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Abstract: Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related death
worldwide. The accuracy of a PDAC diagnosis based on endoscopic ultrasonography-guided fine-
needle aspiration cytology can be strengthened by performing a rapid on-site evaluation (ROSE).
However, ROSE can only be performed in a limited number of facilities, due to a relative lack of
available resources or cytologists with sufficient training. Therefore, we developed the Mathematical
Technology for Cytopathology (MTC) algorithm, which does not require teaching data or large-scale
computing. We applied the MTC algorithm to support the cytological diagnosis of pancreatic cancer
tissues, by converting medical images into structured data, which rendered them suitable for artificial
intelligence (AI) analysis. Using this approach, we successfully clarified ambiguous cell boundaries
by solving a reaction–diffusion system and quantitating the cell nucleus status. A diffusion coefficient
(D) of 150 showed the highest accuracy (i.e., 74%), based on a univariate analysis. A multivariate
analysis was performed using 120 combinations of evaluation indices, and the highest accuracies for
each D value studied (50, 100, and 150) were all ≥70%. Thus, our findings indicate that MTC can
help distinguish between adenocarcinoma and benign pancreatic tissues, and imply its potential for
facilitating rapid progress in clinical diagnostic applications.

Keywords: artificial intelligence; benign tissue; diffusion coefficient; Mathematical Technology
for Cytopathology; medical image; multivariate analysis; nuclear boundary; pancreatic ductal
adenocarcinoma; rapid on-site evaluation; reaction–diffusion system

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related death
worldwide; the 5-year survival rate for patients with PDAC is less than 10%, and most
patients die within 2 years after diagnosis [1,2]. Although surgery is recommended for
patients with early-stage or locally advanced disease, less than 20% of such patients are
good candidates for resection. Because PDAC is a systemic disease, multimodal treatment
is required, such as neoadjuvant/adjuvant chemotherapy and chemo radiation therapy [3].
Therefore, obtaining a definitive diagnosis by endoscopic ultrasonography-guided fine-
needle aspiration cytology (EUS-FNA) and endoscopic ultrasonography-guided fine-needle
biopsy (EUS-FNB) before surgery or treatment has become increasingly essential [4,5].
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When making a definitive diagnosis of PDAC, a cytological diagnosis by EUS-FNA can
be strengthened by performing a rapid on-site evaluation (ROSE), which helps to provide
immediate feedback and enables a diagnosis to be made in the shortest possible time [6–8].
However, some issues exist with ROSE, such as the limited number of facilities where
ROSE can be provided [9]. One reason for this may be the relative lack of cytologists who
can immediately diagnose pancreatic cancer with ROSE; thus, the burden on cytologists is
increasing. Therefore, there is a need to develop a new diagnostic-support technology.

Currently, attempts are being made to build automated systems using artificial intelli-
gence (AI) [10,11]. However, AI itself has problems, such as high cost, low versatility (since
the results depend on the quality and quantity of the teaching data), and an unknown
reason for the diagnostic result (AI’s black box). In addition, the distribution of the cell
nucleus (which provides a clue for diagnosis) is random. Thus, the random distribution of
the cell nucleus makes it difficult to apply algorithms based on the supervised data used in
AI. Therefore, using AI for cytological diagnosis is difficult, because the data need to be
analyzed by capturing the random and three-dimensional distribution of lesions.

In contrast, the mathematical method developed in this study does not require teach-
ing data or a large-scale computer system. Our mathematical method clarifies ambiguous
cell boundaries by solving certain differential equations. Specifically, we (I) clarify am-
biguous nuclear boundaries by solving a reaction–diffusion system and (II) quantitatively
evaluate the cell nucleus status using mathematical principles, an approach known as the
homology profile (HP) method, to match it with physicians’ interpretations [12–15]. The
HP method is an algebraic tool for measuring the topological features of objects [16]. Given
a topological space, the HP algorithm computes the number of connected components and
holes using the structure of that space, based on continuous thresholds. Recently, Qaiser
et al. employed the HP algorithm for tumor segmentation by focusing on the connectivity
between nuclei [12,17].

Using the HP method, medical images are converted into structured data, which ren-
ders them effective for use with AI techniques. We named the series of methods developed
in this study as the Mathematical Technology for Cytopathology (MTC) algorithm. The
essence of MTC is the structuring of medical images; once the image data are structured,
the bottleneck of applying AI technology to pathological images (a current limitation)
will be largely eliminated, leading to rapid progress in clinical applications. MTC does
not require a large-scale computational system and does not depend on monitoring data,
such as staining conditions. MTC can be applied universally because it is robust. In ad-
dition, the algorithm is clear and the reason for the diagnosis can be explained. In this
study, we investigated the applicability of MTC to support the cytological diagnosis of
pancreatic cancer.

2. Materials and Methods
2.1. Study Design

This study was designed as an exploratory observational study to analyze whether
PDAC can be diagnosed using MTC with medical records and existing cytology speci-
mens, without involving invasion or intervention. This research was conducted as a joint
effort between investigators at Mie University, Osaka University, and Tohoku University.
We attempted to differentiate adenocarcinoma from benign pancreatic cells by quantita-
tively analyzing information on the distributions (size and variability of the cell cluster
form) of cells and cell nuclei via MTC analysis of cytological images (103 normal and
143 adenocarcinoma specimens) obtained by EUS-FNA or EUS-FNB.

2.2. Procedure of EUS-FNA/EUS-FNB and Diagnosis

A convex-array echo-endoscope (GF-UCT260, Olympus, Tokyo, Japan) was used for
EUS-FNA and EUS-FNB procedures. After identifying tumors using B-mode imaging
and confirming the absence of vessels in the target area, we punctured the pancreatic
mass under endoscopic ultrasonographic guidance. We mainly used four types of needles,
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namely, 25 G and 22G FNA needles (EZ-shot 3 Plus, Olympus, Tokyo, Japan), and 22G and
19G Franseen needles (Acquire, Boston Scientific, Natick, MA, USA). The different needles
were used according to their availability.

A cytologist immediately examined each specimen with ROSE using rapid staining
(Diff-Quick stain; International Re-agents, Kobe, Japan) to verify that a sufficient sample
was obtained. Further punctures were performed in cases where an insufficient sample
was obtained. We confirmed the diagnosis of PDAC by cytological and/or histological
analyses with EUS-FNA and EUS-FNB specimens. Both the cytological and pathological
diagnoses were based on the review of all these materials by cytopathologists.

2.3. Automatic Diagnosis Assistance System

To automate the ROSE analysis of each series of contents, it was necessary to analyze
the morphology and arrangement information of the “nucleus,” such as the irregularity
of the cell nucleus. It was only necessary to extract the nuclei; however, the nuclei were
layered on top of each other, which made it difficult to separate them using ordinary image
processing methods. Therefore, only the cell nuclei were extracted using the “reaction–
diffusion method,” which involves separation by adjusting the gray areas to either black
or white (Figure 1). At present, the “reaction–diffusion method” takes approximately one
minute per image. With further improvements, it should be possible to process each image
in approximately 10 s.

Figure 1. The left panels: Diff-Quick stain of adenocarcinoma and benign pancreatic tissue. The right
panels: “reaction–diffusion method” of adenocarcinoma and benign pancreatic tissue.

2.4. The Mathematical Method

Reaction–diffusion systems are often used to analyze self-organization phenom-
ena [18], but they can also be applied to image analysis. Here, the method was applied to
detect ambiguous boundaries of the nuclei. In general, physicians detect nuclei by ignoring
small particles and light-colored areas. However, this method shows poor reproducibility
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when performing ordinary image analysis. We sought to increase the reproducibility by
solving a reaction–diffusion system. The most important key is Equation (3), which is
presented below in Section 2.1. The first term (the reaction term) changes brightly colored
areas to black or white. The second term (the diffusion term) serves as an averaging factor,
causing small particles to disappear. The associated mechanism can be explained as follows:
if the value of u is in interval (i), then the reaction term is negative (Equation (3)). If ut
is considered negative, then the value of u decreases. Conversely, if u is in interval (ii),
then the value of u increases (Figure 2). Here, let interval (i) be (a, 0) and interval (ii) be
(0, b). Therefore, the value of u finally converges to that of a (black) or b (white). Figure 1
shows representative reaction–diffusion results (right panels), which seem to be close to
the cytological images (left panels).

Figure 2. If the value of u is in interval (i), then the reaction term is negative. If ut is considered
negative, then the value of u decreases. Conversely, if u is in interval (ii), then the value of u increases.
Here, let interval (i) be (a, 0) and interval (ii) be (0, b). Therefore, the value of u finally converges to
that of a (black) or b (white).

The idea of applying a reaction–diffusion system to image analysis was first introduced
and developed by Nomura et al. for detecting edges in images with variable brightness [19].
In addition, Mahara et al. applied this method to detect vague boundaries, such as material
grains (JIS-SUJ2) and capillaries at the base of the fingernails (Figure 3) [20].
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Figure 3. The left panels show the real image of capillaries at the base of the fingernails and the
image after processing using the reaction–diffusion method. The right panels show the real image of
silicon–boron compounds and the image after processing using the reaction–diffusion method.

2.4.1. The Reaction–Diffusion System

Local average thresholds were determined based on the following diffusion equation:

∂a
∂t

= Da∇2a (1)

where Da is the diffusion coefficient. The value a is a threshold for running the FitzHugh–
Nagumo (FHN) equations, i.e., Equations (3) and (4) [19,21]. The initial value a0 of a is
determined by the following:

a0 = 0.15 + 0.2
(I − Imin)

(Imax − Imin)
(2)

where I is the brightness of pixels with the gray scale (0–255) in the original image. Imax
and Imin are the maximum and minimum brightness values of the pixels, respectively.

Next, a reaction–diffusion system was used based on the FHN equations. The system
is described by Equations (3) and (4):

∂u
∂t

=
1
ε
[u(1− u)(u− a)− v]+Du∇2u (3)

∂v
∂t

= u− bv+Dv∇2v (4)

where Du and Dv are the diffusion coefficients for the variables u and v, respectively. The
parameter ε is a positive small constant (0 < ε < 1). The parameter b is a positive constant
and is spatially homogeneous. The initial value of u is defined as follows:

u0 = 0.15 + (C− 0.15)
(I − Imin)

(I − Imax)
(5)
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where C is constant, and the appropriate value of this parameter depends on the orig-
inal image used for edge detection. The initial value of v was set to zero uniformly in
this domain.

2.4.2. Numerical Computations

Numerical calculations were carried out as previously described [18–20,22,23]. The
initial conditions of a and u were determined based on the pixel data of the images
(Equations (2) and (5)). We discretized Equations (1), (3) and (4), and used the fourth-order
Runge–Kutta method for space and the finite-difference method for time. The Neumann
boundary conditions were applied.

Initially, Equation (1) was calculated using t = 0.005 and diffusion coefficient (Da) = 2500.0.
Next, Equations (1), (3) and (4) were calculated with t in the interval [0.005, 0.02]. The
parameter values were ε = 0.0002 and b = 20.0. Our numerical computation stopped after
approximately 4–5 s, using an ordinary laptop computer. The final result of u was translated
to the binary images.

2.5. Calculating the Quantitative Index

The quantitative index was calculated for the connected components with areas of
100–1000 pixels in the images. The connected components with areas outside of this range
were considered to be noise or to reflect instances where the nuclear boundary could not be
distinguished well. Seven quantitative indexes were calculated, including the following:
(1) number of pixels; (2) area (pixels); (3) interquartile range of the area; (4) area/pixel;
(5) average perimeter of the connected components; (6) average circularity of the connected
components; and (7) interquartile circularity range of the connected components. The
parameter D (induced by Du and Dv) can be regarded as reflecting the state of the tissue
staining. In this study, we selected three parameters for D (50, 100, and 150). Important
indices for detecting adenocarcinoma cells were identified by calculating the accuracy,
sensitivity, and specificity of the quantitative index.

2.6. Classifying Tissues as Normal or Adenocarcinoma Tissues

Tissue classifications (i.e., normal or adenocarcinoma) were performed using univari-
ate and multivariate analysis with the seven quantitative indexes mentioned in Section 2.5.

When performing univariate analysis, the median value was used as the threshold
value to perform the classification. For multivariate analysis, we combined the quantitative
indexes by summing them. It should be noted that we repeatedly performed multivariate
analysis by changing the number of combined quantitative indexes from two to seven
(i.e., 120 combinations). In this analysis, min–max normalization was used to normalize
each quantitative index. MATLAB R2020a (Math Works, Natick, MA, USA) was used for
the calculation.

2.7. Evaluating the Classification Accuracy

The accuracy, sensitivity, and specificity were calculated by the following equations:

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Sensitivity =
TP

TP + FN
(7)

Specificity =
TN

TN + FP
(8)

Here, TP, TN, FP, and FN represent the true-positive, true-negative, false-positive, and
false-negative values, respectively. MATLAB R2020a was used for evaluating the accuracy
of the classification method.
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3. Results

Here, D was calculated as an index that depended on the diffusion coefficients Du and
Dv. First, to select the appropriate parameters, we outputted the reaction–diffusion images
with three different D values (50, 100, and 150). As the D value decreased, the unnecessary
parts of the edges became visible, instead of the core content. In contrast, as the D value
increased, the unnecessary parts of the edges disappeared, while the content showed
a tendency to almost disappear. Therefore, we selected three D values with acceptable
performance: D = 50, D = 100, and D = 150 (Figure 4).

Figure 4. The reaction–diffusion images with different D values: As the D value decreased, the
unnecessary parts of the edges became visible, instead of the core content. In contrast, as the D value
increased, the unnecessary parts of the edges disappeared, while the content showed a tendency to
almost disappear.

For all the images, the quantitative indexes were extracted by cropping around the
selected cell masses. With the univariate analysis, the highest accuracies for each parameter
were 71% (D = 50, number of pixels; Table 1), 69% (D = 100, interquartile range of circularity
of the connected components; Table 2), and 74% (D = 150, interquartile range of circularity
of the connected components; Table 3), respectively. These results showed that setting D to
150 resulted in the highest accuracy (i.e., 74%) among all three parameters studied.

Table 1. Univariate and multivariate analysis (D-50).

Quantitative Index Accuracy (%) Sensitivity (%) Specificity (%)

Univariate analysis

Number of pixels 71 75 65
Area 39 47 28

Interquartile area range 67 71 61
Area/pixel 68 72 63

Average perimeter of the connected components 57 64 48
Average circularity of the connected components 46 53 36

Interquartile circularity range of the
connected components 43 50 33

Multivariate analysis Number of pixels + interquartile area range +
average perimeter of the connected components 75 78 70
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Table 2. Univariate and multivariate analysis (D-100).

Quantitative Index Accuracy (%) Sensitivity (%) Specificity (%)

Univariate analysis

Number of pixels 68 72 62
Area 42 49 31

Interquartile area range 67 71 61
Area/pixel 66 71 60

Average perimeter of the connected components 40 49 27
Average circularity of the connected components 24 34 10

Interquartile circularity range of the
connected components 69 74 64

Multivariate analysis Number of pixels + interquartile area range 70 74 65

Table 3. Univariate and multivariate analysis (D-150).

Quantitative Index Accuracy (%) Sensitivity (%) Specificity (%)

Univariate analysis

Number of pixels 56 62 48
Area 52 58 44

Interquartile area range 69 73 64
Area/pixel 55 61 48

Average perimeter of the connected components 46 54 34
Average circularity of the connected components 23 33 9

Interquartile circularity range of the
connected components 74 78 69

Multivariate analysis Area/pixel + interquartile circularity range of the
connected components 74 77 70

The multivariate analysis was performed using 120 combinations of evaluation in-
dices. With the multivariate analysis, the highest accuracies for each parameter were 75%
(D = 50, number of pixels + interquartile area range + average perimeter of the connected
components; Table 1), 70% (D = 100, number of pixels + interquartile area range; Table 2),
and 74% (D = 150, area/pixel + interquartile circularity range of the connected components;
Table 3), respectively.

4. Discussion

The results of this study show that MTC could be used to distinguish between adeno-
carcinoma tissue and benign pancreatic tissue. Although MTC showed excellent results
in discriminating adenocarcinoma from benign patterns in cytology images, there were
three problems. One problem was that the edges of the cell clusters often overlapped
with each other, making it difficult to capture individual nuclei, resulting in false-positive
results. To solve this problem, the cytologist manually selected the region of interest to
remove the unnecessary overlap. The second problem was related to the nuclear area in
aggregated pancreatic cancer cells with mucus production. Although the distance between
the nuclei was irregular, due to the wider cytoplasm of mucus-producing cancer cells,
nuclear enlargement appeared to be relatively mild and contributed to the false-negative
results. The last problem was that little information was available when the specimens
were small and, thus, the judgments varied. The latter two problems can be solved by
increasing the number of patterns and performing deep learning.

To the best of our knowledge, no studies have used machine learning or deep learning
to support the cytological analysis of pancreatic tissues to diagnose adenocarcinoma in
pancreatic EUS-FNA specimens. In 2021, Naito et al. reported the first application of deep
learning to detect adenocarcinoma in pancreatic EUS-FNB specimens [24]. They stated that
the specimens that pathologists needed for diagnosing adenocarcinoma included various
tissue components, such as invasive ductal carcinoma cells in desmoplastic stromata and
circulating fragmented and intact cancer cells in the blood. Histological diagnosis is based



Diagnostics 2022, 12, 1149 9 of 11

on the diagnosis of both cellular and structural atypia, whereas cytological diagnosis
is based on the morphological abnormalities of individual cells, such as nuclear atypia.
Therefore, it is more difficult to directly incorporate cytological diagnosis into deep learning
than it is to incorporate histological diagnosis.

Recently, EUS-FNB has been used more than EUS-FNA for tissue acquisition [25–27],
as EUS-FNB has been reported to provide more stable diagnostic results after improve-
ments were made to the puncture needle [28,29]. However, while EUS-FNB is useful for
diagnosing large masses, it is quite difficult to collect tissue fragments by EUS-FNB from
small masses (i.e., <1 cm in diameter). In such cases, cytology by EUS-FNA with ROSE may
often be more useful. Mie et al. reported that EUS-guided tissue acquisition from small
solid pancreatic lesions for ROSE had a high diagnostic yield and was safe [30]. Similarly,
in our institution, when tissue samples are obtained under EUS from a small pancreatic
mass, they are confirmed by ROSE, and the samples are processed as direct smears and/or
formalin-fixed core biopsy specimens.

The role of cytologists in ROSE is significant. Fitzpatrick et al. reported the diagnostic
performance of cytopathology (CP) in the evaluation of pancreatic EUS-FNB specimens,
evaluated the FNB diagnostic performance stratified by tissue triage, and reviewed the
specimen types [31]. They reported that CP accurately diagnosed pancreatic FNB speci-
mens, the ROSE review by CP improved the diagnostic yield and operating characteristics,
and that a concurrent review of both the cytological features of direct smears and the
architectural features of core biopsies improved the overall diagnostic performance. These
findings highlighted the importance of CP in assessing FNB specimens to evaluate the
adequacy and render a preliminary diagnosis at the time of the procedure. Therefore, it is
important to train cytologists to perform ROSE quickly and accurately. The development of
this diagnostic aid technology, MTC, is expected to be very useful in clinical practice, and
serve as a good teaching tool for training cytologists, by comparing the analytical results of
MTC with their own diagnoses.

Our study has several limitations. One limitation is that the test images were all
obtained from a single institution; therefore, it is uncertain how well the MTC model would
perform with images obtained from a different institution. Second, no external validation
was performed. The third limitation is that the test set size was small (103 normal specimens
and 143 adenocarcinoma specimens), and it might not include all the potential variations in
cases that could be encountered. As future work, we intend to further develop and evaluate
our model with multiple test sets obtained from different medical institutions, to assess its
generalization performance and move closer towards adopting such assistive models in
routine cytological diagnosis workflows.

5. Conclusions

In the future, we can expect to improve the accuracy by selecting optimal parameters
for each extracted image. Because MTC is simple and does not require supervisory data,
it can be applied to various medical facilities and is expected to be useful for diagnosis
support in the future.
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