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ABSTRACT: Many of the structures in PubChem are
annotated with activities determined in high-throughput screen-
ing (HTS) assays. Because of the nature of these assays, the
activity data are typically strongly imbalanced, with a small
number of active compounds contrasting with a very large
number of inactive compounds. We have used several such
imbalanced PubChem HTS assays to test and develop strategies
to efficiently build robust QSAR models from imbalanced data
sets. Different descriptor types [Quantitative Neighborhoods of
Atoms (QNA) and “biological” descriptors] were used to
generate a variety of QSAR models in the program GUSAR. The
models obtained were compared using external test and
validation sets. We also report on our efforts to incorporate the most predictive of our models in the publicly available NCI/
CADD Group Web services (http://cactus.nci.nih.gov/chemical/apps/cap).

■ INTRODUCTION

PubChem is a very large public database of small molecules. It
was designed as a public repository for compound structures
and their biological properties. The bioactivity results in
PubChem have been contributed by more than a hundred
organizations. The majority of the data however come from the
Molecular Libraries Probe Production Centers Network
(MLPCN), in its previous version called the Molecular
Libraries Screening Center Network (MLSCN), managed by
the NIH Molecular Libraries Program (MLP).1 This program
aims to discover chemical probes through high-throughput
screening (HTS) of small molecules to support chemical
biology research. PubChem is organized as three linked
databases: Substance, BioAssay, and Compound. The Sub-
stance database contains primarily structures supplied by
depositors. The BioAssay database contains assay results for
substances. The Compound database contains unique
structures derived by structural standardization of the records
in the Substance database.2 As of the time of this writing,
PubChem includes data on about 47 million unique
compounds and results from more than 700,000 assays, with
the total number of active compounds being 906,459 (as of July
2013).
ChEMBL3 is another example of a public database of

compound and activity data. ChEMBL is a database of bioactive
drug-like molecules. It is supported by the European
Bioinformatics Institute. The data in ChEMBL are abstracted
and curated from primary scientific literature and include

information about compound structures and their biological
activities.
The comprehensive information on small molecules and

their biological activities in PubChem and ChEMBL offers
great opportunities for researchers in the fields of chemical
biology, medicinal chemistry, and chemoinformatics.4 The
PubChem and ChEMBL databases have different distributions
of compounds as to their activities in each assay, resulting from
the different nature of data acquisition in each of these two
resources. PubChem incorporates HTS data, which are highly
imbalanced in general, that is, they have a small ratio of active
compounds to inactive ones. This data distribution corresponds
to what would be found in a completely unbiased approach of a
true random selection of screening compounds from all of
chemistry space, which could be termed the “natural”
distribution. In this “natural” case, the number of active
compounds would be much smaller than the number of inactive
compounds for each particular activity. ChEMBL data, in
contrast, are in most cases extracted from literature; thus they
are more balanced but by the same token more biased toward
active compounds. This is not surprising given that there are
strong incentives to publish positive results (i.e., active
compounds) and only limited rewards for publishing negative
ones (i.e., inactive molecules); although for model-building, the
latter results are as important as the former. Thus, one could
see the data distribution in ChEMBL as more artificial and
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distinct from “natural” biological measurements. However, the
advantage of this data distribution is that it ranges up to high
potency values of the included compounds. The PubChem
database, conversely, has many compounds with low potency.
According to Li et al.,1 approximately 40% of the targets in
PubChem had no active compound with potency better than
10 μM. We therefore see it as an important challenge to extract
maximum predictivity from PubChem data, which may benefit
especially the academic part of the community of scientists
working in drug development that may have to rely to a larger
extent on public data than their industrial colleagues. This
project is an attempt to meet this challenge by applying our
computational methodology to imbalanced data sets in
PubChem. (A complementary type of imbalance on the side
of the independent variables, that is molecular descriptors,
exemplified by issues such as the diversity of the training and
test sets, coverage of chemical space, singletons versus smaller
or larger series of closely related analogs, etc., while equally
important for model building, is not the topic of this study.)
Whether data sets are balanced or imbalanced, it is often

desirable to be able to use these data to model compound
potency against a given target for additional molecules, which is
the realm of quantitative structure−activity relationships
(QSAR). The main idea of all QSAR methods is to describe
relationships between activity measures and compound
structural descriptors and to create a model that can be used
to predict the activity of new compounds. Many different
techniques have been used for this task. Among the most
popular ones at present are Random Forests,5 Support Vector
Machines6 (SVM), and Artificial Neural Networks.7 Unfortu-
nately, most popular machine learning approaches have shown
weak performance with imbalanced data. The reason for this is
that they are based on the fundamental premise that all data
points, that is, elements of the training set, have the same a
priori importance with the consequence that the majority class
has the tendency to swamp out the signal from the minority
class. As a result, researchers have tried to address this problem
by a whole slew of approaches.
One of the decisions one has to make early on in the process

is whether to use probabilistic approaches such as the Naıv̈e
Bayes classifier, which works quite well with highly imbalanced
data. But it is also well known8,9 that probabilistic approaches
provide poorer prediction accuracy in comparison with modern
machine learning techniques such as Random Forests or SVM,
which led us to focus on these types of techniques and their
possible improvement for imbalanced data sets. Excluding
probabilistic approaches, these machine learning techniques can
be divided into algorithm-based methods and data-based
methods.
Algorithm-based methods deal with cost-sensitive learning

and use penalties for misclassifying the minority class, which in
the case of the PubChem data sets would be the small subset of
active molecules. Some authors have provided specific
modifications to machine learning approaches. For instance,
Li et al. proposed a modification of SVM, called the GSVM-RU
method,4 which extracts informative inactive samples and uses
them together with all active samples for the construction of
support vectors. Chen et al.10 proposed an algorithm called
Weighted Random Forest, which assigns a weight to each class
with the minority class given a larger weight. Chang et al.11

proposed a similar modification to the SVM method, which
assigns a weight to each class, and implemented it in the
LiBSVM program.12 Another modification of SVM is based on

optimizing the performance measures such as the ROC area
and has been implemented in SVMPerf13 by Joachims.14 The
drawback of algorithm-based methods is that they require
algorithm-specific modifications. It is worth pointing out that
many algorithm-based modifications have been described in the
literature, but most of them have not been implemented in
readily available software and thus are not directly accessible to
the medicinal chemist or chemoinformatician.
Data-based methods deal with the sampling technique and

therefore can be used independently of any specific machine
learning method. There are two types of sampling methods:
under-sampling and over-sampling. Single over-sampling is
used for the generation of new synthetic minority class
members by interpolating between several examples. Chawla
et al. proposed the SMOTE method (synthetic minority over-
sampling technique) and successfully used it for modeling of
imbalanced data sets.15 Another sampling method is under-
sampling. The single under-sampling method is used for
reducing the number of samples in the majority class to make it
equivalent in size to the minority class. This method has shown
good performance in several publications. For instance, Chen et
al.16 used the under-sampling method for toxicity modeling of
Tetrahymena pyriformis. Sun et al. applied the same method to
the prediction of cytochrome P450 profiles of environmental
chemicals. Newby et al.17 modeled imbalanced oral absorption
data sets. Chen et al. compared the over-sampling approach
with under-sampling and showed that the under-sampling
method performed more consistently. In other work,
Drummond and Holte reached the same conclusion.18 The
advantage of sampling-based approaches is that they are
independent of the specific machine learning method used
and thus can be applied to any classification algorithm.
However, the simple under-sampling method reduces chem-
istry space in the majority class, which may be the reason for its
decrease in accuracy. To avoid this, some authors have used
multiple under-sampling methods (ensembles), which generate
different bootstrap samples of equal class size in the training set
to build ensemble models. For instance, Kondratovich et al.19

used multiple under-sampling methods for prediction of the
assignment of organic compounds to different pharmacological
groups. Other authors have proposed using a rational reduction
of samples from the majority class by similarity methods.20 For
more information, the reader is referred to the excellent review
article by Varnek and Baskin21 discussing the problem of
imbalanced data in chemoinformatics. To our knowledge there
is however no comprehensive comparison of these different
approaches that would analyze their ability to model
imbalanced data. We are trying to address this lack of
comparison of methods to some extent by analyzing several
common strategies of imbalanced data modeling in this work.
We then propose a new hybrid method, which includes both
cost-sensitive learning and under-sampling approaches. We
compare all methods on five different HTS data sets extracted
from PubChem. Finally, we are reporting on our efforts to
make all QSAR models developed in this work freely available
in our Chemical Activity Predictor Web service: http://cactus.
nci.nih.gov/chemical/apps/cap.

■ MATERIALS AND METHODS
Data Sets. Five confirmatory bioassay data sets in PubChem

were used for the construction of modeling sets: AID 504466,
AID 485314, AID 485341, AID 624202, and AID 651820. All
these quantitative high-throughput screening (qHTS) data had
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been collected at the NIH Chemical Genomics Center
(NCGC), now part of the NIH National Center for Advancing
Translational Sciences (NCATS), with each assay having been
run on approximately 300,000 screening samples.
(1) AID 50446622 is a qHTS screen for small molecules that

induce genotoxicity in human embryonic kidney cells
(HEK293T) expressing luciferase-tagged ELG1. This assay
was developed to find promising inhibitors of DNA replication,
which could be potential anticancer agents.
(2) AID 48531423 is a qHTS assay for inhibitors of DNA

polymerase beta. DNA polymerase beta plays an important role
in the repair system of human cells and is thus a promising
target for therapeutic modulation of the response to radiation
treatment and DNA-damaging drugs.
(3) AID 48534124 is a qHTS assay for inhibitors of AmpC

beta-lactamase. It was one of a series of assays conducted to
distinguish aggregators versus nonaggregators by adding, or not
adding, detergent. The assay used here was run without
detergent. Compounds that inhibit only in the absence of
detergent are considered likely promiscuous aggregators.
(4) AID 62420225 is a qHTS assay to identify small molecule

activators of BRCA1 expression. BRCA1 has been implicated in
a wide array of cellular activities, including DNA damage repair,
cell-cycle checkpoint control, growth inhibition, apoptosis,
transcriptional regulation, chromatin remodeling, protein
ubiquitylation, and mammary stem cell self-renewal and
differentiation. Increase in BRCA1 expression would enable
cellular differentiation and restore tumor suppressor function,
resulting in delayed tumor growth and less aggressive, more
treatable breast cancers. Promising activators of BRCA1
expression could be novel preventative or therapeutic agents
against breast cancer.
(5) AID 65182026 is a qHTS assay for inhibitors of hepatitis

C virus (HCV). This assay was developed to find novel HCV
inhibitors as new therapies for hepatitis C.
For each set of assay data, preprocessing was performed. All

compounds with inconclusive results were removed. All
structures were normalized using the CACTVS chemo-
informatics toolkit.27 All salts and mixtures were removed.
The total number of compounds remaining after preprocessing
for each assay, along with the activity distribution and ratio of
inactives to actives, are given in Table 1.
The most balanced ratio of active to inactive compounds was

found for the assay for inhibitors of hepatitis C virus (1:24).
The most imbalanced ratio was found for the assay for
inhibitors of AmpC beta-lactamase (1:168). The average ratio
was about 1:70. These different ratios of active to inactive
compounds give us the opportunity to compare by level of
imbalance the various approaches for dealing with imbalanced
data.
For the modeling, each data set from each assay after

preprocessing was randomly divided in an 80:20 split into the
training set used to create the QSAR models and a test set used
to assess their external predictive accuracy. Thus, the number of

compounds in each test set was at least 55,000 compounds,
which assured us that we would obtain statistically significant
results.

■ METHODS

General Approach and Software Used. Seven different
imbalanced learning methods were applied to each training set
(see below). Several QSAR models were created for each
method. All QSAR models were built using the program
GUSAR (General Unrestricted Structure Activity Relation-
ships; version 2013).28 For model construction, GUSAR uses
Quantitative Neighborhoods of Atoms (QNA) descriptors28,29

and “biological” descriptors (PASS-based predictions)30,31 and
applies a self-consistent regression (SCR) algorithm.30,28 The
QSAR models developed for each imbalanced learning method
were validated on the corresponding test sets.

Imbalanced Learning Methods. (1). One-Sided Random
Sampling. Under-sampling was done by randomly selecting
compounds from the majority class, which in this case are the
inactive compounds, until the total number of selected inactive
compounds was equal to the number of active compounds in
the minority class. As a result, the training set is represented by
one data set, which includes an equal number of active and
inactive compounds.

(2). Multiple Under-Sampling. The majority class of the
training set was randomly sampled up to the size of the
minority class. This procedure was repeated multiple times
until all compounds from the majority class had become part of
a training set at least once. A compound is removed from the
majority class once it has been included in a training set. As a
result, many training sets were constructed, each including all
active compounds and the same number of inactive compounds
selected randomly. Thus, the number of training sets for each
particular assay/activity corresponds to the value of the ratio of
inactives to actives in this assay. The advantage of this method
is that the chemistry coverage of inactive compounds is much
broader in comparison to the one-sided sampling method. The
drawback is the larger number of training sets that are formed.

(3). Under-Sampling Clusterization. Under-sampling was
done by selecting compounds from the majority class using
clustering techniques until the total number of inactive
compounds was equal to the number of active compounds in
the minority class. This was done by clustering the compounds
in the majority class with the number of clusters preset to the
number of compounds in the minority class. The central
compound from each cluster was extracted to form a new
balanced training set. As a result, the training set is represented
by one data set that includes an equal number of active and
inactive compounds. To perform the clustering, we used the
program Pipeline Pilot32, version 5.0, employing the “Cluster
Molecules” component and FCFP_4 fingerprints as structure
descriptors. The advantage of this method is that it generates a
chemical distribution of inactive compounds that is similar to
the majority class as a whole.

Table 1. Characteristics of PubChem HTS Assays Used for QSAR Modeling

AID name initial number after preprocessing active inactive ratio

504466 genotoxicity inductors in HEK293T cells 330,115 310,403 4108 306,295 1:75
485314 DNA polymerase beta inhibitors 334,467 306,830 4348 302,482 1:70
485341 AmpC beta-lactamase inhibitors 330,683 285,970 1694 284,276 1:168
624202 BRCA1 activators 376,014 351,201 3902 347,299 1:89
651820 hepatitis C virus inhibitors 339,561 268,119 10,727 257,392 1:24
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(4). Under-Sampling Diversity. Under-sampling was done
by selecting compounds from the majority class using diversity
analysis until the total number of selected inactive compounds
was equal to the number of active compounds in the minority
class. To this goal, compounds from the majority class were
analyzed using the maximum dissimilarity method as
implemented in the “Diverse Molecules” component of
Pipeline Pilot, version 5.0. FCFP_4 fingerprints were used as
structure descriptors. The most diverse compounds were
extracted from the majority class and were used to form a
new balanced training set, which includes an equal number of
active and inactive compounds. The advantage of this method
is that it retains the chemical diversity of the majority class in
the inactive training set compounds.
(5). Under-Sampling Similarity. Under-sampling was done

by selecting compounds from the majority class using similarity
analysis. The similarity between compounds from the minority
and majority classes was calculated using Multilevel Neighbor-
hoods of Atoms (MNA) descriptors33 and Tanimoto
coefficients. According to the computed similarity values, the
compounds in the majority class that were most similar to those
in the minority class were extracted and were used to form a
new balanced training set containing an equal number of active
and inactive compounds. The advantage of this method is that
it allows one to easily separate compounds in the training set
from the remaining compounds of the majority class based on
similarity. The drawback is that it is difficult for machine
learning approaches to discriminate active versus inactive
compounds when the inactives are very similar to the actives,20

which is typically the outcome of this method.
(6). Adjusting Decision Threshold Approach. The main

idea of this approach is to adjust the decision threshold
(boundary) in assigning class memberships. This can be done
in different ways. Here, we used the simplest one. We plot the
curve of both sensitivity and specificity values as a function of
different cutoff values (thresholds). The point where the
sensitivity and specificity curves intersect determines the
decision threshold. This plot can be constructed using external
K-fold cross-validation or leave-one-out cross-validation
(LOO−CV) procedures. The threshold after the validation
procedure would be adjusted in accordance with the nature of
the data distribution (degree of imbalancedness). This type of
approach to handle imbalanced training sets is data set
independent, that is, the number of compounds in the training
set remains unchanged, and thus, the whole set remains
imbalanced.
(7). Hybrid Method: Under-Sampling and Threshold

Approach. We propose this method as a novel approach to
combine the advantages of the decision threshold approach
with the under-sampling approach. Here, under-sampling was
done by randomly selecting compounds from the majority class
until the total number of inactive compounds was three times
larger than the number of active compounds in the minority
class. Thus, we are retaining an imbalanced distribution of
inactive compounds but are reducing the ratio to 1:3. In
addition, for each assay’s compound set, the decision threshold
was calculated using a leave-one-out cross-validation procedure
in the model development.
Descriptors. For the development of our QSAR models,

two types of descriptors, QNA descriptors28,34 and “biological”
descriptors, based on the PASS algorithm30,31 were used in
combination with 10 whole-molecule descriptors. All these
descriptors have been implemented in GUSAR.

The calculation of QNA descriptors is based on the
connectivity matrix (C) of a given molecule and also on the
standard values of the ionization potential (IP) and the electron
affinity (EA) for each atom in the molecule.
For any given atom i in the molecule, the QNA descriptors

are calculated as
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⎛
⎝⎜

⎛
⎝

⎞
⎠
⎞
⎠⎟P B C Bexp

1
2i i
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where the k are all other atoms in the molecule and
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2

(IP EA ), (IP EA )k k k k k k
1/2

The P and Q values are calculated for all atoms of the
molecule. Two-dimensional Chebyshev polynomials are used
for approximating the functions P and Q. Thus, the
independent variables are calculated as average values of
particular two-dimensional Chebyshev polynomials of the P
and Q values for all atoms in the molecule.
In addition, GUSAR allows the creation of QSAR models

based on predicted biological activity profiles of compounds.
This is done by running the PASS algorithm30,31 on each
compound represented as a list of MNA descriptors33 to
predict the compound’s biological activity profile. The current
version of PASS (version 12) predicts 6400 types of biological
activity with a mean prediction accuracy of about 95%. The list
of predicted biological activities includes pharmacotherapeutic
effects, mechanisms of action, adverse and toxic effects,
metabolic terms, susceptibility to transporter proteins, and
activities related to gene expression. The results of the PASS
procedure are output as a list of the difference between the
probabilities, for each biological activity, that the compound is
active (Pa) or inactive (Pi), respectively. For building the
different QSAR models in GUSAR, subsets of these Pa−Pi
values were randomly selected from the total list of predicted
biological activities as input independent variables for the
regression analysis.
GUSAR also allows the calculation of whole-molecule

descriptors: topological length, topological volume, lipophilic-
ity, number of positive charges, number of negative charges,
number of hydrogen bond donors, number of hydrogen bond
acceptors, number of aromatic atoms, molecular weight, and
number of halogen atoms. These descriptors were used in
combination with the QNA and “biological” descriptors
described above.

Self-Consistent Regression. For generating QSAR
models, GUSAR uses a self-consistent regression algorithm.
SCR is based on the regularized least-squares method. The
basic purpose of the SCR method is to remove the variables
that poorly describe the modeled value but to retain the set of
variables correctly representing the existing relationship. It has
been shown28,35 that the self-consistent regression realized in
GUSAR can be successfully applied to various QSAR tasks and
that the prediction results achieved with GUSAR were
comparable to or better than those obtained by other QSAR
methods based on different machine learning approaches. It
therefore seemed a natural choice to use this method for the
investigation of the imbalanced learning problems. The details
of the algorithms for the descriptor calculation and self-
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consistent regression methods have been described previ-
ously.28,34

Applicability Domain. GUSAR uses three different
approaches for estimation of the applicability domain of each
model: similarity, leverage, and accuracy assessment.35

Similarity. The three nearest neighbors from the training set
are calculated for each compound under study using an
estimation of similarity. The pairwise similarity of the
compound with each of its three neighbors is estimated as
Pearson’s coefficient calculated in the space of the independent
variables obtained after SCR. The average of these three
similarity values is used as the applicability domain (AD) of the
model. In this study, an AD threshold of 0.7 was used.
Leverage. The leverage value is also used for domain

applicability assessment. The leverage values represent the
“distance” of each molecule to the model’s structural space and
are a measure of the contribution of the nth molecule to its own
predicted value. Thus, they can be used to identify outliers and
are calculated as

= −x xX XLeverage ( )T T 1

where x is the vector of the descriptors of a query compound,
and X is the matrix formed with rows corresponding to the
descriptors of the molecules from the training set. The leverage
warning value was calculated for each compound in the training
set, and then the distribution of these values was determined. In
this study, the warning level for leverage values was set to the
99th percentile, that is, if a compound from the external test set
had a leverage value exceeding this warning level, then this
compound was considered as being outside the applicability
domain.
Accuracy Assessment. For this type of assessment of the

applicability domain, the following equation is used

=AD RMSE /RMSEvalue 3NN train

where ADvalue is the applicability domain value, RMSE3NN is the
root-mean-square error of prediction of the three most similar
compounds from the training set (as with the Similarity
method), and RMSEtrain is the root-mean-square error of
predictions for the training set.
In this study, a threshold of 1.0 was used for the AD

calculated by accuracy assessment.
Consensus Modeling. GUSAR allows the creation of

different QSAR models for each activity/end-point based on
different types of descriptors (QNA descriptors and “biological”
descriptors, see above). The final predicted value for each
activity/end-point is estimated by including a weighted average
of the predicted values from the set of QSAR models (for
predictions that are within their respective applicability
domains). The value obtained from each model is weighted

by the similarity value calculated in the estimation of its
applicability domain.

Evaluation of Prediction Accuracy. For estimating the
accuracy of prediction, the following statistical parameters were
calculated:
(1) Sensitivity: probability of predicting “positive” (active)

when the true outcome is positive.

=
+

Sensitivity
TP

FN TP

where TP is true positive, and FN is false negative.
(2) Specificity: probability of predicting “negative” (inactive)

when true outcome is negative.

=
+

Specificity
TN

TN FP

where TN is true negative, and FP is false positive.
(3) Balanced Accuracy: balance between Sensitivity and

Specificity.

= +Balanced Accuracy (Sensitivity Specificity)/2

(4) G-mean: geometric mean of Sensitivity and Specificity
values

‐ = ×G mean (Sensitivity Specificity)1/2

■ RESULTS
QSAR Modeling. For each training set obtained from the

rebalancing procedures except for the multiple under-sampling
method, 10 models based on “biological” descriptors and 10
models based on QNA descriptors were created. Thus, 20
QSAR models were created for each training set represented by
one data set.
With the multiple under-sampling procedure, many training

sets were obtained for each particular assay. For each of these
training sets, two QSAR models were constructed: one based
on “biological” descriptors and one based on QNA descriptors.
The total number of models generated for each assay thus
computes as twice the value of the ratio of inactives to actives.
For example, assay AID 504466 has a ratio of 1:75, so the
number of models created was 150.
To select the most predictive models obtained by GUSAR, a

leave-10%-out cross-validation procedure was performed 10
times for each model. From the full set of generated models, we
selected only those that satisfied the following conditions:
values of balanced accuracy for LOO−CV and the leave-10%-
out cross-validation procedures had to exceed 0.6. The selected
models were used for consensus predictions of the external test

Table 2. Test Set Prediction Quality Parameters for Each Imbalanced Learning Approach

multiple under-
sampling

threshold, ratio 1:3
under-sampling

one-sided under-
sampling

similarity under-
sampling

cluster under-
sampling

diversity under-
sampling

only threshold
selection

assay AID BA GM BA GM BA GM BA GM BA GM BA GM BA GM

504466 0.84 0.84 0.83 0.83 0.80 0.80 0.76 0.76 0.82 0.82 0.72 0.72 0.77 0.75
485314 0.78 0.78 0.78 0.78 0.76 0.76 0.67 0.67 0.69 0.68 0.68 0.65 0.72 0.69
485341 0.70 0.70 0.69 0.69 0.66 0.66 0.52 0.52 0.61 0.58 0.58 0.51 0.50 0.06
624202 0.80 0.80 0.79 0.79 0.76 0.76 0.67 0.67 0.76 0.75 0.72 0.69 0.60 0.47
651820 0.78 0.78 0.77 0.77 0.75 0.75 0.70 0.70 0.71 0.70 0.69 0.68 0.75 0.74
average 0.78 0.78 0.77 0.77 0.74 0.74 0.66 0.66 0.72 0.71 0.68 0.65 0.67 0.54

BA: balanced accuracy. GM: geometric mean (G-mean).
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set for each activity/end-point, taking into account the
applicability domain of these models.
Comparison of Imbalanced Learning Methods. The

seven different imbalanced learning approaches described above
were applied to modeling of the five HTS assay data sets.
Balanced accuracy values calculated for each test set for each of
the imbalanced learning approaches are shown in Table 2.
Table 2 shows that the best results in terms of the balanced

accuracy and G-mean evaluation values were obtained for the
multiple under-sampling method as well as our hybrid method.
A bootstrap method with 10,000 repeats showed that these
results were better than the results obtained by other sampling
methods with a statistical significance at the p = 0.001 level.
The average accuracy of prediction achieved for the five test
sets exceeded 0.75 for both methods. Poorer results were
obtained with the similarity, diversity under-sampling, and
simple threshold selection methods. The clusterization and
one-sided under-sampling methods produced results in the
middle of the range with an accuracy of prediction around 0.70.
The reason for the poor results achieved by the similarity and

diversity methods is perhaps due to the artificial nature of
chemical (sub)space that was produced by these methods.
Indeed, a distribution of chemical compounds restricted by
similarity in the first case and by diversity in the second case
conceivably does not well represent the chemical space of the
test sets, which were kept untouched. Indirectly, this can be
proven by the cluster under-sampling approach, which showed
better results in comparison to both the similarity and diversity
methods. This method retains the initial chemical space in the
training set due to data clusterization and does not create an
artificial distribution as the similarity and diversity methods do.
The same explanation might be applied to the one-sided under
sampling approach, which due to the random extraction of
compounds from the initial pool also more likely preserved the
initial chemical space.
It is no surprise then that the multiple under-sampling

approach showed the best results. In comparison with the other
methods, this approach allows all compounds from the majority
class to be retained for model development. Thus, this method
provides a better chemical coverage of the test set compounds.
In addition, due to the nature of the method, all models are
created from balanced data sets.
Our new hybrid method gave the second best results. The

reason for this is that the hybrid method has better chemical
coverage than the one-sided approach, and it also retains more
of the chemical space in the training set in comparison to the
similarity and diversity under-sampling approaches. In addition,
the application of threshold selection used in this method
produces balanced prediction results.

All compounds from the majority class were used for model
development in the adjusting decision threshold approach.
However, this method gave poor results in terms of the G-mean
values for two of the five training sets. Analysis of these results
suggests that this method cannot be successfully used for
extremely imbalanced data sets with a ratio of actives to
inactives more imbalanced than 1:80 but may still be applied to
smaller imbalanced data sets.

Combination of Imbalanced Learning Methods.
Taking into account the pros and cons of each imbalanced
learning approach, we analyzed various two-method combina-
tions. For this purpose, models obtained from the hybrid and
cluster imbalanced methods were combined, and prediction
results were aggregated to give consensus predictions. Both of
these methods retain the initial chemical space in different
ways: random selection and clusterization. Thus, we reasoned
that the combination of both of them might produce improved
results. The best approach, multiple under-sampling, was
excluded from any combination because this method includes
all the compounds from the training set to begin with. Results
achieved by the combined method and by two separate hybrid
and cluster methods were compared as to their respective
balanced accuracy and G-mean values (Table 3).
Table 3 shows that combined methods produce better results

compared to two separate methods in two of the five assays
(504466, 624202). Analysis of these results shows that for these
two assays the difference between the accuracy values of the
two separate methods is small: 0.01 for assay 504466 and 0.03
for assay 624202. For the remaining three assays, the difference
in accuracy values between the two separate methods exceeds
0.06. Thus, our observations suggest that an improvement in
the results by combining two imbalanced methods can be
achieved in situations when the accuracies of the two separate
methods are close to each other.

External Validation of Imbalanced Methods. During
the course of this study, a new data set of genotoxicity
inductors in human embryonic kidney cells became available
from NIH NCATS. These new confirmatory bioassay data are
presented in PubChem as AID 651632. According to the assay
description in PubChem, compounds in this bioassay data set
were assayed under the same conditions as used in AID
504466. Thus, this provided us with an additional opportunity
for external validation of our QSAR models developed for assay
AID 504466 using the various imbalanced learning approaches.
The initial number of compounds in AID 651632 was

10,496. We preprocessed the data according to the procedure
described above. The total number of compounds left in the
validation set was 9402: 218 actives and 9184 inactives (ratio
1:42). Predictions for this set were calculated by the QSAR
models obtained with three imbalanced learning approaches:

Table 3. Test Set Predictions Quality Parameters for Combined Imbalanced Learning Approaches

combination hybrid and cluster under-
sampling hybrid under-sampling cluster under-sampling

assay AID BA GM BA GM BA GM

504466 0.85 0.85 0.83 0.83 0.82 0.82
485314 0.74 0.73 0.78 0.78 0.69 0.68
485341 0.67 0.66 0.69 0.69 0.61 0.58
624202 0.80 0.80 0.79 0.79 0.76 0.75
651820 0.75 0.75 0.77 0.77 0.71 0.70
average 0.76 0.76 0.77 0.77 0.72 0.71

BA − balanced accuracy, GM − geometric mean (G-mean).
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multiple under-samplings, hybrid under-sampling, and our
combined method (hybrid and cluster under-sampling). The
balanced accuracy and G-mean values calculated for this
external validation set are shown in Table 4.
Predictions were made both with and without taking into

account the combined applicability domains of the models
(Table 4, lower and upper row, respectively), the former
obviously corresponding to 100% AD coverage. All imbalanced
learning methods yielded a similar accuracy of prediction
calculated for full coverage of the external validation set (AD:
100% coverage), which generally exceeded 0.65. Limiting the
prediction to those that fell in the combined applicability
domains of the hybrid and cluster combination methods
(bottom row in Table 4) yielded a slight increase in the
coverage for the external validation set but did not improve the
accuracy of prediction. The simple hybrid method produced
similar prediction results as the multiple under-sampling
approach but with less coverage. All methods showed a lower
accuracy of prediction in comparison to the results obtained for
the test set from AID 504466. The reasons for this may be that
this validation set covers new chemical space and/or has a
different distribution of active and inactive compounds. Indeed,
the test set from AID 504466 has a ratio of 1:75, whereas the
validation set from AID 615632 has a ratio of 1:42.
Nevertheless, the best results achieved with the hybrid and
multiple under-sampling methods for AID 615632 were closer
to 0.70, which is quite good for an external validation test.
Chemical Activity Predictor Web Service. We have

made the QSAR models developed with the GUSAR program
utilizing the hybrid imbalanced learning approach freely
available in our online Chemical Activity Predictor service at:
http://cactus.nci.nih.gov/chemical/apps/cap. This service pro-
vides the user with two different ways of inputting chemical
structures. The first one is a classical online chemical editor,
which allows the desired structure to be drawn and submitted.
The second one is based on our NCI/CADD Chemical
Identifier Resolver36 technology and allows the input of
different types of structure identifiers: InChIKey, drug names,
SMILES, IUPAC names, etc. This service allows the user to
input several structures simultaneously. As output, the service
provides binary prediction results for the five HTS assays for
each compound. In addition, our service estimates the
applicability domain of each QSAR model with the result
that for each compound each prediction is annotated with
either “In AD” or “Out of AD”, indicating whether one can be
confident in the prediction or not. Performance tests on the
current hardware showed that our service operates at a
reasonable computational speed (approximately 5 compounds
per second for the simultaneous prediction of five activities).

■ CONCLUSIONS

We have analyzed several common strategies for imbalanced
data modeling. In total, seven methods were compared using

HTS data sets extracted from PubChem. Our analysis led us to
propose a new hybrid method, which includes both cost-
sensitive learning and under-sampling approaches. We showed
that the multiple under-sampling approach and our hybrid
method provide more accurate prediction results than other
methods. Our QSAR models showed a generally high accuracy
of prediction, on average exceeding 0.75. In addition, the
combination of two imbalanced learning approaches was
investigated, with the result that some improvements could
be achieved using this approach. We hope that our QSAR
models may be useful for in silico screening of compound
libraries for the five activities from the PubChem HTS bioassay
collection. Our freely available Chemical Activity Predictor
Web service provides public access to these QSAR models and
may be found useful by researchers trying to find drug-like leads
with desirable properties. In addition, this service allows the
optimization of compounds across different activities simulta-
neously.
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Table 4. External Validation of Imbalanced Methods

combination of hybrid and cluster under-
sampling hybrid under-sampling multiple under-sampling

assay AID BA GM BA GM BA GM

651632 0.68 (AD: 100%) 0.62 (AD: 100%) 0.68 (AD: 100%) 0.65 (AD: 100%) 0.68 (AD: 100%) 0.66 (AD: 100%)
651632 (combined AD) 0.68 (AD: 95.2%) 0.63 (AD: 95.2%) 0.69 (AD: 79.3%) 0.66 (AD: 79.3%) 0.69 (AD: 92.2%) 0.67 (AD: 92.2%)

AD: applicability domain. BA: balanced accuracy. GM: geometric mean (G-mean). Lower row: predictions limited to those that fall in the combined
applicability domains of the hybrid and cluster combination methods.
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