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Abstract: Silent speech decoding is a novel application of the Brain–Computer Interface (BCI) based
on articulatory neuromuscular activities, reducing difficulties in data acquirement and processing.
In this paper, spatial features and decoders that can be used to recognize the neuromuscular signals
are investigated. Surface electromyography (sEMG) data are recorded from human subjects in mimed
speech situations. Specifically, we propose to utilize transfer learning and deep learning methods
by transforming the sEMG data into spectrograms that contain abundant information in time and
frequency domains and are regarded as channel-interactive. For transfer learning, a pre-trained
model of Xception on the large image dataset is used for feature generation. Three deep learning
methods, Multi-Layer Perception, Convolutional Neural Network and bidirectional Long Short-Term
Memory, are then trained using the extracted features and evaluated for recognizing the articulatory
muscles’ movements in our word set. The proposed decoders successfully recognized the silent
speech and bidirectional Long Short-Term Memory achieved the best accuracy of 90%, outperforming
the other two algorithms. Experimental results demonstrate the validity of spectrogram features and
deep learning algorithms.

Keywords: silent speech decoding; neuromuscular signal; spectrogram features; Xception; bidirectional
long short-term memory

1. Introduction

Research on Brain–Computer Interfaces (BCI) has a long history [1] and has attracted more
attention for its extensive potential in the fields of neural engineering, clinical rehabilitation,
daily communication and many other possible applications [2–4]. A typical non-invasive BCI uses
electroencephalography (EEG) as it is inexpensive and easy to implement [5]. However, the difficulty
in data processing still remains for practical use. One promising approach to address the challenge
is the neuromuscular decoding from articulatory muscles [6]. Surface Electromyography (sEMG)
captures neuromuscular activities in a non-invasive way like EEG. Besides, it only requires a few
channels for signal processing due to the neural pathway from the brain to muscle acting as a primary
filter and encoder [7–9].

In the accessible area around the face, surface electrodes are placed on articulatory muscles to
obtain speech-related sEMG, both in vocal and silent speech [6,10–12]. Some other techniques are
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also used in the silent speech recording. Video and ultrasound imaging can record the movements of
visible or invisible speech articulators straightforwardly [13,14]. However, they do not work in purely
silent speech without any articulator motion.

The primary use of sEMG for silent speech recognition can date back to the mid-1980s,
when Sugie in Japan [15] and Morse in the United States [16] demonstrated that sEMG signals
contain speech-related information, respectively. Using simple thresholding techniques, Sugie utilized
a three-channel electrode to distinguish five Japanese vowels, verifying that they could run in a pilot
real-time system [15]. Later, Morse obtained linguistic information from muscle activities of neck
and head, successfully distinguishing two words [16]. In the following years, the word number
expanded to ten with an accuracy of 70% [17]. However, when it increased to 17, the accuracy dropped
to only 35% [18]. In 2001, Chan reported the work of recognizing 10 English numbers based on
sEMG during speech, using a wavelet transform feature set with linear discriminant analysis [19].
Later on, a group of researchers utilized sEMG to identify six commands to control an aircraft [20].
Szu-Chen studied continuous audible speech recognition using sEMG, achieving a 32% error rate
by decomposing the signal into different feature spaces in time domain [21]. In 2014, Wand used
four polar and two bipolar electrodes to capture sEMG to achieve the best average silent speech error
rate at 34.7%, where zero-crossing rate, mean value and signal power were extracted [9]. Early in
2018, Kapur reported a wearable silent speech interface to obtain good accuracy around 90%, using a
convolutional neural network [6]. Later, Meltzner demonstrated that silent speech was recognized
with high accuracy using vocal speech features on a large data set [22].

Although multiple electrodes lead to multi-channel sEMG, previous studies mostly focus on
channel-wise features which are extracted on a channel-by-channel basis, while correlations between
channels are ignored. Speech is produced by the synergistic work of vocal system and articulatory
neuromuscular activities occur along with these physiological processes [23–25]. Even in silent speech,
such signals can be recorded and synergistic mechanism exists among the muscles. So, synergistic features
from multi-channel sEMG are considered to recognize different words. Xception, originally designed
for image classification [26–29], is utilized to process spectrograms of multichannel sEMG to explore the
spatial correlation.

In this paper, multi-channel sEMG of silent speech are recorded. Xception is exploited to
extract spatial correlative features. Three deep learning methods, Multi-Layer Perceptron (MLP),
Convolutional Neural Network (CNN) and bidirectional Long Short-Term Memory (bLSTM),
are evaluated to decode silent speech.

2. Silent Speech Data

2.1. Capturing Speech-Related sEMG

Studying the relationships between vocalization and articulatory muscles, we select suitable
electrode positions around the face [6,8,30–33], as shown in Figure 1. Channels 2 and 5 are bipolar
derivation to improve the common-mode rejection ratio (CMRR) while others are derived unipolarity.
Channels 1 and 2 record the levator anguli oris while channel 4 captures both the extrinsic tongue
and the digastric anterior belly. Channels 3, 5 and 6 record the platysma, the extrinsic tongue and the
lateral pterygoid, respectively. Besides, two reference electrodes are placed on the mastoid behind ears.

There is no articulator motion in silent speech, so the amplitude of sEMG is generally below 1 mV,
smaller than normal sEMG. The frequency band of silent speech sEMG is always no more than 300 Hz.
In our data recording system, the bandwidth is approximately 5 kHz and a 24-bit analog-to-digital
converter (ADC) is used. Two resistor–capacitor (RC) filters, including a direct current (DC) filter
and a 5 kHz low-pass filter are exploited to eliminate the DC bias and high-frequency interference,
respectively. sEMG data are recorded at a sampling rate of 1000 Hz.

Seven students with normal vision and oral expression skills, having no history of mental illness
and neurological diseases, 20 to 25 years old (average 22, four males and three females), are recruited



Brain Sci. 2020, 10, 442 3 of 14

as subjects. The experiment named “BCI research based on transmitted neural signals” has been
approved by Ethics and Human and Animal Protection Committee of Zhejiang University (Ethical
Approval: ZJUEHAPC2019-CSEA01), and strictly follows the Declaration of Helsinki. All collected
data are only used for data analysis and the privacy of the participants are firmly protected.

The six-channel sEMG is recorded while the subjects are trained to imagine speaking the labelled
words displayed on a computer screen one by one in a defined sequence, which is the meaning of
silent speech in this paper. In our experiments, ten Chinese words are selected, including ’噪’, ’1#’,
’2#’, ’前’, ’后’, ’左’, ’右’, ’快’, ’慢’, ’停’ , which mean ’null’, ’No.1’, ’No.2’, ’forward’, ’backward’, ’left’,
’right’, ’accelerate’, ’decelerate’, ’stop’ in English, respectively. In total, 69,296 valid samples for the ten
words are recorded, and the label distribution is various, as shown in Table 1. Figure 2 illustrates a
valid six-channel sEMG example.
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Figure 1. Recording sites around the face and neck. These dedicated positions form an articulator
muscular net to decode the silent speech. The sites are cleaned by gel to ensure the impedance is lower
than 5 kΩ between electrodes and skin surface.

Table 1. Valid samples.

Label ‘0’ ‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘6’ ‘7’ ‘8’ ‘9’

Word ’噪’ ’1#’ ’2#’ ’前’ ’后’ ’左’ ’右’ ’快’ ’慢’ ’停’

Samples 7964 6707 6814 6978 6593 6510 6682 6883 7614 6524
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Figure 2. An example of six-channel surface electromyography (sEMG) when imagining to
speak ‘decelerate’ in Chinese.
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2.2. Preprocessing

An 8th order Butterworth bandpass filter (0.15∼300 Hz) was applied to remove the DC bias and
high frequency of sEMG. The power frequency of 50 Hz and its harmonics was filtered by a comb
notch filter [6,34–36]. The filtered sEMG is then obtained, as shown in Figure 3b.

  R sEMG

  Filtered sEMG

-processed sEMG

 (a)

 (b)

 (c)

Figure 3. Preprocessing of sEMG. (a) An example of raw sEMG, corresponding to channel 2 in Figure 2;
(b) The sEMG filtered by Butterworth (0.15∼300 Hz) and notch (50 Hz) filters; (c) Quadratic Variation
Reduction (QVR)-processed sEMG, where the most amplitude change is less than 1 mV.

In order to remove the baseline drift, the Quadratic Variation Reduction (QVR) [37] method is applied:

z = [I − (I + λDT D)−1]z̃ (1)

where z̃ and z denote the signal before and after using QVR, λ is a constant value (λ = 100), I represents
the identity matrix and D is a (n− 1)× n matrix:

D =


1 −1 0 · · · 0

0 1 −1
. . .

...
...

. . . . . . . . . 0
0 · · · 0 1 −1

 (2)

where n is the length of z̃.
In Equation (1), (I + λDT D) is a symmetric, positive-definite, tridiagonal matrix, which can

be solved efficiently. The effect is shown in Figure 3c where it can be seen that most wander part
is removed.

3. Processing Methods

In order to extract time–frequency features effectively, the original six-channel sEMG in the time
domain were transformed into the frequency domain, creating a spectrogram which is represented as an
image. The state-of-the-art model Xception was selected for extracting image features, which were then
decoded by MLP, CNN and bLSTM, respectively. Figure 4 describes the processes to decode sEMG.
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Figure 4. Silent speech decoding. (a): The neuromuscular activities are captured by surface
electrodes; (b): All data are transformed into spectrograms by short-time Fourier transform (STFT);
(c): Transfer learning method is used to extract features from spectrograms; (d): Neural networks
decode multi-channel sEMG using the extracted features.

3.1. Spectrogram Images

The spectrogram of a signal sequence is the visual representation of the magnitude of the
time-dependent Fourier Transform (FT) versus time, also known as the short-time Fourier transform
(STFT) [38–40]. It describes the spectral details in time-frequency domain.

Spectrogram = |STFT(x)|2. (3)

The spectrogram was calculated by Equation (3) [38], where the parameters of [window, window
length, sample rate, overlap, FFT length] were specified as [hanning, 512, 1000 Hz, 50%, 64].
An example of a spectrogram image is shown in Figure 5. The images associate with each other,
reflecting sEMG spatial relationships in the frequency domain. Inspired by short video streams,
the images were treated as a fixed-size video. Then, the silent speech decoding becomes a video
classification, explored by deep learning methods.
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Figure 5. An example of a spectrogram image.

3.2. Feature Extraction

To explore sEMG spatial features, transfer learning with Xception is used. It is a deep learning
image classifier using depthwise separable convolution layers with residual connections, which
has been pre-trained on large scale images [26]. After input, data using only pointwise convolution
(1 × 1 convolution) create separate convolution sizes of 3× 3 without average pooling, which proceeds
in nonoverlapping sections of the output channels to then be fed-forward for concatenation [26,27].
The model demonstrates a strong ability to generalize to images outside the original dataset via transfer
learning, such as feature extraction and fine-tuning. Fine-turning is done by training all weights with a
smaller learning rate, removing and updating some biased weights from the original network.

The spectrogram images have various shapes and are scaled to 299×299. Xception model outputs
1000 features for each image, therefore 1000 × 6 = 6000 features are obtained for one sEMG sample.
All samples are processed using Xception to generate a large feature set.
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3.3. Decoder Design

Three deep learning methods, namely MLP, CNN and bLSTM, are explored using the above
feature set. Their structure and parameter details are designed in this section [41–43]. Figure 6
illustrates our decoding process, where parts (c)∼(g) represent the common structures and components
for the three models, except that different hidden layers and parameters are used in each model.
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Figure 6. Decoding processes. (a) Spectrogram images. (b) Feature set extracted by Xception. (c) Input
layer of neural networks. (d) Hidden layers of neural networks. (e) Fully connected dense layer.
(f) Softmax layer as the output layer. (g) The predicted labels we obtain from the models.

3.3.1. MLP

Multi-Layer Perceptron (MLP) is a common Artificial Neural Network (ANN). In addition to the
input and output layers, there can be multiple hidden layers. MLP can also be thought of as a directed
graph consisting of multiple layers, each fully connected to the next layer [44,45].

Figure 7 illustrates the MLP structure where the ’dense’ layer connects each input unit with each
output unit of the layer to learn and update the weights. ’Dropout’ regularization is used to help
prevent overfitting as it randomly drops out input units with a fixed rate during parameter tuning [46].
‘Softmax’ calculates predicted label probabilities at the output layer and then outputs the label with
the maximum probability. The loss function defined in this method is cross-entropy loss.

Each hidden layer uses a non-linear activation function to enhance the performance of the neural
network and solve the linear inseparable problem. Commonly used activation functions are sigmoid,
tanh, and rectified linear unit (ReLU). ReLU is used in the MLP as the derivative of ReLU is always
1 in the positive interval, alleviating the gradient disappearance and gradient explosion problems.
In addition, ReLU has a much faster convergence than sigmoid and tanh.
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Input: 6*1000

Softmax output: 10

Dense_1: FC

Feature maps: 512

Dense_2: FC

Feature maps: 512

Dense_3: FC

Feature maps: 256

Dense_4: FC

Feature maps: 256

Dense_5: FC

Feature maps: 10

Figure 7. MultiLayer Perceptron (MLP) architecture to decode silent speech. A feature vector goes
through the layers and a digital (from 0 to 9) will be output.

3.3.2. CNN

Convolutional Neural Network (CNN) features with local connections and shared weights,
making it very popular and successful in image classification problems. The core operation of CNN is
mathematical convolution which consists of filters. The convolution is applied on the input data to
produce a feature map. Specifically designed filters can extract features via convolution [47–49].

The CNN structure is shown in Figure 8, where two convolutional layers (Conv1 and Conv2) with
different filters are used to create specific feature maps. The pooling layer provides downsampling
to reduce the size of features and also helps prevent overfitting. Max pooling that calculates the
maximum value for each patch is used in our CNN architecture.

In the neural networks, the output of the first layer feeds into the second layer, and the output
of the second layer feeds into the third, and so on. When the parameters of a layer change, so does
the distribution of inputs to subsequent layers [50], which is described as an internal covariate shift.
These shifts in input distribution can be problematic for neural networks, especially deep neural
networks that have a large number of layers [51]. Batch normalization, a technique to standardize the
inputs to a layer and reduce unwanted shifts to speed up training [52], is used in the CNN model.

Input: 6*1000

Conv1: 1*3 fliter

Feature maps: 6*1000*64

BatchNormalization

Feature maps: 6*1000*64

Conv2: 1*5 fliter

Feature maps: 6*1000*64

Flatten

Feature maps: 192000

Dense layer:128

Dense layer: 10

Softmax output: 10

Pool: max pool, 1*2 fliter

Feature maps: 6*500*64

Figure 8. Convolutional Neural Network (CNN) architecture to decode silent speech.
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3.3.3. bLSTM

Recurrent Neural Network (RNN) is well-known for processing sequence data, and has made
many significant accomplishments in natural language processing applications. Unlike MLP and
CNN, the output of each hidden layer in RNN are stored as memory and can be considered as another
input, by which it allows information to persist [47,49,53]. However, RNNs suffer from short-term
memory. If a sequence is long enough, they will have a hard time carrying information from earlier
time steps to later ones. During back propagation, the gradient vanishing in RNN is a serious problem
when learning long-term dependencies [53]. The gradient shrinks in back propagation and it does not
contribute much to learning if it becomes extremely small [54].

LSTM, a special kind of RNN, addresses this issue by considering that both memory and input
operations are addition only. As a result, it is capable of learning long-term dependencies [49]. The core
concept of LSTM is the cell state and its various gates. The cell state acts as a transport highway that
transfers relative information all the way down the sequence chain. LSTM has the ability to remove or
add information by gates. There are the forget gate, input gate and output gate to regulate the flow of
information inside the LSTM unit and learn which data in a sequence is important to keep or dismiss.

bLSTM, including forward LSTM and backward LSTM, captures bidirectional semantic
dependencies [44,54]. For six-channel sEMG, bLSTM tends to be a suitable classifier as it can effectively
model bidirectional dependencies. Figure 9 shows details of the bLSTM architecture, consisting of
three bidirectional layers, two dense layers and one softmax output layer.

Input: 6*1000

Softmax output: 10

Bidirectional_1: 

6*1024

Bidirectional_2: 

6*1024

Bidirectional_3: 

6*512

Dense_1: 128

Dense_2: 10

Figure 9. Bidirectional Long Short-Term Memory (bLSTM) architecture to decode silent speech.

4. Results

4.1. Decoder Optimization

For model training and testing purposes, the data set is randomly split at the ratio of training:
validate: test = 7:2:1. The structures and parameters of MLP, CNN and bLSTM are optimized based on
a series of trials. There are a number of experiments that have been implemented to explore optimal
hyperparameters, including dropout rate, learning rate, and network depth. Figure 10a presents that
the best dropout rates for MLP and bLSTM are 0.2 while for CNN is 0.5. Learning rate controls how
much the weights in neural networks are adjusted with respect to the loss gradient [55,56]. To explore a
better initial learning rate in the decaying scheme, experiments are implemented. Figure 10b indicates
the initial learning rate of 1× 10−3 suits for all the three methods.
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Figure 10. Dropout and learning rate optimization.

Different depths of these networks are also tried while other parameters remain the same.
More layers lead to a decrease of prediction or overfitting whereas fewer layers may not be sufficiently
trained. Figures 7–9 provide more details of the final topologies with the suitable depth.

4.2. Decoding Results

The features are trained, validated and tested by MLP, CNN and bLSTM, respectively. The key
hyperparameters of the deep learning models are displayed in Table 2. The same initial learning
rate, activation function and batch size are used in the three decoders, while different optimizers and
dropout rates are applied.

Table 2. Hyperparameters.

Model Optimizer Dropout Learning Rate Activation Batch Size

MLP adam 0.2 1×10−3 ReLU 32
CNN adadelta 0.5 1×10−3 ReLU 32

bLSTM rmsprop 0.2 1×10−3 ReLU 32

MLP, CNN and bLSTM are implemented in Keras (on top of TensorFlow), which offers many flexible
functional APIs to build and optimize deep learning structures and parameters. Batch normalization
is applied for all models to obtain smaller training and validation loss. In particular, the function
‘ReduceLROnPlateau’ is called to reduce learning rate, with factor = 0.2, patience = 20 and
min_lr = 0.5×10−6. In early stopping, patience is set to 80, which means training is stopped if the loss does
not decrease after 80 epochs.

Figure 11 shows the learning rate changes along with epochs during the training. All the three models
are initialized with the same learning rate which is then decayed in different epochs. bLSTM takes more
than 250 epochs in model training, while that of MLP is smaller and CNN consumes the least number
of epochs.

Training profiles are provided in Figure 12. Figure 12a,d give the training details of MLP, where
the accuracy becomes stable around 150 epochs and the validation loss stays about 0.45. In Figure 12b,e,
CNN training achieves a little better validation results than MLP but a large number of epochs is
required. bLSTM shows the best validation accuracy of 0.92 in Figure 12c and the lowest validation loss
of 0.26 in Figure 12f, however, its computational efficiency is not as good as those of MLP and CNN
since bLSTM needs a large number of epochs to complete the training. The validation performance
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lines generally follow the training processes, which means the models are generally well-trained
without obvious overfitting or underfitting.
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Figure 11. Learning rate of prediction in decoders.
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Figure 12. Training profile on the feature set by three deep learning models. (a) and (d): training on
MLP. (b) and (e): training on CNN. (c) and (f): training on bLSTM. Both training and validation results
are shown in the above sub-figures.

The accuracy of MLP, CNN and bLSTM on the test set is 0.85, 0.87 and 0.90, respectively.
Both training and test results indicate that bLSTM achieves the best performance among the three
methods, though it takes a longer time to train.

The confusion matrix is computed to show more prediction details on the test set, as is shown in
Figure 13. Labels 0 and 8 achieve the highest accuracy in all test predictions while labels 1, 5 and 6
have relatively low accuracy. Except for label 5, the accuracy of all others increases from Figure 13a,c.
Samples are more likely to be classified as labels 0 or 8. In addition, all three decoders have an equal
difficulty in distinguishing label 4 and label 6. This may be caused by similar neuromuscular activities.
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Figure 13. Confusion matrices of the three decoders.

5. Discussion

The valid samples for each label are various, due to (1) the impedance between an electrode
and skin surface always changes in different experiments, even for the same participant; (2) the
inherent differences in the speech intention of participants; and (3) the different responses from the
neuromuscular activities to individual words in silent speech recording. The data set, as shown in
Table 1, is still acceptable though small label imbalance exists, because each label is fully trained.
The impedance reduction and preprocessing algorithm optimization will be further studied to increase
the rate of valid samples.

MLP, CNN and bLSTM are trained and applied to decode the sEMG on the same platform
(Intel i5-7400 CPU @ 3 GHz). bLSTM obtains highest accuracy around 0.92, with largest time
consumption of almost 10 h. For CNN, the performance is not as good as bLSTM (0.88), but it
consumes the least time (6 h) for proper model training. Though MLP takes less time (8 h) than
bLSTM, its accuracy of 0.87 is worst among the three models. The bi-directional structure in bLSTM
can generate better decoding results than MLP and CNN. Therefore, bLSTM suits the silent speech
recognition if time consumption is less important. In test experiments, it takes no more than 50 ms to
predict a new sEMG sample for the three models, which means instant prediction can be obtained to
satisfy a real-time system.

The technology of silent speech decoding can be output in two forms, text code and synthetic
speech [9,57]. It is up to the practical requirements. The speech pattern only appears in sEMG form
regardless of audible or silent speech, so the privacy is ensured by the subject.

Silent speech decoding investigated in this paper is promising in possible applications:
medical prostheses that help people with speech disabilities; hands-free peripheral device control;
communication in privacy or noisy ambience [22,57–59]. The accuracy of single word is not high
enough for piratical use. Communication also requires more complicated expression than the single
words. Semantic dependency may help silent speech recognition in such potential applications,
so phrases or even sentences may need to be researched.

Currently, 10 electrodes (2 for ground, 2 pairs of bipolar and 4 monopolar electrodes) for
6 channels are needed, and an integrated electrode array will be developed to improve the wearability.
Furthermore, the electrode positions and channel number might be optimized to improve the
performance and simplify the data collecting device. Online learning is another possible future
research, as it is useful in data augmentation.

6. Conclusions

In this paper, it is demonstrated that spectrogram features combined with deep learning models
can be applied to the silent speech decoding task, where bLSTM outperforms other methods. Result
analysis indicates that synergic information hidden in multi-channel sEMG can provide useful features
for recognition. It is suggested that the synergic exploration in silent speech decoding should be
extended to phrases or even sentences, not only limited to a single word.
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