected

and sustained perturbations of fo is necessary.

Limitations and future work

A limitation of the current study, as in most studies in PD, is the heterogeneity in the presenta-

tion of the speakers with PD in terms of the timing of the onset of their symptoms and the

severity of their symptoms. Individuals with PD reported with a wide range in the time

between the onset of PD symptoms and their participation in this study (1.5–30 years), as well

as in their UPDRS total motor score (ranging from 22–72). The variability in disease severity is

difficult to circumvent in studies of PD, as there are a wide range of motor and non-motor

symptoms seen in the clinical population of individuals with PD [92–95]. However, progres-

sion of dysprosody in PD does not appear to correlate with disease duration or severity as

assessed by the UPDRS motor score [96, 97].

Medication state may also have influenced the current study. All speakers with PD were

tested while they were receiving L-dopa therapy which allows for variability in duration of

administration as well as the individual’s symptoms at the time L-dopa therapy was initiated,

influencing the effects of the medication [98–102]. Previous research on speech production in

PD has not demonstrated substantial differences in mean fo [103–106] or fo variability [97,

105, 107] between participants on and off medication. However, during brief perturbations of

fo, larger responses were reported in speakers with PD off medication as compared to a healthy

control group [30, 32, 33], whereas one study [34] found that ten speakers with PD on medica-

tion did not differ from ten control speakers in terms of reflexive response magnitude. Speak-

ers with PD were not directly compared on and off medication in these studies, but the

combined results imply there could be an effect of medication on auditory-motor control. In

summary, the effects of medication state on adaptive responses in the auditory domain are not

defined, especially given the heterogeneity of responses to medication in the PD population,

and should be further investigated by examining adaptive responses of participants who are

both on and off medication. The perception of reduced fluctuation in voice fundamental fre-

quency, or ‘monopitch’, observed in PD may also have affected the PD group’s ability to

change their fo. However, we would expect such an effect to show reduced or absent responses

while the PD group, on an individual level, showed responses with magnitudes comparable to

the control group. Another factor that could have contributed to variation in the current study
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is the cognitive function of individuals with PD. Previous studies have shown that as atten-

tional demands increase, control speakers have reduced responses to both sudden fo perturba-

tion [108] and gradual, predictable, fo perturbations [109]. Many individuals with PD have

cognitive deficits, particularly in attention [110–112]. However, attention deficits in PD appear

to mainly affect dual-attention or divided attention tasks [113, 114], and therefore were most

likely not a concern for the current study because it was a single task experiment.

Lastly, there was a 45 ms delay in auditory feedback during the experimental procedure. To

our knowledge, only one study has examined the impact of delay on adaptive responses to

auditory perturbations. Max and Maffett [115] conducted a formant adaptation task under

various delay conditions: no delay, 100 ms, 250 ms, and 500 ms delay. Results showed audi-

tory-motor adaptation was eliminated in all delay conditions. Unfortunately, they did not

examine delays between 0 and 100 ms. The healthy controls in the current study showed clear

adaptive responses and did not exhibit any speech dysfluencies, suggesting auditory-motor

adaptation was not affected by the 45 ms experimental delay. However, it is important to note

that the impact of feedback delay on speakers with PD compared to control speakers is unclear

and requires further investigation.

Conclusion

In summary, the current study demonstrated that speakers with PD have reduced mean

responses to gradually applied, sustained perturbations of fo, with heterogeneous individual

responses. These findings indicate that there may be an impairment in the adaptive control of

voice in PD. Furthermore, the current study failed to find a significant difference in pitch acu-

ity between speakers with PD and control speakers. Taken together with previous work, the

results suggest that fo changes can be accurately detected and corrected by the auditory feed-

back control system in speakers with PD, but that there is a deficit in the updating of the feed-

forward control system. A comprehensive study of reflexive and adaptive responses to fo and

F1 perturbations, both on and off medication, is needed to better characterize the potential

deficits in auditory-motor integration associated with PD. These responses, paired with audi-

tory acuity to fo and F1, should be investigated with relation to PD symptom severity and func-

tional communication outcomes. These studies would clarify the underlying deficits in

feedforward and feedback speech motor control associated with PD and inform the develop-

ment of targeted treatments for this disorder.
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