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ABSTRACT

Characterizing genes that are critical for the sur-
vival of an organism (i.e. essential) is important to
gain a deep understanding of the fundamental cel-
lular and molecular mechanisms that sustain life.
Functional genomic investigations of the vinegar fly,
Drosophila melanogaster, have unravelled the func-
tions of numerous genes of this model species, but
results from phenomic experiments can sometimes
be ambiguous. Moreover, the features underlying
gene essentiality are poorly understood, posing chal-
lenges for computational prediction. Here, we har-
nessed comprehensive genomic-phenomic datasets
publicly available for D. melanogaster and a machine-
learning-based workflow to predict essential genes
of this fly. We discovered strong predictors of such
genes, paving the way for computational predictions
of essentiality in less-studied arthropod pests and
vectors of infectious diseases.

INTRODUCTION

The vinegar fly (Drosophila melanogaster) is a well-
established model organism used to investigate insect bi-
ology and genetics as well as a range of molecular pro-
cesses in metazoans such as development and inheritance
(1,2). The availability of a high-quality genome for D.
melanogaster (3) and molecular tools that allow transcrip-
tional perturbation (e.g. RNAIi (4-7)), genomic disruption
(e.g. chemical/transposon mutagenesis (8—10) and/or site-
directed methods such as CRISPR /Cas9 (11) have enabled
the detailed elucidation of the functions of individual genes
in this fly. These efforts have also allowed the discovery of
genes that are critical for the survival of the organism, re-

ferred to as ‘essential’ genes. Extensive genomic-phenomic
data and information as well as results from multiple ‘omics
studies have been curated, integrated and catalogued in ref-
erence databases, such as FlyBase (12), FlyVar (13), mod-
ENCODE (14), Ensembl (15) and GenomeRNAI (16). De-
spite these efforts, the results on gene essentiality for in-
dividual genes from multiple functional genomics experi-
ments can vary (17). Sources of such variability or ambi-
guity can relate to experimental or environmental condi-
tions, developmental stage, sex, strain and/or experimen-
tal biases and/or errors (17,18). Defining essential genes in
D. melanogaster and their characteristics might identify fac-
tors or features that define essentiality in other taxa (19),
which suggest that computational tools would find applica-
bility to predict gene essentiality in lesser studied organisms
such as arthropod vectors and pests which cause substantial
economic losses to agricultural industries as well as disease
burdens in animals, humans and plants worldwide (20-23).
In the absence of functional genomics platforms for most
arthropods, computational methods capable of exploiting
extensive ‘omics datasets to predict essential genes are de-
sirable.

Despite the importance of D. melanogaster as a model or-
ganism, the abundance of publicly available ‘omics datasets
for this insect has not been fully explored for the dis-
covery of predictors of gene essentiality, and reliable
computational approaches for the genome-wide predic-
tion of essential genes of the vinegar fly are lacking. A
range of genomic features, such as gene size, evolution-
ary rate, phyletic retention, transcription level, connec-
tivity in protein—protein interaction (PPI) networks, cel-
lular or subcellular localization, and/or sequence-derived
features (24-27) have been linked to essentiality in eu-
karyotes. For D. melanogaster, studies have sought to in-
fer essential genes computationally using features based
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on gene homology/orthology/ontology, PPI/co-expression
networks, sequence-derived (nucleotide/protein), or combi-
nations thereof (24,26-27). However, there are limitations
in genome-wide predictions, particularly using PPI data
and/or sequence-based features. In particular, PPI experi-
ments may contain marked levels of false-positive and neg-
ative results (28,29), significantly affecting predictions. In
addition, such datasets are limited or unavailable for non-
model organisms. Additionally, although sequence-derived
features alone have proven useful for essential gene predic-
tions, their performance is still suboptimal, even if com-
bined with PPI network features (26,27).

Here, we employed a novel computational approach that
employs a large-scale feature extraction, engineering and
selection procedure that takes into account variability in
phenomic datasets for the inference of essential genes on
a genome-wide scale. Using this approach, we built and
systematically evaluated machine-learning (ML) models
for the genome-wide prediction of essential genes in D.
melanogaster.

MATERIALS AND METHODS
Datasets

We obtained comprehensive genomic-phenomic data and
associated annotations from three sources: FlyBase (12), the
Ensembl database (15) and/or peer-reviewed publications.
Datasets derived from functional genomics (phenomic) as
well as from genomic, transcriptomic, proteomic and epi-
genetic in GFF linked to the D. melanogaster genome were
from FlyBase (version r6.30/FB2019_05). Data from RNAi
experiments were obtained from the database GenomeR-
NAi (16). From Ensembl, we obtained genomic, coding
sequences (CDSs) and proteins (canonical) data. For D.
melanogaster, we also obtained gene transcription data
for different tissues (30); multi-cell or single-cell transcrip-
tomic data from embryo (31), gonads (GEO accession:
GSE125947), testis (32), brain (33) and wing disc (34);
Ribo-seq annotations (35); proteomic data (36); ATAC-
seq peaks (37), and variomic data (genome-wide SNPs)
(13,38).

Annotation of gene essentiality using phenomic data

Using phenomic data from FlyBase, we established a
scoring system to provisionally annotate genes of D.
melanogaster as essential (see ‘Data Availability’ section).
Initially we extracted all mutant allele identifiers asso-
ciated with ‘lethal’ or ‘viable’ phenotypes from the ‘al-
lele_phenotypic_data_fb_2019_05.tsv’ file. Then, we used
these allele identifiers to determine corresponding genes
and count the number of ‘lethal’ or ‘viable’ entries per
gene in the ‘fbal_to_fbgn_fb_2019_05.tsv’ file. For each gene,
we then calculated an essentiality score (ES), defined as
the total number of alleles linked to essential/lethal (E)
terms squared divided by the total number of experiments
linked to essential/lethal plus non-essential/viable terms
(T) squared (E?/T?). A gene was designated as ‘essen-
tial’ (ES > 0.9), ‘non-essential’ (ES < 0.1) or ‘conditional-
essential’ (0.1 < ES < 0.9).

Feature extraction or engineering

For individual genes, features were extracted from six (i.e.
genomic, CDSs, overlapping-gene, transcriptomic, protein
and ‘variome’) datasets derived from FlyBase, Ensembl
and/or published studies; see ‘Datasets’ section above).

From genomic data, we extracted features including
length, number of exons, distance from the chromosome
center (average distance between start codon of the first
gene and the stop codon of the last gene in a chromo-
some), number of isoforms and presence/absence of asso-
ciated Pfam-domains using ‘biomaRt’ for R. From CDSs,
we extracted nucleotide composition and correlation fea-
tures using rDNAse for R (https://cran.r-project.org/web/
packages/rDNAse) as well as codon usage features using
CodonW (http://codonw.sourceforge.net).

For datasets associated with genomic coordinates (e.g.
FlyBase annotations, TSS, Ribo-seq, proteomic and
ATAC-seq), we engineered novel features by identifying
and counting annotations whose genomic coordinates
overlapped gene locations using the program BEDTools.
For example, this approach was used to identify and count
features in the GFF file obtained from FlyBase (column 2)
which overlap with coordinates of genes.

For ‘pooled’ transcriptomic data from distinct tissues, we
used the expression levels of individual genes for every tis-
sue and experimental condition as features. For single-cell
transcriptomic data, we obtained the transcription level for
each gene in each cell and enumerated the cells transcribing
a particular gene.

From protein sequences, we extracted features using
‘protr’ utilizing all descriptors defined in this package
(https://cran.r-project.org/web/packages/protr) as well as
the numbers of predicted transmembrane domains and sig-
nal peptides per protein employing TMHMM (39) and Sig-
nalP (40), respectively. We also obtained features from pre-
dicted protein subcellular localizations using WolfPsort (41)
and DeepLoc (42) as well as protein disorder features em-
ploying DisEMBL (43).

For the variome of D. melanogaster, we calculated the
numbers of SNPs in individual genes using BEDTools (44)
and inferred the effect(s) of individual SNPs on gene func-
tion using SnpEff (45)—and used these data as features.
The datasets and code used to extract or engineer fea-
tures are in the ‘R Markdown’ script available at https://
bitbucket.org/tuliocampos/essential_ melanogaster (commit
tag: NARGAB).

Feature sets

We combined all extracted/engineered features with essen-
tiality annotations for respective genes and stacked this in-
formation into a matrix using R. In this feature matrix,
each line represented a gene, each column represented an
extracted feature and the last column represented the essen-
tiality annotation (‘essential’ or ‘non-essential’); this ma-
trix contained all data (‘"FULL’). To create a non-redundant
(NR) set of features, we first clustered protein sequences us-
ing USEARCH (parameters: -cluster_fast -centroids) (46),
obtained gene identifiers and then removed genes and asso-
ciated features if multiple amino acid sequences had >25%
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identity, retaining only the centroid sequences of all indi-
vidual clusters. Subsequently, we removed features with low
variance (i.e. when the percentage of unique values was
<10%, or when the frequency of the commonest value di-
vided by the frequency of the second commonest value was
>19) from both the ‘FULL’ and ‘NR’ feature sets using
the nearZeroVar method in ‘caret’. For the ‘FULL’ dataset,
we also assessed statistical differences in the features be-
tween ‘essential’ and ‘non-essential’ using two-tailed pair-
wise 7-tests (95% confidence interval) in R (z-test), recording
p-values and Holm-Bonferroni-corrected (p.adjust) values.

Feature selection, ML training and performance assessment

Features were selected by random subsampling from 10 to
90% of data representing ‘essential’ or ‘non-essential” genes
(in 10% stepwise increments) based on a consensus between
elasticNet (alpha = 0.5) and ensemble Sparse Partial Least
Squares (SPLS) methods using ‘glmnet’ and ‘enspls’ in R,
respectively (26). The individual feature values were then
normalized by subtracting the mean and dividing by the
standard deviation calculated for each feature column. Nor-
malized features were used to train each of six ML-models
(GBM (Gradient Boosting Machine), GLM (Generalized
Linear Model), NN (Neural Network—perceptron), Ran-
dom Forest (RF), SVM (Support-Vector Machine) (26)
and XGB (eXtreme Gradient Boosting—xgbTree) in the
‘caret” R-package. During the training process, we em-
ployed parameter-tuning and 5-fold cross-validation, ulti-
mately selecting the models with highest ROC-AUC. Fol-
lowing subsampling, we employed the remaining data (90 to
10%) to evaluate the performance of the final models using
ROC-AUC and PR-AUC.

Subsequently, we trained each of the six ML-models with
100% of each feature set, and calculated the ‘importance’
of each feature for each ML algorithm and feature set us-
ing the varlmp method in the ‘caret’ package. For each
ML-model, we calculated ROC-AUCs using 5-fold cross-
validation and plotted them against the parameters tested.
We ranked the predictors according to the median feature-
importance for the best three ML-models and selected 40
consensus-features that were highly predictive of gene es-
sentiality employing the ‘FULL’ or ‘NR’ dataset. Then, we
assessed whether these consensus-features correlated with
essentiality using ‘correlationfunnel’ (https://cran.r-project.
org/web/packages/correlationfunnel), and evaluated pair-
wise correlations among features using ‘corrplot’ (R). Using
this reduced set of consensus-features (NR_SELECTED),
we then trained the ML-methods and evaluated their
prediction-performance using ROC-AUC and PR-AUC
and used the final models to predict essentiality of all genes
(n = 11 580) included in the present study. Finally, we as-
sessed variation in these metrics using bootstrapping (1000-
times) employing 90% of the consensus-features for training
and the remaining 10% for testing.

Distribution of gene and SNPs on chromosomes

We counted the number of SNPs per each 1000 bp-
window on each chromosome using published variomic
data (13). We established the locations of genes that has
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been provisionally annotated as ‘essential’, ‘non-essential’
or ‘conditional-essential’ using the FlyBase annotation file
(GFF format), and generated individual density plots to
show the distributions of genes for each chromosome (‘gg-
plot’ for R). We compared the distributions of genes based
on essentiality annotations conducted using Kolmogorov—
Smirnov tests (ks.zest in R).

Gene ontology (GO), transcription and tissue enrichment
analyses

Using the GBM, RF and XGB methods trained with
NR_SELECTED data, we identified D. melanogaster genes
with the highest median probabilities (>0.7) of being essen-
tial, and then conducted gene ontology (GO) enrichment
analysis. For these genes, GO enrichment (for biological
process, molecular function or cellular component) was car-
ried out using the database DAVID (47).

Independent validation of ML predictions using RNAi data

To validate the final ML-based predictions using the
NR_SELECTED set, we queried individual genes pre-
dicted to be more likely essential (probability > 0.7) or
non-essential (probability < 0.1) against the GenomeR-
NAi database, identifying matches to experiments linked to
‘lethal’ phenotypes (i.e. lethal, decreased cell number, de-
creased viability, decreased cell number, decreased viability,
decreased cell viability or low cell number). As there was no
clear description of ‘viable’ phenotypes in the GenomeR-
NAI database, we investigated the ratios of genes with at
least one hit to a ‘lethal’ phenotype in this database. We
queried from one to all genes, starting with genes with the
highest probability of being essential, then adding an indi-
vidual gene with a lower probability at a time, recalculating
the ratios until all genes used in this study were queried.
The same analysis was done, starting from a single gene
with the lowest probability of being essential, then adding
one gene with a higher probability at a time, recalculating
the ratios as each gene were included, until all genes were
represented. Pearson’s correlation coefficients were calcu-
lated using cor.test in R to assess the correlation between
the ratios and the ML probabilities. We also tested whether
the ML probabilities could be used to predict the ratio of
genes found with a ‘lethal’ phenotype by RNAI using a lin-
ear model (/m) in R.

RESULTS

We implemented a workflow (Figure 1) that comprises: (i)
the assignment of genes as essential based on genomic-
phenomic data; (ii) the extraction of features while em-
ploying methods to identify predictors of essentiality on a
genome-wide scale; (iii) the systematic training and evalu-
ation of ML using subsets of features; (iv) the validation
of gene essentiality predictions using independent experi-
mental (gene knockdown) datasets; and (v) the inference of
chromosome locations linked to SNPs and genes predicted
to be essential; and (vi) the assignment of GO terms en-
riched for essential genes.
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Figure 1. Workflow employed in the present study. First, a wealth of publicly available ‘omics datasets for Drosophila melanogaster were obtained (blue).
Then, we employed a ‘scoring system’ to annotate D. melanogaster genes for essentiality (green) using phenomic data. Next, we extracted or engineered
features (yellow) from the datasets to establish feature sets (FULL—all features; NR—all features from sequences containing <25% amino acid identity;
NR_SELECTED—25 highly predictive features of essentiality, selected from the NR dataset). These feature sets were used for a systematic evaluation of ML
approaches for essential gene predictions (orange). Statistical significance (z-tests) and correlation tests were performed on the FULL and NR_SELECTED
sets, respectively. The performances of the individual ML models, and the importance of the selected features for essentiality predictions were calculated
and evaluated (orange). Independent validations of the ML predictions using knockdown (RNAI) data was also performed (red). Finally, GO enrichment
and preferential genomic locations of SNPs and genes by essentiality annotations were evaluated (gray).

Provisional essentiality annotations

From phenomic data, we provisionally annotated genes
as ‘essential’, ‘non-essential’ or ‘conditional-essential’ by
applying an ES to each D. melanogaster gene (Figure
2A). For each gene, ES (E?/T?) was calculated using pub-
lished genomic-phenomic data within FlyBase—the num-
ber of functional genomics experiments which recorded
‘lethal’ phenotypes (£) and the total number of experiments
(T) reporting ‘lethal’ or ‘viable’ phenotypes (Supplemen-
tary Table S1). Based on ES and defined thresholds (0.1

and 0.9; cf. Figure 2A), we provisionally annotated 414
protein-coding genes as essential, 6884 as non-essential and
4282 as conditional-essential, with 158 (38.1%) essential,
946 (13.7%) non-essential and 2708 (63.2%) conditional-
essential genes being supported by at least three experi-
ments inferring ‘lethal’ and/or ‘viable’ phenotypes (Supple-
mentary Tables S2-4). Of all of these 11 580 genes, 4920
genes were listed FlyBase as having both ‘lethal” and ‘vi-
able’ phenotypes, of which 87% (n = 4282) were annotated
as conditional-essential.
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Figure 2. Annotation of essential genes from phenotype data, and performance of ML methods for essentiality predictions. (A) Drosophila melanogaster
genes were curated for essentiality using phenotype data available in FlyBase. For each gene, an ES was calculated (y-axis) and ordered using the formula
E?/T?, were ‘E’ is the number of entries relating to lethality/essentiality and ‘7" is the total number of entries (‘lethal’ + ‘viable’) reported. Genes were
annotated as ‘essential’ if ES was >0.9, or ‘non-essential’ if was ES < 0.1, or ‘conditional-essential’ otherwise. (B) In the systematic evaluation of gene
essentiality predictions (‘essential’ versus ‘non-essential’) the performance of six ML algorithms and a default classifier were assessed, initially with a
dataset (FULL) containing all genes curated previously and their features (not shown). In addition, a non-redundant (NR) dataset was created, containing
all features from genes whose amino acid sequence identities were <25%. Another dataset containing the NR genes and a selection of 25 best-predictive
features (NR_.SELECTED) was also evaluated. For each dataset, random subsets of genes (10-90%, 10% increments) were used as training sets (x-axis),
and the remaining 90-10% used as independent test sets. At each step, the prediction performance was evaluated using the test set using ROC-AUC (right)
and PR-AUC (left) metrics. (C) Violin and box plots of ROC-AUC and PR-AUC from 1000 bootstraps of RF, XGB and GBM, with random sampling of
90% of the NR_SELECTED used for training and the remaining 10% of this feature set used for testing.

seq), 273 (2.6%) from sequence (nucleotide or protein), 53
(0.5%) from genomic annotations in FlyBase, 25 (0.2%)
from RNA-seq data, 6 (0.06%) from subcellular localization
predictions, 2 (0.02%) from genomic annotations (Ensembl)
and 1 (0.01%) from proteomic data (see Supplementary Ta-
ble S6).

Predictors of essentiality identified from ‘omics data

For each D. melanogaster gene initially annotated for essen-
tiality, we extracted 33 759 features from multiple (genomic,
transcriptomic, variomic, proteomic and epigenetic) ‘omics
datasets (Supplementary Table S5). The removal of features
that exhibited low variance (deviation from the mean), left
15 267 for subsequent analyses (see Supplementary Table
S5). We performed z-tests to compare these features between

. . ) Systematic feature selection and ML approaches
gene sets annotated as essential and non-essential, and iden- y PP

tified 10 509 features with significant Holm—Bonferroni-
corrected P-values (P < 0.05); 10 149 (96.6%) of these fea-
tures were derived from single-cell RNA-seq data (scRNA-

First, we used the complete (FULL) set of features (n =
15 267) obtained for genes annotated previously as ‘essen-
tial’ and ‘non-essential’. Briefly, subsets of the FULL set
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ranging from 10 to 90% (in 10%-increments) were used
to select features and train six distinct ML algorithms
(Gradient Boosting Machine, GBM; Generalized Linear
Model, GLM; Neural Network, NN; Random Forest, RF;
Support-Vector Machine, SVM; and eXtreme Gradient
Boosting, XGB). The prediction performances (ROC-AUC
and PR-AUC) of the models to predict the training sets was
consistently ~1 for both RF and XGB. For GBM and SVM,
the ROC-AUC improved from 0.9 or 0.8 to 1, while the PR-
AUC increased from 0.8 to 1 for both. ROC-AUC ranged
between 0.93 and 0.95 for GLM and NN, whereas PR-AUC
increased from 0.8 to 0.9 for NN, and decreased from 0.7 to
0.6 for GLM. For the predictions of independent test sets
(with 90 to 10% of the data not being used for training),
ROC-AUC for GBM, RF and XGB increased from >0.8 to
0.95, while PR-AUC improved from 0.3 to ~0.65-0.7. Sim-
ilar performances were observed for GLM and NN (ROC-
AUC from 0.8 to ~0.87 and PR-AUC from 0.3 to ~0.5). For
SVM, ROC-AUC improved from 0.75 to 0.9 and PR-AUC
from 0.2 to 0.55. Following the final selection of features
using the FULL set, a total of 200 essentiality predictors
were identified, and their relevance in each ML model was
recorded (Supplementary Table S7).

Second, we defined a non-redundant (NR) dataset by re-
moving features of genes whose proteins contained >25%
amino acid identity based on clustering analysis, retaining
the features pertaining to a single representative gene (cen-
troid). The NR dataset contained sets of 402 essential and
6138 non-essential genes, with 15 267 features for each gene.
For the NR set, we employed the same systematic approach
for data-partitioning and ML training/evaluation as used
for the FULL set. When predicting the training sets, ROC-
AUC was consistently ~1 for GBM, RF, SVM and XGB,
whereas it was ~0.92 for GLM and NN. The PR-AUC was
~1 for RF, ~0.97 for SVM and XGB, and ~0.87 for NN,
but increased from 0.87 to 0.95 for XGB, and decreased
from 0.75 to 0.6 for GLM. When predicting the test sets
(Figure 2B), the ROC-AUC metric improved from 0.84 to
0.96 for GBM and XGB, from 0.8 to 0.94 for GLM and RF,
from 0.8 t0 0.9 for NN, and from 0.75 to 0.88 for SVM. PR-
AUC increased from 0.35 to ~0.65-0.7 for GBM and XGB,
from 0.3 to 0.6 for RF, from 0.3 to ~0.5 for GLM and NN,
and from 0.2 to 0.45 for SVM. The final selection of features
using the NR set identified 115 gene essentiality predictors
(Supplementary Table S8).

Third, we observed that 40 features from the FULL
or NR sets contributed most to essentiality prediction
(Supplementary Tables S7 and 8) and that 25 of these
features were common to both sets. These 25 ‘strong
predictors’ of gene essentiality were features from: (i) ge-
nomic annotations (e.g. number of ‘exons’, ‘chromosome’
location, ‘distance’ from the chromosome center); (ii)
derived from composition or autocorrelation of nucleotide
or amino acid sequences (e.g. ‘DC_NN’, ‘DC_TH’,
‘TC_QQQ’, ‘CTriad_VS444°, ‘PseDNC_Xcl.CA,
‘Moran_ CHAMS820101.1ag8’, ‘Geary CHOC760101.lag5’,
‘kmer_CCC’, ‘TACC_Nucleosome.lagl’—obtained using
‘protr’ or ‘TDNAse’ for R); (iii) related to similarity to genes
of other organisms (e.g. ‘blastx_masked_aa_SPTR.yeast’
and ‘blastx_masked_aa_SPTR.plant’—from FlyBase an-
notations); (iv) obtained from subcellular localization

predictions (e.g. ‘Nucleus’, ‘Cytoplasm’, ‘Extracellular’,
‘Cell_membrane’); and (v) linked to transcription (e.g.
‘flybase_transcript’—represents annotations of transcripts
from modENCODE within FlyBase; ‘DRSC_dsRNA’
and ‘Dmel_r3_r4 _r5_drsc_mapped’—RNAI probes
mapped to genes in FlyBase; ‘rep3_ACTGAGTAG
GCTAGAT —transcription levels of genes in a go-
nad cell (scRNA-seq); ‘num_cells_expressed_wing” and
‘num_cells_expressed_embryo’—number of cells where a
gene is transcribed in wing disc and embryo based on single
cell data; and ‘OvRaA—RNA-seq levels of transcription
of genes in the ovary following treatment with rapamycin).

Fourth, we evaluated the correlations of each of these
25 strong predictors with gene essentiality, and then
assessed pairwise correlations among them. The cor-
relations with essentiality ranged from near zero (e.g.
‘chromosome’ and ‘distance’) to ~0.25 (e.g. ‘exons’,
‘1ep3_ ACTGAGTAGGCTAGAC’, ‘OvRaA’) (Figure
3A). The number of exons (<11), transcription levels
in a gonad cell (‘rep3_ ACTGAGTAGGCTAGAC’; >1)
and in the ovary treated with rapamycin (‘OvRaA’;
>854.75) were each inferred to be linked to essential
genes. Upon pairwise comparison (Figure 3B), there
were weak or no correlations (—0.3 to 0.3) among >98%
of predictors, moderate negative correlations (—0.3 to
—0.5) between ‘extracellular’ and either ‘nucleus’ or ‘cy-
toplasm’, and moderate positive correlations (0.3 to 0.5)
between ‘OvRaA’ and either ‘num_cells_expressed_wing’
or ‘num cells_expressed_embryo’; between ‘kmer CCC’
and ‘flybase_transcript’; and between the sequence features
‘PseDNC_Xcl.CA and ‘TC_QQQ’. Strong correlations
(>0.5) were observed between ‘DRSC_dsRNA’ and
‘Dmel_r3_r4_r5_drsc_mapped’ (FlyBase features—RNAIi
probes), between ‘PseDNC_Xc1.CA’ and both ‘TC_QQQ’
and ‘CTriad_VS444’, between ‘num_cells_expressed_wing’
and ‘num_cell_expressed_embryo’ (scRNA-seq),
and between ‘blastx_masked_aa _SPTR.yeast’
and ‘blastx_masked_aa_SPTR.plant’ (FlyBase
annotations—protein sequence similarity to other or-
ganisms).

Fifth, we carried out the systematic training and evalu-
ation of each of the six ML algorithms using a subset of
the NR set (402 essential and 6138 non-essential genes; the
NR_SELECTED set) containing the 25 most highly pre-
dictive features identified in both the FULL and NR sets
(Figure 2B). Using the NR_SELECTED set to predict the
training sets, the ROC-AUC was ~1 for GBM and RF and
~0.9 for GLM and NN, and increased from 0.95 to ~1 for
XGB and from 0.92 to ~1 for SVM. The PR-AUC was
>0.97 for GBM, RF and XGB, increased from ~0.65 to
~1 for GBM and SVM, and remained relatively constant
at ~0.5 for GLM, and decreased from 0.8 to 0.7 for NN.
When evaluating the prediction performances for the inde-
pendent test sets, the ROC-AUC increased from 0.87 to be-
tween 0.93 and 0.96 for GBM, RF and XGB, from 0.82 to
0.87 for SVM, whereas it remained consistently at ~0.87
for GLM and NN. The PR-AUC improved from ~0.45
to 0.65 for GBM and XGB, and from 0.4 to 0.6 for RF,
and remained at ~0.4 for GLM, NN and SVM. Follow-
ing the calculation of the median relative importance val-
ues for each of the six ML models, the five best of the 25
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Figure 3. Correlations of features. (A) The correlations (x-axis) of 25 highly predictive features (y-axis) with gene essentiality, generated using ‘correlation-
funnel’ for R. Individual dots represent value ranges from i to j (i_j); Inf means any value above i; -Inf means any value below j; ‘OTHER’ means any other

value. (B) The pairwise correlation among these 25 predictors.

predictors for NR_SELECTED were ‘exons’ (importance =
100), ‘OvRaA’ (77.74), ‘num _cells_expressed_wing’ (53.54),
‘Nucleus’ (48.51) and ‘num_cells_expressed_embryo’ (Sup-
plementary Table S9). Using the NR_SELECTED set, we
assessed the variation in ROC-AUC and PR-AUC by em-
ploying a bootstrapping approach (n = 1000), where most
(90%) of the data was randomly selected for ML training
(GBM, RF and XGB), leaving the remaining 10% for test-
ing and for the calculation of performance. Violin and box
plots (Figure 2C) show that the ROC-AUC ranged between
~0.85 and 1 for each of the three ML algorithms, with me-

dians being between 0.93 and 0.95. Regarding the PR-AUC,
the metric ranged from 0.4 to 0.8, and medians from 0.60 to
0.68. Overall, XGB exhibited the best performance for both
metrics.

Finally, the ML models trained with the 25 features (i.e.
‘strongest predictors’) were each used to predict essentiality
for all 11 580 genes included in this study, and the essen-
tiality probabilities for each model was determined (Sup-
plementary Tables S10 and 11). Considering the median
probabilities of the best-performing models (i.e. GBM, RF
and XGB), 482 genes had a high probability (>0.7) of be-
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Figure 4. Independent validation of ML essentiality predictions using functional genomics data (RNAI). Initially, genes predicted for essentiality using
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probability (light red) and from the lowest to the highest (light blue), these genes were cumulatively searched against the GenomeRNAI database and the

ratios of genes with at least one ‘lethal’ phenotype were calculated.

ing essential. Moreover, for each of the feature sets (i.e.
FULL, NR and NR_SELECTED), we evaluated the ef-
fect of parameter-tuning on the ROC-AUC for each of the
six ML algorithms. Regarding ML parameter tuning, the
ROC-AUC achieved a higher performance in most cases us-
ing: a regularization-parameter value of <0.001 for GLM;
>1000 boosting iterations and max-tree-depth of 10 or 20
for GBM; >200 boosting iterations and max-tree-depth of
>10 for XGB; variable numbers of hidden-layer units for
NN, depending on the dataset used; 50 randomly selected
predictors for RF using the FULL or NR set, or 10 using
NR_SELECTED; sigma-parameter of <0.01 for SVM us-
ing FULL or NR, or >0.1 using NR_SELECTED.

Independent validation of essential gene predictions using
RNAI data

We validated the gene essentiality predictions using in-
dependent functional genomics (RNAi) data from the
GenomeRNAI database (see Figure 4). The total number
of genes with at least one ‘lethal’ phenotype was 1478, cor-

responding to a ratio of 12.8% of all 11 580 genes included
in the present study. On the one hand, considering the genes
predicted as most likely being essential by the ML approach
(n = 482; probability of >0.7), 48.8% (n = 235) were sup-
ported by a ‘lethal’ phenotype from a least one experiment.
On the other hand, of the genes predicted as most likely
being non-essential (n = 9577; probability of <0.1), 9.6%
(n = 918) had a ‘lethal’ RNAIi phenotype. Next, we evalu-
ated the relationship between the ML prediction probabili-
ties and the ratios of genes with a ‘lethal’ RNAi phenotype.
We serially queried individual genes against the GenomeR-
NAi database, from highest to lowest ML probability of be-
ing essential, and cumulatively re-calculated the ratios of
genes linked to ‘lethal’ phenotypes. We then used the same
approach, proceeding from the gene with the lowest prob-
ability (based on ML predictions) to that with the high-
est probability. The ratio decreased from 100% to 12.8% as
more genes were included—from the highest to lowest prob-
abilities (Figure 4; light red). Conversely, the ratio increased
from zero to 12.8%, when including genes from the lowest to
the highest probabilities (Figure 4). Interestingly, the Pear-
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blue: ‘non-essential’; yellow: ‘conditional-essential’).

son’s correlation coefficient between the ratios and the ML
probabilities was ~0.89 (P < 2.2e71%). Moreover, we tested
whether the ML probabilities could be used as a cut-off to
predict the ratio of genes showing a ‘lethal’ phenotype by
RNAi. The adjusted R? for the linear model was ~0.80 (P
<2.2¢e719),

Distribution of SNPs and genes along the chromosomes of D.
melanogaster

We generated a plot of the number of SNPs per 1000 bp-
window for each of the largest chromosomes (i.e. 2, 3 and
X; Figure 5A). The average number of SNPs per window
was usually within the range of 0-92, with a maximum of
370, with reduced numbers being near the centromeric (au-
tosomes) and telomeric (autosomes and X) regions (edges
of chromosome segments; Figure 5A) compared with other
areas of the genome. Fewer SNPs were found on the X chro-
mosome compared with autosomal chromosomes. Chro-
mosomal regions on the right of centromeres (i.e. 2R and
3R) exhibited wider genomic regions with low SNP density
compared with the left.

We assessed the distribution of genes along chromosomes
(density plots), stratified by their essentiality annotations
(Figure 5B). We observed that gene distributions on individ-
ual chromosomes were similar, irrespective of their anno-
tation. Using Kolmogorov—Smirnov tests to compare these
distributions, there was no significant difference in distri-
bution of essential and non-essential (P = 0.16), or essen-
tial and conditional-essential (P = 0.39), or non-essential
and conditional-essential (P = 0.19) genes. As for the SNP
distributions, we observed a reduction in gene density near
centromeric and telomeric regions. Based on Hartigans’ dip
tests, the distributions of essential genes were unimodal for
2R (P = 0.48), 3L (P = 0.61) and X (P = 0.1), and non-
unimodal for 2L (P = 0.043) and 3R (P = 0.01). Thus, es-
sential genes were inferred to be preferentially located left

on chromosome regions 2L (bimodal-low) and 3L, left on
chromosome X; central on region 2R; and bimodal-even on
region 3R. The numbers of essential genes on chromosomal
regions were 73 (2L), 82 (2R), 79 (3L), 107 (3R), 2 (4), 71
(X) and none (Y), suggesting an overall preference for the
right-hand side of chromosome 3 (3R).

Gene ontology (GO) terms enriched for essential genes

To obtain insight into the biological processes, cellular
components and/or molecular functions in which essential
genes are involved, we performed GO enrichment analysis
using the database DAVID (47) (see Supplementary Table
S12). For biological processes, the three most significantly
enriched terms (P < 1.9¢7}) were ‘cytoplasmic translation’
(43 genes), ‘centrosome duplication’ (18) and ‘translation’
(47). For cellular components, highly enriched terms (P
< 1.7e71%) were ‘ribosome’ (43), ‘cytosolic small ribosomal
subunit’ (23) and ‘cytosolic large ribosomal subunit’ (25).
For molecular functions, the most predominant terms (P <
1.7¢71%) were ‘structural constituent of ribosome’ (47), ‘ATP
binding’ (63), and ‘transcription factor activity sequence-
specific DNA binding’ (37).

DISCUSSION

In the present work, we show that essential genes in D.
melanogaster can be predicted with high confidence using
ML methods. The prediction performance achieved here is
attributed to: (i) a thorough annotation of essential genes
using phenotypic data and development of a scoring sys-
tem; and (ii) the discovery of informative predictive features
(‘predictors’) from extensive ‘omics datasets publicly avail-
able for the vinegar fly.

The availability of the D. melanogaster genome (3) has en-
abled numerous functional investigations of genes in this fly
(see (48)), allowing the experimental inference of essential
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and non-essential genes. However, it is evident that there is
a subset of genes that has been classified as ‘essential’ (lethal
phenotype) in particular knock-down experiments (4) and
‘non-essential’ (viable phenotype) in others (49). This ‘am-
biguous’ subset, referred to here as conditional-essential,
might be explained by the variable expression of a pheno-
type under distinct experimental conditions or in different
life stages of the fly and/or an occasional mis-recording of
a phenotype due to the large-scale nature of such experi-
ments and the sheer number of flies being examined. In or-
der to reduce possible bias or errors, in the present study,
we established a system to separately score genes as essen-
tial, non-essential or conditional-essential. Establishing this
system was crucial, so that we could set a threshold to infer
essential and non-essential genes based on reliable pheno-
typic data as a basis to accurately train ML methods using
feature engineering and selection.

We discovered strong predictors of essentiality, some of
which were entirely novel (see Supplementary Table S6),
and moved from using thousands of features to 25. In future
work, a range of feature selection approaches could be used,
including leave-one-out methods, to reduce this shortlist
further, while assessing the loss in prediction performance.
Among the 25 strongest predictors of essentiality inferred
for D. melanogaster are features derived from scRNA-seq
data for embryo, wing disc or gonads; transcripts defined
by modENCODE; RNAI probes; and sequence similarity
to genes of distantly related organisms (yeast and plants).
Interestingly, we identified a feature—i.e. level of gene tran-
scription in the ovary after rapamycin exposure in vitro—as
one of the best predictors of essentiality in D. melanogaster.
It is known that rapamycin extends the longevity of this fly
via the modulation of mMTOR pathway, and we propose that
this modulation is tightly linked to essential genes in the re-
productive tissues. We also found that the location (coordi-
nates) of a gene on a chromosome, the exon number of a
gene and selected nucleotide and protein sequence features
(including ‘kmer_3_CCC’, and ‘TC_QQQ’, corresponding
to the compositions of cytosine and glutamine trimers, re-
spectively) as well as the inferred subcellular localization
of a gene product were all strong predictors of essentiality;
some of these features had been reported in previous studies
(26-27,50). However, we showed that no single feature cor-
related perfectly with essentiality, although the features with
the strongest predictive values were most significant based
on t-test results. Therefore, we infer that the combination of
individual features in the ‘strongest set’ provided incremen-
tal contributions, and was required to achieve a high per-
formance of essentiality predictions by ML. This evidence
indicates that the prediction of essentiality can be readily
achieved without the need to include PPI data, which is
costly, time-consuming and challenging to produce for non-
model organisms such as parasites that cannot be main-
tained in culture in vitro.

Essentiality predictions were shown to be reliable based
on threshold-independent metrics (ROC-AUC and PR-
AUC), consistently achieving nearly perfect classification
(~1) by ROC-AUC and improving the PR-AUC by at least
2-fold compared with previously published studies (26,27).
Overall, the ensemble-based ML methods (XGB, GBM
and RF) achieved the best accuracy and consistency. Using

these three methods, each trained with NR_SELECTED (a
feature set less prone to sequence bias), we obtained final
ML-based predictions of essentiality for all genes included
in this study. Independent validation of these predictions us-
ing available RNAi data showed a strong correlation (0.89)
of prediction probabilities with lethal phenotypes, such that
these probabilities are considered excellent predictors of es-
sentiality via RNAI (linear model, R?> ~0.8). This analysis
demonstrates the validity and ‘sensitivity’ of the scoring sys-
tem and ML approaches. Complementary ontology enrich-
ment analysis showed that protein processing was conspic-
uous for essential genes. However, the numbers of essential
genes linked to each term was limited, supporting previ-
ous findings for model eukaryotes (26). For this reason, we
elected not to use GO terms as features in the present study.
In our opinion, the essential and non-essential gene sets in-
ferred here provide a valuable resource to explore the func-
tional roles of key subsets of genes using CRISPR /Cas9 and
complementary experiments such as in situ-hybridization,
proteomic and/or biochemical approaches (51-53).

A recent study (27) achieved an improved prediction
of essential genes in D. melanogaster by integrating se-
quence, network and subcellular localization features. The
genes included (441 essential and 11 788 non-essential) ob-
tained from essentiality databases; 339 genes were from the
Database of Essential Genes (DEG) (54) and 13 852 from
the Online GEne Essentiality database (OGEE) (55). How-
ever, these two databases do not include RNAI1 data from
GenomeRNAIi (16) or mutant allele data from FlyBase (12).
Indeed, all 339 genes of D. melanogaster listed in DEG had
been characterized by transposon mutagenesis—a method
reported to be error-prone and somewhat biased (56). An
independent evaluation using our scoring system showed
that most genes listed as essential (n = 202; 81.8%) in this
database were categorized as conditional-essential. This re-
sult emphasizes that it is critical to infer confident (essen-
tial and non-essential) gene sets from genomic-phenomic
data for the training of ML methods. As presently no gold-
standards with unequivocal essentiality annotations exist,
future efforts should focus on creating them, which would
lead to enhanced ML predictions and analyses.

Similar numbers (7) of essential genes were localized to
chromosomal regions 2L (n = 73), 2R (n = 82), 3L (n = 79)
and chromosome X (n = 71) and ~30% more genes were
found on region 3R (n = 107), whereas only two were on
chromosome 4 and none on Y. However, there was no sta-
tistical difference in chromosomal location among essential
and non-essential genes and conditional-essential, although
there were preferential locations on chromosomes for genes
(Figure 5), irrespective of their classification. Although in-
tuitively, one would expect essential genes to be within con-
served regions of the genome, this was not supported by our
analyses (Figure 5).

In conclusion, this study shows that a feature
engineering/selection and ML-based workflow can
identify novel predictors of gene essentiality of biological
relevance and predict, with high confidence, essential genes
in D. melanogaster. By using the vast genomic-phenomic
datasets available for the vinegar fly, we demonstrate
improved performance of gene essentiality predictions
compared with previously published results (26,27) and



without the inclusion of PPI network datasets. We believe
that our workflow will be applicable to other arthropod
species, provided that extensive, informative datasets are
available. Presently, we hypothesize that features relating to
sequence, subcellular localization and transcription data
from reproductive tissues (scRNA-seq and RNA-seq) will
be informative/useful predictors for Drosophila species
more generally, but whether they will serve to predict gene
essentiality for distantly related taxa remains to be explored
in detail. Tackling this area would provide strength to the
ML-based prediction of essentiality for a diverse range of
species of invertebrates. Such a focus would be particularly
beneficial for work on drug and vaccine target discovery
in non-model eukaryotes, such as parasitic arthropods
and worms, for numerous genomic, transcriptomic and/or
proteomic datasets are available or can be produced,
but for which the development of functional genomic
tools may be unattainable or extremely challenging due
to the intractability of such organisms to continuous in
vitro-culture.
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